前言


近年来,人工智能行业的快速发展得到了社会各界的广泛关注,我国政府在《新一代人工智能发展规划》提出“到2030年,使中国成为世界主要人工智能创新中心”。与此同时,我国多所高校也陆续成立人工智能专业。2018年35所高校获教育部批准首批开设人工智能本科专业,2019、2020年新增人工智能专业的高校分别有180所、130所。然而,在人工智能行业高速发展的大背景下,AI人才仍然显得“供血不足”。
从当前的人才需求趋势来看,由于人工智能技术与业务落地实践结合非常紧密,行业亟需大量既懂理论又懂实践的应用型AI人才。作为人才培养的重要基地,我国高校人工智能人才培养目前还面临师资较少、经费不足、实践机会缺失等现实问题,导致目前高校培养的人才仍以学科型、研究型为主。关于行业需求量较大的应用型人才如何培养尚不明确,难以满足人工智能行业的深度需求。
为帮助更多人工智能爱好者了解产业需求,本书应用百度开源深度学习框架百度飞桨(PaddlePaddle),通过大量实践案例,辅以理论知识讲解,帮助读者快速入门,理解核心知识点。并通过由浅入深的真实案例操作,对相关知识进行全面实战检验。同时,按照数据建模步骤,从问题定义、数据收集、特征工程、模型训练、模型评估、模型应用方面,层层深入、循序渐进地剖析机器学习中极具代表性的实践。
本书涵盖了大量源自百度飞桨平台的实践案例。作为我国首个自主研发、功能丰富、开源开放的产业级深度学习平台,百度飞桨已凝聚来自于各行各业的370万开发者,创建42.5万个AI模型,累计服务14万企事业单位,覆盖工业、能源、金融、农业、医疗、城市管理等众多应用场景。作者从百度飞桨中挑选了大量适合初学者学习的案例素材,以期通过真实的产业界实战练习,帮助读者更好地理解、应用相关知识点,更好完成从理论到实践的进阶,成为真正符合市场需求的应用型人工智能人才。
人工智能行业的发展离不开人才培养,应用型人才的培养离不开实践学习。希望本书的出现,可以帮助更多人工智能爱好者通过真实案例更深刻地理解理论知识,并在日后将书中所学应用到产业实践中,共同推动我国人工智能发展走向新高峰。

编者2021年11月