^{第3章} 虚拟结构

科技图像主要用来展现微观世界,在微观世界中不太会出现科幻电影中幻化出来的精灵、怪兽,但会有 大量的颗粒、碎片等。在学习绘制科技图像的过程中,可以先通过基础单元的学习逐渐熟悉软件的功能, 再进入复杂程度更高的模型雕铸环节。

多边形建模

3.1.1 多边形的概念

多边形(Polygons)是三维模型构建的基础,是由顶点和边定义的立体模型,顶点构建面,面构成体积模型。在模型上构建的细节是由增加的点、线逐渐刻画出越来越多的细节结构。多边形建模的过程与雕塑艺术家做雕塑的过程相似,先雕刻出大体的轮廓,再逐渐深入刻画细节,同时尽可能地保持用最简单的面来构建模型,不要将模型"切"得过于细碎。

模型是由切面构成的,随着切面数量逐渐增多,模型的圆滑程度逐渐提高,如图 3-1 所示。为了不 给计算机系统增加负担,在构建模型时尽量用细分度较低的粗模,在最终渲染时用高细分度的精模。

图3-1

在选中模型的状态下,按1键为低模显示模式,按3键为高模显示模式,按4键为网格显示模式,按5键为实体显示模式,按6键为纹理显示模式,按7键为带灯光显示模式。

3.1.2 创建多边形基本体

在建模模块中, Maya 为多边形设置了多种基本 元素。在"创建" | "多边形基本体"子菜单中,可 以看到"球体""立方体""圆柱体"等命令,如 图 3-2 所示,执行相应的命令即可在视图中创建相 应的多边形基本体。

1 创建	选择												
-74 [^]	NURBS	基本体									v miru		
	念边形制	大体											
	体印制水	(体				•						5	
	15552640.												
	HHETE							网	胜体				
	ACTER												
1	実里												
-	SVG								盘				
•	Adobe(I	R) Illust							io mo:	2754			
	构选平面							112	192.0163 ; 244	Paup			
	白山路線	् भाषाः सम्बद्धाः					4	100					
*	完約課							130	11. 16				
	注题							100 H					
	ALAL.							385	atesta M				
	语管理								76 60				
	场冒集合							AE:	₩. 117 -				
								100	「「「「「」」				
							*	T#	RENAR				
							2	UI.	tra #	~ 3#			
图有世	9 8889	型示	温米	84 DDF	紋					- ere			
4 2 4 Q4								父	934) (****	切底			
							~	76	100dFJ1	1970L			

图3-2

02

03

k k

虚拟结构

04

05

06

多边形基本体的其他创建方法如下。

1. 工具架创建

除在菜单栏中执行相应命令创建基本体外,在工具架中单击"多边形建模"选项卡,在其中单击对 应的图标,也可以创建多边形基本体,如图 3-3 所示。

2. 快捷菜单创建

在视图中不选中任何结构的状态下,按住 Shift 键并右击,在弹出的快捷菜单中,选择相应的基本体命令,也可以创建多边形基本体,如图 3-4 所示。

图3-3

3.2 实例:钙钛矿的常用结构

创建多边形基本体后,还需要对其参数进行修改,在这个环节中需要熟悉两个关键工具——通道盒 与建模工具包。本节通过一个实例讲述通道盒对模型的管理与控制技法。

步骤1:选择"创建"|"多边形基本体"|"柏拉图 多面体"命令,创建一个多边形基本体,如图3-5 所示。

步骤2:在"通道盒"中,展开"输入"展卷栏下的polyPlatonic1,可以看到当前的"基本体"默认值为 "二十面体",单击该选项,将"二十面体"切换为"八面体",如图3-6所示。

图3-6

步骤3:单击"工具架"Ⅰ"多边形建模"选项卡中的"球体"工具按钮 ●,在场景中创建圆球。钙钛矿 结构特征是在体心及顶点分别有一个原子点,将创建的球体留在立方体中间,充当面心原子,再次创建 圆球,并缩放其大小,拖曳z轴控制轴,将新创建的原子点移至结构顶点处。复制顶点原子,在四视图 中拖曳对应控制轴,调整顶点原子所在位置,如图3-7所示。

图3-7

提示

2复制并放置顶点原子时,顶点原子不要着急放满,先放最下方顶点以及两个相邻位置的顶 点,占总顶点数的50%,如图3-8所示。

029

02

03

虚拟结构

04

06

07

80

步骤4:在进行大量复制前,先为顶点原子和晶体赋予材质。在菜单中选择"窗口"|"渲染编辑器" |Hypershader命令,打开"材质编辑器"面板,创建一个新的阿诺德万能材质球,并设置好材质属性。在材质上右击,在弹出的快捷菜单中选择"为当前选择指定材质"选项,如图3-9所示。

图3-9

步骤5: 创建3个不同的材质球,分别为八面体、面心球、顶点球指定材质。操作完成后,先简单渲染, 预览效果,如图3-10所示。

图3-10

步骤6: 框选场景中创建的几个结构对象,在菜单中选择"编辑" | "分组"命令(快捷键为Ctrl+G)建 立组,使当前几个模型处于同一个组中。编组后会重新生成在整个组中心的枢轴,如图3-11所示。

编辑	1 创建 选择 修	改 显示 窗口	网格 编辑网格	网格工具网格显示曲线曲面变形UV生成缓存
	撤消 *AEArnoldCal 重做 重复 *renderWindd 最近命令列表	llback_MeshTemp owMenuCommanc	." Ctrl+Z Ctrl+Y I s" G	● ♀ ♀ ♀ ♀ ♀ ◇ ♀ ♀ ○ ◇ ♀ ♀ ○ ◇ ♀ ♀ ○ ◇ ♀ ♀ ○ ◇ ♀ ♀ ○ ◇ ♀ ○ ◇ ♀ ○ ◇ ♀ ○ ○ ○ ○
	剪切 复制 粘贴		Ctrl+X Ctrl+C Ctrl+V	照明 显示 渲染器 面板 ▲ - ウ え 田 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	大雑顿 删除 删除 按类型删除 按类型删除全部			
	复制 复制 复制并变换 传递属性值 呈级		Ctrl+D Ctrl+Shift+D □ Shift+D	
	分组 解组 LOD (详细级别)		Ctrl+G	
	建立父子关系 断开父子关系		P □ Shift+P □	

虚拟结构

💦 软件小知识:中心枢轴

1. 改变中心枢轴位置

在对结构对象进行位移、旋转、缩放操作时,都需要基于中心枢轴,软件默认的中心枢轴在结构的 正中心,如图 3-12 所示,按 D 键或 Insert 键可以进入调整中心枢轴位置的状态,拖曳轴心的方向轴改 变中心枢轴的位置,如图 3-13 所示。调整好中心枢轴位置后需要再次按 D 键或者 Insert 键,以确认调 整位置。

ł

2. 改变中心枢轴的应用

改变中心枢轴,在科技图像的结构制作中可以产生很多便利,如图 3-14 所示,当中心枢轴调整到结构之外时,可以方便堆积制作有向心属性的结构。

3. 组中心枢轴

当选中多个结构对象并执行"编组"命令后,每个独立的结构中心枢轴保持在自己的原始位置, 在组单元中重新出现一个以组为中心的中心枢轴。对组中心枢轴的调整,不会影响单个对象的中心 枢轴。

4. 复位中心枢轴

当调整中心枢轴得到相应的变化后,需要使其再次回到中心枢轴;或者有些结构单元偏离场景中心 点,而组中心枢轴默认生成位置在场景中心点,需要将中心枢轴设置在群组结构中心时,选择"修改"।"中 心枢轴"命令,可以将单体结构对象或者群组对象的中心枢轴设定在结构的中心,如图 3-15 所示。

也可以通过单击"工具架" | "多边形建模"选项卡中的**圆**快捷图标,将中心枢轴设定在结构中心, 如图 3-16 所示。

修改 显示 窗口 网格 编辑网	
变换	
約 变换工具 ▶	
	多边形建模 雕刻 绑定 动画 渲染 FX FX 缓存 自定义 XG
中心枢轴	
烘焙枢轴 🗌	🗑 👃 📢 🛠 🍣 🔍 🔶 📘 🏧 🔍 🏣 🦝
捕捉对介列家 「	色 照明 显示 渲染器 面板
图3-15	图3-16

步骤7:设置好组并选中组对象后,执行"编辑" | "复制"命令(快捷键为Ctrl+D),复制结构组。将 复制的第一组对象沿x轴拖曳,调整好位置,并让复制后的顶角原子与之前留空的顶角正好对齐。调整 好第一组对象后,执行"编辑" | "复制并变换"命令(快捷键为Shift+D),后续单元的复制和位移操 作会自动进行,如图3-17所示。

编辑	创建 选择 修改 显示	窗口 网格 绯	轴网格	网格工具	1 网格	显示目	曲线 曲	面变	₿ UV	生成	缓存	Arnold	帮助			and man
	診送 *DuplicateMithTransform	m" (trl+7		190	0.0	00	• 无法	數活曲面		- 对税	陀禁用		1 🗃	122 122 1 IPR	2 💿 i	👸 😹 📗
	E做	Ctrl+Y	渲染													
	重复 "evalDeferred("workspac 最近命令列表	ceLa* G	٠	T sv		. 9	0.0,0			•		€ 2]•(P] 🖡	*	()	F 🔍
	度切 夏制	Ctrl+X Ctrl+C	着包 1 🛜 1	5 照明 N 👍 🍫	显示) よく日田	宣染器	面板	I 💷 I 🚺		¢ ⊗ 4	¥				N O	0.00 0
	595 关键帧 ◇	Ctrl+v	•													
	示 删除 安举型删除		•													
	安类型 删除全部 11)													
	夏制	Ctrl+D		6) 0	6		-	0-0	-	0	-			\mapsto	
	特殊复制	Ctrl+Shift+D														
					/								/			
	专递属性值 ^及		3						1					۳		
		Ctrl+G	<u> </u>													
	驿组 OD (详细级别)		•													
	<u></u> 建立父子关系		ב													
l	所开父子关系	Shift+P [

02

03

虚拟结构

04

06

07

08

步骤8: 框选横向复制的所有结构对象,采用同样的方法完成沿y轴的复制操作,如图3-18所示。

图3-18

步骤9:复制得到需要的层数后,停止复制。注意,此时最外层的顶点缺一排原子,需要复制最下层的 原子,并移至顶层,补上空缺,如图3-19所示。

图3-19

步骤10: 采用相同的方法完成*z*轴复制后,调整摄像机的角度,单击"渲染"按钮,获得如图3-20 所示的结构效果。

从这个实例中可以看出,在科学研究领域进入 微观世界之后,很多基础形态会回归到圆球、链条、 圆柱、颗粒等,这些结构可能不需要大费周章地挤 压变形,制作复杂的模型,用系统预设的基本体结 构并稍做修改,即可得到理想的形态。

01

02

03

04

05

06

07

0A

09

图3-20

3.3 建模工具包与基本体配合获得多元化的结构

3.3.1 建模工具包

在软件右侧的"建模工具包"将软件主菜单的 "编辑网格"和"网格"工具中使用频率较高的模 型编辑工具集合在一起,如图 3-21 所示。"建模 工具包"的上半部分用于调整场景中对结构对象的 选择方式,下半部分是模型变形的主要工具。

"建模工具包"中的编辑工具在"工具架"和 快捷菜单中都有重叠部分,这会导致记忆负担。下 面结合基本体结构,以及在科技图像领域常见的图 像结构,从结构理解的角度讲述这些功能的使用 方法。

图3-21

3.3.2 以多边形基本体 + 编辑工具理解模型的常见变化

1. 基础球体

球体是多边形的基础单元,也是常见的基本体结构之一。单击"工具架"|"多边形建模"|"球体"

工具按钮,在场景中创建球体,如图 3-22 所示。展开"通道盒"中球体的属性参数,系统默认的"轴向细分数"和"高度细分数"值均为 20,球体会随着细分数值的增加而变得更加圆滑,降低细分数值会让球体有切面感。

图3-22

2. 基础球体 + 挤出变形

选择球体并在"建模工具包"中切换到"面选择"状态,单击"挤出"按钮,在悬浮窗中单击"保持面的连接性"菜单,并切换到"禁用"状态。拖曳挤出工具垂直方向的手柄,如图 3-23 所示,在挤出适当的结构后,停止挤出,按 3 键进行平滑显示。

图3-23

为结构搭配简单的渲染环境可以获得如图 3-24 所示的结构效果。

禁用了"保持面的连接性"后的面挤压,可以 将多个面同时挤出,形成凸出结构。面选择状态结 合挤压功能,可以制作出满足各种不同需求的结构。

02

03

04

06

07

08

09

图3-24

3. 基础立方体

立方体是很多模型的起点,以立方体为基准增加边、线,可以变化出各种异形的结构状态,单击"工具架"|"多边形建模"|"立方体"工具按钮,,在场景中创建立方体,如图 3-25 所示。

在按3键进行平滑显示时,可以看到立方体以球体的形态显示,如图 3-26 所示。

图3-25

图3-26

² 立方体在不增加细分数值时可以平滑成球体,但是立方体平滑成的球体是面数最少的球体。 在一些分子结构或者有大量球体堆积的场景中,尽可能减少面数会让场景的运行负担降低,进而 获得较高的工作效率。

4. 立方体 + 挤压 + 倒角

为立方体增加分段数,并按y轴压扁立方体。切换到"面选择"状态,逐一选中顶部面,单击"挤出" 按钮 ,在"挤出"命令的悬浮窗中禁用"保持面的连接性"选项,如图 3-27 所示。分别选中挤出控 制器上两个水平方向的缩放手柄,缩放选中的顶面。这次挤压只能完成平面上的缩放,再次单击"挤出" 按钮 ,拖曳垂直方向位移箭头,向下移动。

0

图3-28

5. 圆柱体

如图 3-28 所示。

单击"工具架"|"多边形建模"|"圆柱体"工具按钮窗,在场景中创建圆柱体,改变圆柱体的"轴 向细分数"值,可以获得不同的柱状结构,如图 3-29 所示。

6. 圆柱体 + 布尔 | 差集

创建球体,单击"挤出"工具按钮,将球体挤出一定的厚度。创建圆柱,将圆柱中心枢轴拖至球体中心,复制多个圆柱体并环绕球体,如图 3-30 所示。按顺序选中球体后再选中圆柱,单击"建模工具包"中"布尔"按钮,将"运算"模式改为"差集",即可得到空心介孔球。

图3-30

02

03

第3章 虚拟结构

💦 软件小知识:布尔运算

在二维软件和三维软件中都有布尔运算功能,通过形体之间的加减运算来获得相应的结构对象。 Maya的布尔运算有并集(将两个结构合并计算得到整体结构)、差集(用对象 *B* 减去对象 *A* 得到剩下的结构)、交集(保留两个结构交叉的部分)。

执行"并集"和"交集"命令时,选择顺序对结果没有影响,执行"差集"命令时需要注意选择顺序。

孔道结构、多孔结构在微观领域有较多的应用, 布尔运算利用不同的剪切对象和被剪切对象可以得 到各种不同的微孔道结构,如常见的纳米球、多孔 膜等,如图 3-31 所示。

图3-31

7. 锥体

单击"工具架" | "多边形建模" | "锥体"工具按钮 , 在场景中创建锥体。锥体结构的默认底面是 一整片圆形,调整"端面细分数"值可以增加底面结构上的线段,如图 3-32 所示。

8. 锥体 + 合并

创建一个锥体和一个圆柱体,在调整它们的位置后,在"建模工具包"中单击"结合"工具按钮,将两个单独的结构对象合并为一个完整的结构对象,中心枢轴自动重新生成,处于整体结构的中心,如图 3-33 所示。在"建模工具包"中单击"分离"工具按钮,可以将结合的对象恢复到原始的状态。

😭 软件小知识:"结合"与"并集"的区别

执行"结合"与"并集"操作,从结果上来看,通过"结合"获得一个整体结构与通过"布尔"中的"并 集"获得一个整体的结构,它们的效果相似,区别在于,通过"结合"获得的结构,可以在"建模工具包" 中通过"分离"重新分解为各自独立的结构,而"布尔"获得的结构不可逆。

为结构增加一个透明球体, 渲染效果如图 3-34 所示。

9.环形

单击"工具架" | "多边形建模" | "环形"工 具按钮 , 在场景中创建环形,系统默认为圆环, 如图 3-35 所示。

将环形的"轴向细分数"值调整为6,如图3-36 所示,可获得科研领域常见的六元环结构。

图3-34

09

02

图3-35

图3-36

采用同样的方式,还可以获得五元环、八元环等环形结构。

10. 环形 + 平滑

在模型的制作过程中,尽可能缩减面数,可以降低计算机系统的运算负担,避免面数太多导致计算 机卡顿。但是在减少面数时,会伴随出现结构不够圆滑的情况。按3键的平滑显示对普通结构很有帮助, 可以保证在不增加面数的情况下,光滑地渲染结构。选中减少了"轴向细分数"值的六边形,并按1键, 会发现圆滑并没有将六边形变成更加精细的六边形,而是直接变成了圆环,如图 3-37 所示。单击"建 模工具包"中的"平滑"按钮 ,在弹出的浮动窗口中可以设置"分段"值,但是显然"平滑"也会将 六边形变成了圆环。对六边形结构执行"添加分段"命令 ,增加分段之后的六边形比之前圆滑,但是 并未改变六边形的结构形态。

图3-37

"建模工具包"中的变形功能可以用在任何模型结构上,不限于特定形态。在"创建" | "多边形基本体"子菜单中还有"圆管""螺旋线""足球"等更多预设好的基本体结构,通过巧妙结合,灵活组装,这些基本结构在科研图像领域都可以起到很好的作用。

在基本体创建中还有一类比较特殊的基本体——文字。在工具架上,"文字"工具**一**与其他基本体 工具共同陈列在"多边形建模"选项卡中。"文字"工具的使用方法比其他基本体略微复杂,下面以一 个简单的实例讲述"文字"工具的使用方法。

在科技图像中,文字是比较重要的组成部分,而且需要尽可能保持文字的矢量状态,这样可以保证 文字的清晰度和精致感。期刊封面中除标题外一般不会出现文字,如果确实需要添加一些文字,就要设 法使其成为画面结构的一个部分,通常的做法是将文字做成三维立体结构,使其具有形体感。

步骤1:选择"创建" | "类型"命令,或者在工具架中单击"文字"工具按钮,在场景中生成立体的文字结构,如图3-38所示。

图3-38

步骤2:此时场景中出现立体字3D Type,右侧的属性编辑器中随之展开文字属性编辑器type1,如图3-39 所示。

01

02

03

04

05

06

07

n f

图3-39

场景中出现的 3D Type 字样是系统默认的文字,在展开的文字属性编辑器中,可以将该文字删除, 并输入需要的文字内容。在 type1 选项卡中,可以调整字体、字体大小等参数,如果是多行文字,还可 以调整对齐方式。

步骤3:将文字内容改为CO2,字体改为Arial,如图3-40所示。

▝▛▘▋ዿኇ፟፟፟Ҳ▎▓▔▣ा▆⊒▆▆▎▓▓▓▓▓▓ৠዹ▌▓ፇҀ▖▎▃▎▟▐▋▊∖✿᠐┉	typeMesh1 typeMesh	Shape1 type1 shellDe	former1 polyAutoPr 《) 聚集 预设 显示 除藏
	Arial CO2 文本 生成興 几何休	✓ Requiar	◆ Anv ◆ ▲ □ 具也 解开指翻器
CO2		20.000 1.000 1.000 1.000 1.000	+uman IK XGen
	类型操纵器 ▶ 餅加屬性 注释: type1		
persp	选择	加载属性	复制选项卡

图3-40

步骤4:单击"类型操纵器"按钮 ๋ ,单击文字2,在化学符号中2应该是下标,比另外两个字符小,用 "类型操作器"调整文字2的大小,如图3-41所示。

步骤5: 完成对文字内容的调整后,进入"几何体"选项卡,调整文字的形态。在"挤出"展卷栏中选中"启用挤出"复选框,调整"挤出距离"值为8.718,增加文字的厚度,如图3-42所示。

图3-42

步骤6: 拖动type1选项卡的滚动条,查看更多参数设置。进入"倒角"展卷栏,选中"启用倒角"复选框,设置"倒角距离"值为0.415,让文字边缘看起来更圆滑、精致,如图3-43所示。

02

03

虚拟结构

04

05

06

图3-43

步骤7:为字体增加材质,并配置场景中的灯光。渲染文字,可以看到文字的厚度及倒角效果,如图 3-44所示。

在多边形建模中,在多边形结构上增加点、线、面并加以调整的过程是多边形建模中最具有挑战性的,可以创造无限可能的形状。下面以一个实例展示多边形建模的过程及思路,同时讲述多边形编辑相关工具的使用方法。

步骤1:执行"创建" | "多边形基本体" | "立方体"命令,在场景中创建立方体。进入"建模工具 包",将选择工具切换到"面选择"模式,任意选择一个面,按住Shift键再选中另一个对应的面,如 图3-45所示。

步骤2:单击"建模工具包"中的"挤压"按钮Ⅰ,如图3-46所示。

图3-45

步骤3:依次选中几个不相邻的面,如图3-47所示。

步骤4:再次单击"挤压"按钮,让结构更具有起伏感,如图3-48所示。

图3-48

步骤5:对模型执行"平滑"命令,如图3-49所示,在浮动窗口中将"分段"值调整为3,使模型变得 更光滑,点线数量更多,如图3-50所示。

047

02

03

虚拟结构

04

06

07

08

图3-50

步骤6:在"建模工具包"中选中"软选择"复选框,如图3-51所示。"软选择"可以在对选定范围的 锚点进行调整时,同时影响周边点的形态变化,以便让结构更自然,不至于产生断层、切面的现象。

图3-51

步骤7:将软选择的"体积"值设置为0.80,用"选择"工具、框选要调整的锚点,切换到"位移"工具,可结构进行细节调整。

步骤8: 在不同的位置框选锚点并调整结构,结合位移操作调整出大致的形状,此时减小软选择的"体积"值,进行细节的刻画,如图3-52所示。

步骤9:执行"网格工具" | "雕刻工具" | "凸起工具"命令,调出"雕刻"笔刷,此时鼠标指针会 变成圆圈状,在结构上需要凸起的位置单击,可以刷出与"软选择"方式相同的凸起效果,如图3-53 所示。

图3-53

📡 软件小知识: 雕刻笔刷

1. 雕刻笔刷的设置与调整

雕刻笔刷是通过鼠标在结构上的拖曳,从而影响局部结构,造成凸起或凹陷的结构变化。在使用雕 刻笔刷时,需要调整以下几个参数。

(1)大小,即笔刷影响的范围。

(2)强度,即笔刷力度。

笔刷调整方法一: 在"网格工具" | "雕刻工具"子菜单中,每个笔刷命令后面都有小方块图标, 单击它可以打开相应窗口并进行设置,如图 3-54 所示。在窗口中,可以预先设定好笔刷的大小与强度, 再开始使用笔刷。

02

03

虚拟结构

04

06

07

08

09

笔刷调整方法二:如果对笔刷的大小和强度没有概念,需要根据模型大小和结构进行判断。在操作 过程中,可以看到左侧视图上方会出现一个工具的临时图标,在这个临时的工具图标 上双击,可以在 使用过程中调出设置对话框,并调整笔刷参数。

笔刷调整方法三:在笔刷力度调整合适后,可以稳定使用,不需要反复调整。但笔刷大小的调整可能会有更多的变化,随着细节深入,笔刷大小需要变得更细小,在一些大结构方面则需要放大,笔刷大小除可以在对话框中设置外,软件还提供了调整快捷键——按住 B 键的同时按住鼠标左键拖曳,可以在场景中直接变换笔刷的大小。

2. 使用雕刻笔刷时的注意事项

雕刻笔刷是比调整点和面更快捷的调整工具,但是使用雕刻笔刷需要注意以下两点。

(1)雕刻笔刷需要有较多的细分面,在使用雕刻笔刷之前需要做好基础轮廓结构,为轮廓结构增加细分。在三维软件中增加细分面意味着增加系统计算量,会导致整个场景的运行效率降低,操作发生 卡顿,渲染时间变长。

(2)雕刻笔刷适用于处理具有随机性变化的结构,对于鼠标控制和造型控制能力强的设计师,可 以用来制作精度极高的雕塑作品。在科技图像领域,更适用于一些有变化,又没有绝对精准要求的结构体, 及微观世界中与生命体有关的随机性的结构,如细胞、肿瘤组织、细菌、囊泡等。

在"工具架"中, "雕刻"工具有独立的选项卡,将常用的雕刻工具以图标的形式陈列其中,以便 调用或切换,如图 3-55 所示。

图3-55

步骤10:处理好一个结构单体后,可以复制该单体 并调整角度。将多个单体堆积起来,形成更复杂、 有出有入的蛋白结构状态,如图3-56所示。

在科技图像中,如果需要非常精准的蛋白质构 象,可以查阅蛋白质数据库,按照其学术规则模拟 或者下载,在有些图像中没有具体所指的蛋白质类 型,蛋白质只是象征性的结构,可以用无规则的起 伏模型堆积形成。

图3-56