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In this chapter, we illustrate and extend the rollout algorithms of Chap-
ter 2 in various specialized settings. We begin in Section 3.1 with model
predictive control, a methodology of great importance in control system
design. In Section 3.2, we consider multiagent problems, and we develop
an effective approach to deal with control spaces that are large because
the control consists of multiple components. In Section 3.3, we discuss
how we can incorporate trajectory constraints into the rollout approach for
deterministic optimal control. In Section 3.4, we provide illustrations of
constrained rollout, which involve discrete and combinatorial optimization
problems. In Section 3.5, we discuss rollout for Bayesian optimization, a
partial state information DP formulation of a static optimization problem,
whereby the outcomes of past experiments are used to design more effec-
tive future experiments. Finally, in Section 3.6, we show how to adapt the
main DP principles and the rollout approach to the case of minimax control
problems that involve a set membership description of uncertainty.

Model Predictive Control

We will consider a classical control problem, where the objective is to keep
the state of a deterministic system close to the origin of the state space
or close to a given trajectory. This problem has a long history, and has
been addressed by a variety of methods. Starting in the late 50s and
early G0s, approaches based on state variable system representations and
optimal control became popular. The linear-quadratic approach whereby
the system is represented by a linear model, the cost is quadratic in the
state and the control, and there are no state and control constraints was
developed during this period, and is still used extensively. Unfortunately,
however, linear-quadratic models are often not satisfactory. There are two
main reasons for this:

(1) The system may be nonlinear, and it may be inappropriate to use for
control purposes a model that is linearized around the desired point or
trajectory. Moreover, some of the control variables may be naturally
discrete, and this is incompatible with the linear system viewpoint.

(2) There may be control and/or state constraints, which are not handled
adequately through quadratic penalty terms in the cost function. For
example, the motion of a car may be constrained by the presence
of obstacles and hardware limitations (see Fig. 3.1.1). The solution
obtained from a linear-quadratic model may not be suitable for such
a problem, because quadratic penalties treat constraints “softly” and
may produce trajectories that violate the constraints.

These inadequacies of the linear-quadratic formulation have moti-
vated a methodology, called model predictive control (MPC for short),
which combines elements of several ideas that we have discussed so far,
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Figure 3.1.1 Illustration of constrained motion of a car from point A to point
B. There are state (position/velocity) constraints, and control (acceleration) con-
straints. When there are mobile obstacles, the state constraints may change
unpredictably, necessitating on-line replanning.

such as multistep lookahead, rollout with infinite control spaces, and cer-
tainty equivalence. Aside from resolving the difficulty with infinitely many
Q-factors at zy, while dealing adequately with state and control constraints,
MPC is well-suited for on-line replanning, like all rollout methods.

The ideas of MPC were developed independently of the approximate
DP/RL methodology and rollout in particular. However, the two fields are
closely related, and there is much to be gained from understanding one
field within the context of the other, as the subsequent development will
aim to show.

We will focus primarily on the most common form of MPC, where
the system is either deterministic, or else it is stochastic, but it is replaced
with a deterministic version by using typical values in place of the uncer-
tain quantities, or state estimates in place of exact state values, in the
spirit of the certainty equivalent control approach. Moreover we will con-
sider the case where the objective is to keep the state close to the origin (or
more generally some point of interest, called the set point). This is called
the requlation problem; see Fig. 3.1.2 for an example. Similar approaches
have been developed for the problem of maintaining the state of a non-



198 Specialized Rollout Algorithms Chap. 3

REGULATION PROBLEM
Keep the state near some given point
Traditionally 0 (the origin)
0=0,6=0

e
e T

Figure 3.1.2 Illustration of a classical regulation problem, known as the “cartpole
problem” or “inverse pendulum problem.” The state is the two-dimensional vector
of angular position and angular velocity. We aim to keep the pole at the upright
position (state equal to 0) by exerting horizontal force u on the cart.

stationary system near a given state trajectory, and also, with appropriate
modifications, to control problems involving disturbances. In particular, in
some cases, the trajectory is treated like a sequence of set points, and the
subsequently described algorithm is applied repeatedly.

We will consider a deterministic system

Trt1 = frlzg, up)

whose state z; and control uy are finite-dimensional vectors. The cost per
stage is assumed nonnegative

gk (zk,ug) =0, for all (z, ux)

(e.g., a quadratic cost). We assume that the system can be kept at the
origin at zero cost, i.e.,

fe(0.7) =0, gr(0.7) =0,  for some control i, € Uy(0)
We also impose (possibly time-varying) state and control constraints
zr € Xg, ug € Up(xy), k=0.1,---
We consider an infinite horizon version of the problem, i.e., for a given ini-
tial state xo € X, we want to obtain a sequence {ug, u1,-- -} such that the

states and controls of the system satisfy the state and control constraints,
while minimizing the total cost.
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Note that there are no restrictions on the sets X and Uy (xy): they are
arbitrary, within the corresponding state and control spaces. In particular,
they can be continuous/infinite or discrete/finite. The most common case
in practice is when the system equation, the constraints, and the stage
costs are stationary. However, nonstationary problems are also interesting,
and there is no difficulty in allowing them in our analysis.

The MPC Algorithm

Let us describe the MPC algorithm for the deterministic problem just de-
scribed. At the current state xzy:

(1) MPC solves an f-step lookahead version of the problem, which re-
quires that x;., = 0.1 We assume that the positive integer ¢ satisfies
a condition that guarantees the feasibility of this problem (see the
constrained controllability condition that follows).

(2) If {ig, -, @gspe—1} is the optimal control sequence of this problem,
MPC applies @ and discards the other controls gy, -, Gppr—1.

(3) At the next stage, MPC repeats this process, once the next state x4
is revealed.

In particular, at the typical stage &k and state xz; € Xy, the MPC
algorithm solves an {-stage optimal control problem involving the same
cost function and the requirement x;.y = 0. This is the problem

k+£—1

i xy, 3.1
BBy 2 ) &1

subject to the system equation constraints
Tir1 = fi(@e,uy), t=k, - k+0-1
the state and control constraints
xr € X, ur € Up(ae), t=k,--- k+€-1

and the terminal state constraint zy4¢ = 0. Let {@g, gpt1,- -+, Upte—1} be
a corresponding optimal control sequence. The MPC algorithm applies at
stage k the first component ;. of this sequence, and discards the remaining
components; see Fig. 3.1.3.1

T The constraint x.; = 0 is natural and simplifies the analysis. In practice
it may be replaced by alternative more general conditions; see Section 3.1.2.

1 In the case, where we want the system to follow a given nominal trajectory,
rather than stay close to the origin, we should modify the MPC optimization
to impose as a terminal constraint that the state x4, should be a point on
the nominal trajectory (instead of xys = 0). We should also change the cost
function to reflect a penalty for deviating from the given trajectory.
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Figure 3.1.3 Illustration of the problem solved by MPC at state ;.. We minimize
the cost function over the next ¢ stages while imposing the requirement that
T = 0. We then apply the first control of the optimizing sequence.

Note that we have not excluded the possibility that Ug(zy) has a
discrete character, in which case the f-stage MPC problem (3.1) may be
an integer programming problem. We assume the following.

Constrained Controllability Condition

The integer £ is such that for every k£ and state x; € X}, we can find
a sequence of controls uy, -+, up4¢—1 that drive to 0 the state xp¢ of
the system at time &k + ¢, while satisfying all the intermediate state
and control constraints

up € Ur(zk), Zry1 € Xit1, Ukt1 € Uppr(Th1) -+

ZTryo—1 € Xkte—1; Ukte—1 € Uppe—1(Trre—1)

Finding an integer ¢ that satisfies the constrained controllability con-
dition is an important issue. Generally the constrained controllability con-
dition tends to be satisfied if the control constraints are not too stringent,
and the state constraints do not allow a large deviation from the origin. In
this case not only can we implement MPC, but also the resulting closed-
loop system will tend to be stable; see the following discussion of stability.
Note that the actual state trajectory produced by MPC may never reach
the origin (see the subsequent Example 3.1.1). This is because we use only
the first control uy, of the kth stage sequence {ty, ig41,+* . Up4e—1}, which
aims at xp4+¢ = 0. At the next stage £ + 1 the control generated by MPC
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may be different than 4, because it will aim one step further to the
terminal condition xp4p4; = 0.

To make the connection of MPC with rollout, we note that the one-
step lookahead function J implicitly used by MPC [cf. Eq. (3.1)] is the
cost-to-go function of a certain base heuristic. This is the heuristic that
drives to 0 the state after £ —1 stages (not £ stages) and keeps the state at 0
thereafter, while observing the state and control constraints, and minimiz-
ing the associated (£ — 1)-stages cost, in the spirit of our earlier discussion.

Sequential Improvement and Stability Analysis

It turns out that the base heuristic just described is sequentially improving,
so MPC has a cost improvement property, of the type discussed in Section
2.3.1. To see this, let us denote by jk(;r;,_.) the optimal cost of the /(-
stage problem solved by MPC when at a state a € X;. Let also Hy(xy)
and Hj41(2g+1) be the optimal costs of the corresponding (£ — 1)-stage
optimization problems that start at xj and wxp.;, and drive the states
Tpyo—1 and xp4e, respectively, to 0. Thus, by the principle of optimality,
we have the DP equation

Ji(xx) = min [Qk(ilf:.-,uk) +Hk+l(fk(11-'k|uk))}
wp €U (2,)

Since having one less stage at our disposal to drive the state to 0 cannot

decrease the optimal cost, we have

Ji(xr) < He(zi)

i.e., the cost of driving the system to 0 in £ — 1 stages and then staying
at 0 for one more stage at no cost cannot be less than the optimal cost
of driving the system to 0 in ¢ stages. By combining the preceding two
relations, we obtain

min [gk(xk,uk) + Hy1 (fr (2, u,y))] < Hp(z) (3.2)
up €U (xy)

which is the sequential improvement condition for the base heuristic (cf.
Section 2.3.1).t

Often the primary objective in MPC, aside from fulfilling the state
and control constraints, is to obtain a stable closed-loop system, i.e., a
system that naturally tends to stay close to the origin. This is typically
expressed adequately by the requirement of a finite cost over an infinite
number of stages:

Z gr(Tp,up) < 00 (3.3)

k=0

T Note that the base heuristic is not sequentially consistent, as it fails to
satisfy the definition given in Section 2.3.1 (see the subsequent Example 3.1.1).
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where {xo, 1o, 1, u1,---} is the state and control sequence generated by
MPC.

We will now show that the stability condition (3.3) is satisfied by the
MPC algorithm. Indeed, from the sequential improvement condition (3.2),
we have

gi(xp, ur) + Hyp1 (2p41) < Hi(xp), k=1,2,... (3.4)
Adding this relation for all k in a range [1, K], where K = 1, we obtain
K
Hicpr(zx1) + Y gr(@r, ur) < go(wo, uo) + Hi(x1)
k=0
Since (in view of the nonnegativity of the cost per stage) we have

0< Hrq1(TK41)

it follows that
K
ng(fffk,’uk) < go(@o. uo) + Hi(xy), K=1
k=0
and taking the limit as K — oo, we obtain
oo
Z!}k(?ﬂs:, ug) < go(xo,uo) + Hi(z1) (3.5)
k=0

The expression
go(wo, uo) + Hi(x1)

in the right side above is the optimal cost of transfer from zo to z, = 0 (i.e.,
the first {-stage problem solved by MPC). Since this transfer is feasible by
the constrained controllability condition, the above expression is finite and
the stability condition (3.3) is satisfied.

The line of analysis just provided was based on rollout ideas and the
sequential improvement condition (3.4). However, it is also related to well
known lines of Lyapunov stability analysis in control theory; see e.g., the
end-of-chapter textbook references on MPC.

Example 3.1.1
Consider a scalar linear system and a quadratic cost

2, 2
Thp1 = Tp + Up, gk (@p, ur) = i + uk
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where the state and control constraints are
zr € X = {z | |z| < 1.5}, u € Up(zn) = {u] [u| <1}

We apply the MPC algorithm with £ = 2. For this value of ¢, the constrained
controllability assumption is satisfied, since the 2-step sequence of controls

up = —sgn(xo), uy = —x1 = —To + sgn(zo)

drives the state x2 to 0, for any zg with |zg| < 1.5.
At state @ € X, MPC minimizes the two-stage cost

Th + up + (T +ur)® + ups
subject to the control constraints
lur] < 1, [upr1] <1
and the state constraints
|zk+1] < 1.5, Ttz = T + Uk + Uksr =0

This is a quadratic programming problem, which can be solved with available
software, and in this case analytically, because of its simplicity. In particular,
it can be verified that the minimization yields

- 2 N -
Uk = =32k, U1 = —(@p + k)
Thus the MPC algorithm selects u; = —%:rk, which results in the closed-loop
system
1
Tht1 = 3Tk, k=0,1,---

Note that while this closed-loop system is stable, its state is never driven
to 0 if started from zo # 0. Moreover, it is easily verified that the base
heuristic is not sequentially consistent. For example, starting from x; = 1,
the base heuristic generates the sequence

2 1 1
{«’Uk =lur = T Tl = 3y Ukl = — 3 Thia = 0, up42 = 01-“}

while starting from the next state xp4 = iﬁ it generates the sequence

1 2 1 1
{:m—+: = ‘?"‘,uk+1 = _‘(‘]“-.-Tk+2 = E}_’UHQ — —6-.Ik+:! =0,uk43 =0, - }

so the sequential consistency condition of Section 2.3.1 is violated.

Regarding the choice of the horizon length ¢ for the MPC calcula-
tions, note that if the constrained controllability assumption is satisfied for
some value of £, it is also satisfied for all larger values of £. This argues
for a large value of £. On the other hand, the optimal control problem
solved at each stage by MPC becomes larger and hence more difficult as £
increases. Thus, the horizon length is usually chosen on the basis of some
experimentation: first ensure that ¢ is large enough for the constrained
controllability assumption to hold, and then by further experimentation to
ensure overall satisfactory performance.
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3.1.1 Target Tubes and Constrained Controllability

We now return to the constrained controllability condition, which asserts
that the state constraint sets X are such that starting from anywhere
within X}, it is possible to drive to 0 the state of the system within some
number of steps ¢, while staying within X, at each intermediate step m =
k+1,---,m = k + £ — 1. Unfortunately, this assumption masks some
major complications. In particular, the control constraint set may not
be sufficiently rich to compensate for natural instability tendencies of the
system. As a result it may be impossible to keep the state within X
over a sufficiently long period of time, something that may be viewed as a
form of instability. Here is an example involving an unstable system and
inadequate control constraints.

Example 3.1.2
Consider the scalar linear system
Tiy1 = 2xp + up
which is unstable, and the control constraint
lug| <1

Then if 0 < xo < 1, it can be seen that by using the control up = —1, the
next state satisfies,
o1 =2z — 1< 2o

and is closer to 0 than the preceding state xg. Similarly, using controls uy =
—1, every subsequent state z. will get closer to 0 than zy. Eventually, after
a sufficient number of steps k, with controls u, = —1 for k < k, the state xj
will satisfy

O=a5 = é
Once this happens, the feasible control u; = —2x; will drive the state zy
to 0.

Similarly, when —1 < x¢ < 0, by applying control ux = 1 for a suffi-
ciently large number of steps k, the state xp will be driven into the region
[-1/2,0], and then the feasible control uz = —2z; will drive the state zg,,
to 0.

Suppose now that the state constraint is of the form Xy = [—3, 3] for
all k, and let us explore what happens for different values of 3. The preceding
discussion shows that if 0 < 8 < 1 the constrained controllability assumption

T Fundamentally, when the constrained controllability condition is not known
to hold, we are essentially dealing with a constrained form of rollout, whereby
the present control choice may affect the feasibility of future state constraints.
Constrained rollout will be discussed in Section 3.3.



