前言 随着数据挖掘和信息共享等数据库应用的出现与发展,如何保护隐私数据和防止敏感信息泄露成为当前面临的重大挑战。作为数据挖掘与信息共享应用中的重要环节,数据发布中的隐私保护已成为当前的研究热点。隐私保护数据发布自提出以来,已吸引国内外众多学者、数据管理人员以及工程科技人员对其展开研究,并取得了大量的研究成果。 近十年来,作者及其课题组一直致力于隐私保护数据发布的模型及算法研究,在多年研究积累的基础上撰写了本书。本书主要阐述以差分隐私模型为基础的统计数据发布,其主要内容是作者主持的国家自然科学基金项目和福建省自然科学基金项目的研究成果,并融合了课题组近年来在国内外重要学术期刊和学术会议上发表的研究成果。 全书共8章。第1章概述差分隐私模型的相关基础知识。第2~4章论述基于区间树结构的静态数据发布及流数据发布。其中,第2章论述面向任意区间树结构的差分隐私直方图数据发布方法;第3章介绍从调整树结构和添加异方差噪声的角度优化基于树结构的差分隐私直方图数据发布,以进一步提高发布直方图数据的查询精度的方法;第4章介绍面向流数据发布背景,通过异方差加噪与一致性约束优化基于树结构的差分隐私流数据发布的方法。第5~7章论述基于矩阵机制的静态数据发布与流数据发布方法。其中,第5章阐述基于矩阵机制的差分隐私连续数据发布方法;第6章阐述指数衰减模式下的连续数据发布方法;第7章介绍面向流数据发布背景,基于矩阵机制与滑动窗口优化流数据发布的算法效率与发布精度的方法。第8章介绍基于矩阵机制提出的一种面向差分隐私数据发布的误差分析方法。 在撰写本书过程中,作者得到国内外许多专家的支持和帮助,与他们的讨论给了作者许多启发。王晓东教授在百忙之中认真审阅了全书,提出了许多宝贵的改进意见,作者在此表示感谢。同时,感谢课题组参与有关研究工作的王一蕾副教授、傅仰耿博士、孙岚讲师以及张玺霖、陈鸿、黄泗勇、康健、蔡剑平、张立群、葛晨、陈靖麟等硕士生。 本书的相关研究工作得到国家自然科学基金项目“基于线性无偏估计面向任意树结构的差分隐私直方图发布”(No.61300026)、福建省自然科学基金项目“异方差加噪下的差分隐私直方图发布模型及算法研究”(No.2017J01754)和“面向LBS的位置隐私保护与移动轨迹匿名发布模型及算法研究”(No.2014J01230)等的支持。清华大学出版社对本书的出版给予了大力支持,在此一并致谢。 本书可作为高等学校计算机科学与技术、网络空间安全、管理科学与工程等学科相关专业高年级本科生、研究生以及数据安全隐私保护的研究者的参考用书。 差分隐私统计数据发布是一个新兴的多学科交叉研究领域,许多概念和理论尚待探讨,加之作者水平有限,撰写时间仓促,因此书中难免存在疏漏,恳请读者指正。 作者 2021年9月