

Chapter 3 Variables and Operators

Input, process, output…input, process, output…input, process, output…

It’s all computers do. Think about it: no matter what software you’re using,
that’s all that’s going on. Input, process, output (IPO), is a computer model that
all processes in a computer must follow.

For example:

• Input e.g. read from network/disk/database/hardware, accept user input.
• Process e.g. FFT, sum, product, random shuffle.
• Output e.g. write to network/disk/database, flash lights, change display,

respond to user input.

Before we can do any processing, we need to have data. And once we get that
data we need to hold onto it in some way. How do we do this? We use variables.

3.1 Variables

A variable is a “container” in which a data value can be stored inside
the computer’s memory.

The stored value can be referenced by using its name later in the program.

A variable looks like a bottle in somewhat. A bottle can be used to hold different
liquids such as water, a variable can hold or store the value of different data
type.

Let’s imagine that if you were asked to remember a number: 5. What happened
in your brain? You stored this value in your memory. Then, if you were asked to
add 6 to the number, you should be retaining the numbers 11 (that is 5+6) in
your memory.

 输入；处理；输出

变量

值

内存

引用

C/C++程序设计(C/C++ Programming)

 32

The whole process described above is a simile of what a computer can do with
two variables. That can be expressed in C/C++ with the following set of
statements:

a = 5;
b = 6;

c = a + b;

Variables are the lifeblood of software—the medium through which data travels
all around your programs. The operations described in this chapter demonstrate
how to store, process, assign, manipulate and transfer data through the use of
variables.

3.2 Variables and identifiers

Each variable needs a name that identifies it and distinguishes it from the others.
In the following chapters, we will give name to other programming elements,
such as functions, classes, etc. All these elements have a common name—
identifier.

An identifier is a name that is assigned by the user for a program element such
as variable, type, template, class, function or namespace.

When naming an identifier, we should obey the naming convention. A naming
convention is a set of rules for choosing the character sequence to be used for
identifiers.

(1) Only alphabets, digits and underscores are permitted.
(2) It must begin with either a letter or an underscore.
(3) Key words cannot be used as a name.
(4) Upper case and lower case letters are distinct. C/C++ is case-sensitive.

3.3 Data Types

Each variable has a specific type, which determines the size and layout of the
variable’s memory; the range of values that can be stored within that memory.

血液；媒介

赋值；操作；传输

标识（zhi）符

赋予，给予

命名约定

字母；数字；下画线

关键字

区分大小写的

数据类型

特定的类型

Chapter 3 Variables and Operators

 33

There are following basic types of variable in C/C++ in Table 3-1.

Table 3-1 Data Types in C/C++

Type Description Size

bool Stores either value true or false 1 Byte

char Storage of individual text 1 Byte

int Storage of numbers without a fractional part 4 Bytes

float A single-precision floating point value 4 Bytes

double A double-precision floating point value 8 Bytes

Please notes:

• The character type “char” can be used to store numbers, but is generally used
to store characters, e.g. ‘a’, ‘H’, ‘?’. The character is stored as a number
which specified by ASCII.

• The range of values that can be stored in the int type is limited +2147483647.
And although this seems to be a very large number, the population of China
is currently (2020) 1366000000. So you would not be able to use an int to
store the total savings of the population of China, for example.

• The float type allows a wide range of values to be stored, but there are limits
in precision, that is how accurately a number can be represented in a floating
point format. A float will be able to accurately represent a number to 9
significant places.

• The bool type is used when looking at logical expressions where there are
only two possible results True and False.

The data types described above cover nearly all of the basic data types in
C/C++. However, there is always an exception and in C/C++ this is void. The
void data type represents nothing and this will make little sense to you until we
discuss functions .

3.4 Variables Declaration and Initialization

A variable must be declared before it is used.

基本类型

布尔型

字符型

整型

浮点型

双精度型

字符型

ASCII 码

格式

有效数字位数

逻辑表达式

空类型

函数

变量的声明和初

始化

C/C++程序设计(C/C++ Programming)

 34

A declaration specifies a type, and contains a list of one or more variables of that
type as follows:

variableType variablelList;

Here, “variableType” must be a valid C/C++ data type including char, int, float,
double, bool or any user defined object, etc, and “VariableList” may consist of
one or more identifier names separated by commas. Some valid declarations are
shown here:

int i, j, k;

char c, ch;
float f, salary;

double d;

Variables are initialized (assigned a value) with an equal sign followed by a
constant expression. The general form of initialization is:

variable_name = value;

Note that the use of the ‘=’ sign is for assignment rather than equivalence.
Variables can be initialized (assigned an initial value) in their declaration. The
initializer consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

For examples: int number = 12;

Let’s look at this line of C/C++ code in more detail:

int: this tells the compiler what the type of the variable is. The compiler needs to
know about the type of the variable because the amount of memory used will be
different and the way that the pattern of individual binary digits (bits) which is
decoded into a number will be different.

number: the name or label for the variable. Once memory has been allocated to
store our integer value, our programme can access that memory using the
variable name.

=: This is an assignment operation that stores the number 12 in our variable.

确定

合法的

用逗号分开

等号

常数表达式

二进制数字（位）

标签；分配

访问

赋值运算

Chapter 3 Variables and Operators

 35

When C++ declares a variable, a block of the computer’s memory will be used
to store the value, it may already contain a bit pattern (from operations
performed elsewhere in your program or another program running on the
computer). This means that when we create a new variable, it will contain a
random value. Therefore, it is important that you assign a value to a variable
before you start to use it.

The program is below(see Figure 3-1).

Figure 3-1 Assignment for different variables

3.5 Variable Names and Comments

Often in some C/C++ textbooks or when you look at coding examples on the
web, you see code that looks like:

int a, b, c;

float d, e;

This is valid C/C++ code, the first line declares three variables of type int with
the names or labels of a, b and c. The second line declares two variables to hold
floating point data and gives them the names d and e.

Although this code will work, it is not recommended when writing C/C++
programs. It is a legacy of the times when computers were very limited in terms
of memory storage and computing power. Today, the mobile phone in your
pocket or a laptop computer on your desk have computing power more than a
mainframe computer that would have been shared between 20 to 30 users at the
year when C was developed.

计算机内存块

位（二进制）格式

随机值

变量名和注释

过去的；过时的

大型主机

C/C++程序设计(C/C++ Programming)

 36

Modern C/C++ programming practice will use longer names for variables. The
name given to each variable should show what the variable will store.

If we have a variable called a, what does it store? Is it the number of apples in a
shop or the number of pigs that a farmer owns or the telephone number of a
friend? The variable name tells the person reading the program nothing useful.
This means that we would have to add comments to our code. Comments are
text in our source file that is ignored by our compiler.

A single line comment is indicated by using the symbol “//”. The compiler will
ignore all characters after the “//” symbol until the end of the line. Our code with
comments might look like:

int a; //used to store the number of apples in shop
int b; //used to store the number of pigs on a farm

int c; //used to store current telephone number

Even with comments we have to remember what each variable in the program
does, and we may need to keep looking back at the comments so that we are
reminded of what the variable holds. The preferred technique in modern coding
is to use what is known as self-commenting. In this approach the name of a
variable indicates what it is stored in the variable. Using this approach, we
would declare our variables as:

int applesInShop;
int pigsOnFarm;

int currentPhoneNumber;

You can see, we hope, that the variable names show the information that we
expect the variable to hold.

Styles of Variable Names

C/C++ does not allow us to have space characters in a variable name. So we
need to be able to tell where the individual words in the variable name start.
Some people use underscore characters “_” where the spaces are:

apples in shop becomes apples_in_shop

In this book, we are using “camel case” where we don’t use underscore

程序注释

单行注释

技术

自我注释

变量命名风格

驼峰式命名方式

Chapter 3 Variables and Operators

 37

characters to represent spaces, but we use a capital or upper case letter at the
start of each word in the variable name.

apples in shop becomes applesInShop

You can also see that the variable name starts with a small or lower case letter.
We will always follow this style throughout this book and you should do the
same.

Unlike some scripting languages, in C/C++ you must formally declare a
variable, that is, to define its type and name before we can use it elsewhere in
our program. This strict typing approach means that we have to think a little
more when we are writing our code but are less likely to have our code failing to
work correctly when it is executed.

C/C++ allows you to declare variables without assigning values to them in
which case the variable will have a random value, this can cause your program
to perform incorrectly or crash. It is good practice to give a variable a value
when you create it, and avoiding the circumstances such as dividing by zero,
multiplying by infinity, etc.

If you want to store a different value to your variable, then you need to assign a
new value to the variable using the assignment operator “=”, the general form
for assignment is:

variableName = variableValue;

The value of a variable can be changed by setting a literal value, or by assigning
another variable to it, in which case the variable just takes on the value of the
variable on the right, that is to say, the original value of the variable is
overridden.

newBunnies = 15;

bunnyCounter = newBunnies;

脚本语言；正式声

明一个变量

赋值

随机值

崩溃

乘以一个无穷大

的数

文本（值）

被覆盖了

C/C++程序设计(C/C++ Programming)

 38

3.6 Operators

An operator is a symbol that tells the compiler to perform specific
mathematical or logical manipulations.

C++ is rich in built-in operators and provides the following types of operators:

• Arithmetic operators
• Relational operators
• Logical operators
• Bitwise operators
• Assignment operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment
operators one by one.

3.6.1 Arithmetic Operators

As a engineer, much of the data processing you are most likely to perform is
going to be arithmetic based. Most programming languages are geared around
arithmetic, with C/C++ being no exception.

There are following arithmetic operators supported by C/ C++ language in Table
3-2.

Table 3-2 Arithmetic operators (Assume variable A holds 10 and variable B holds 20)

Operator Description Example

+ Addition, adds two operands A+B will give 30

− Subtraction, subtracts second operand from the first A−B will give −10

* Multiplication, multiplies both operands A*B will give 200

/ Division B/A will give 2

% Modulus operator, remainder of after an integer division B%A will give 0

+ + Increment operator, increases integer value by one A+ + will give 11

− − Decrement operator, decreases integer value by one A− − will give 9

We often find in the code that we want to add something to the contents of a
variable and store the results in the original variable. The following line of code

运算符

操作

内置的，内建的

算术运算符

关系运算符

逻辑运算符

位运算符

赋值运算符

数据处理

运算数

模运算；余数

自增运算符

自减运算符

Chapter 3 Variables and Operators

 39

will perform this task.

applesInShop += applesFromFarm;

The operator “+=” takes the contents of the variable applesFromFarm and adds
it to the contents of the variable applesInShop where the result of the operation
is stored. It is equivalent to the statement below:

applesInShop = applesInShop +applesFromFarm;

There is a minor advantage in terms of the use of memory by using this operator.

There are corresponding operators for subtraction, multiplication and division.

Table 3-3 Arithmetic operators

Operation
Original values

Value stored in variable a after operation
a b

a += b; 4 2 6

a −= b; 4 2 2

a ∗= b; 4 2 8

a /= b; 4 2 2

3.6.2 Logical Operators

There are three logical operators supported by C/C++ language: logical AND,
logical OR and logical NOT.

Table 3-4 gives a explaination for each logical operator.

Table 3-4 Logical operators (Assume variable A holds 1 and variable B holds 0)
Operator Description Example

&&
Logical AND. If both the operands are true, then condition
becomes true

(A&&B) is false

||
Logical OR. If any of the two operands is true, then
condition becomes true

(A||B) is true

!
Logical NOT. Use to reverses the logical state of its
operand. If a condition is true, then Logical NOT operator
will make false

! A is false
! B is true

小的优点（内存的

占用小一些）

逻辑运算符

C/C++程序设计(C/C++ Programming)

 40

3.6.3 Bitwise Operators

A bitwise operator works on bits and perform bit-by-bit operation. The truth
table for &, |, and ^ are as follows:

Table 3-5 Bitwise operators in C/C++
p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

The Bitwise operators supported by C/C++ language are listed in Figure 3-2.
Assume variable A holds 60 and variable B holds 13, then:

Figure 3-2 Bitwise operators example

The output of the program above is as Figure 3-3.

位运算符

位与位操作

Chapter 3 Variables and Operators

 41

Figure 3-3 Output of the bitwise operators example

3.6.4 Relational Operators

There are following relational operators supported by C/C++ language in Table
3-6.

Table 3-6 Relational operators in C/C++ (Assume variable A holds 10 and
variable B holds 20)

Operator Description Example

==
Checks if the values of two operands are equal or
not, if yes, then condition becomes true

(A==B) is not true

!=
Checks if the values of two operands are equal or
not, if values are not equal, then condition becomes
true

(A!= B) is true

>
Checks if the value of left operand is greater than
the value of right operand, if yes, then condition
becomes true

(A>B) is not true

<
Checks if the value of left operand is less than the
value of right operand, if yes, then condition
becomes true

(A<B) is true

>=
Checks if the value of left operand is greater than or
equal to the value of right operand, if yes, then
condition becomes true

(A>=B) is not true

<=
Checks if the value of left operand is less than or
equal to the value of right operand, if yes, then
condition becomes true

(A<=B) is true

3.6.5 Operators Precedence in C/C++

Operator precedence determines the value of an expression. Certain operators
have higher precedence than others. For example, the multiplication operator has

关系运算符

运算符优先级

C/C++程序设计(C/C++ Programming)

 42

higher precedence than the addition operator. For example:

x = 7 + 3 * 2;

Here, x is assigned 13, not 20, because operator * has higher precedence than.

In Table 3-7, operators with the highest precedence appear at the top, those with
the lowest appear at the bottom. Within an expression, higher precedence
operators will be evaluated first.

Table 3-7 Operators Precedence in C/C++
Category Operator Associativity

Postfix () [] -> . ++ − − Left to right

Unary + − ! ~ ++ − − (type)* & sizeof() Right to left

Multiplicative * / % Left to right

Additive + − Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += −= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Below (see Figure 3-4) is the example for demonstrating the precedence of
operators.

后置（运算符）

一元运算符

乘、除、求余

加、减

移位

关系运算

相等性

位与

位异或

位或

逻辑与

逻辑或

条件运算

赋值

逗号运算符

Chapter 3 Variables and Operators

 43

Figure 3-4 Example of the precedence of operators

The output is as below (see Figure 3-5):

Figure 3-5 Output for code of precedence of operators

3.7 Some Much Used Operators in C / C++

3.7.1 Increment and Decrement Operator

The increment operator ++ adds 1 to its operand, and the decrement operator—
subtracts 1 from its operand. Both the increment and decrement operators can
either precede (prefix) or follow (postfix) the operand.

When an increment or decrement is used as part of an expression, there is an
important difference in prefix and postfix forms.

Increment or decrement will be done before rest of the expression for
a prefix increment or decrement operation, and increment or
decrement will be done after the complete expression is evaluated for
a postfix increment or decrement operation.

自增和自减运算符

前置的；后置的

C/C++程序设计(C/C++ Programming)

 44

Let’s see some examples of ++ as prefix and postfix in C and C++ (see Figure
3-6).

Figure 3-6 Increment and decrement operators

3.7.2 sizeof() Operator

The sizeof() operator is a compiling time unary operator which can be used to
compute the size of its operand. The result of sizeof() is of unsigned integral
type. sizeof can be applied to any data-type, including primitive types such as
integer and floating-point types, pointer types, or compound datatypes such as
classes, structures, unions and any other user defined data type. The syntax of
using sizeof is as follows:

sizeof (data type)

The following examples demonstrate the sizeof operator available in C and C++
(see Figure 3-7).

Figure 3-7 Demonstration of the sizeof operator

The output is:

Size of char : 1

一元运算符

无符号的整数类

型（的数）

指针类型的；混合

类型，比如类、结

构体、联合体（都

是数据类型）

Chapter 3 Variables and Operators

 45

Size of int : 4
Size of float : 4
Size of double : 8
Size of bool : 1

Note: sizeof() may give different output according to machines.

3.7.3 Modulus (%) Operator

The modulus operator produces the remainder of an integer division.

Syntax: If x and y are integers, then the expression:

x % y

produces the remainder when x is divided by y.

The % operator cannot be applied to floating-point numbers, i.e float
or double. If you try to use the modulus operator with floating-point
constants or variables, the compiler will produce an error.

• If x is completely divided by y, the result of the expression is 0.
• If x is not completely divisible by y, then the result will be the remainder in

the range [1, y−1].
• If y is 0, then a compile-time error will be produced.

Basic code for explaination is as below (see Figure 3-8).

Figure 3-8 Demonstration of modulus operator

模运算符（求余）

余数

整除

C/C++程序设计(C/C++ Programming)

 46

3.7.4 Conditional Operator (? :)

variable = expression1 ? expression2 : expression3;

Where expression1, expression2, and expression3 are expressions, variable
holds the value of the entire expression.

First, expression1 is evaluated, if it is true, then expression2 is evaluated and
becomes the value of the entire expression. If expression1 is false, then
expression3 is evaluated and its value becomes the value of the expression.

The conditional operator is a kind of similar to the if-else statement that we will
learn in the next chapter. It follows the same algorithm as of if-else statement
but the conditional operator takes less space and helps to write the if-else
statements in the shortest way. It can be visualized into if-else statement as:

if(expression1==true)
{
 variable = expression2;
}
else
{
 variable = expression3;
}

Since the conditional operator takes three operands to work, hence it is also
called ternary operator, and it is the only ternary operators in C and C++.

Below is the example of conditional operator.

#include<iostream>
using namespace std;
int main()
{
 int x = 3, y = 5, bigNumber;
 bigNumber = (x > y) ? x : y;
 cout << "The big number is: " << bigNumber << endl;
 return 0;
}

3.7.5 comma “,” operator

In a C/C++ program, comma is used in two contexts: (1) A separator (2) An

条件运算符

三元运算符

逗号运算符

Chapter 3 Variables and Operators

 47

Operator. For example:

#include<iostream>

using namespace std;

int main()
{

 int a = 3, b = 4, c = 5; //commas are used as separators

 cout << "a=" << a << endl;
 cout << "b=" << b << endl;

 cout << "c=" << c << endl;

 return 0;
}

In the example above, commas work as separators, not as operators. The first
line of statement declares three variables and then do assignment one by one
from left to right. Below is the example for comma operator used as an operator:

#include<iostream>
using namespace std;

int main()

{
 int a;

 a = 1, 2, 3;

 cout<< a << endl;
 return 0;

}

In the program above, comma works as an operator. The comma operator has the
lowest precedence of any operator, so the assignment operator takes precedence
over comma and the expression “a = 1, 2, 3” becomes equivalent to “(a = 1), 2,
3”. The output is 1.

For the program segment below:

int a=1, b=2, c=3, d;

d = (a, b, c);

Commas act as separators in the first line and as an operator in the second line.

In the second line, the round brackets are used, so comma operator is executed
first. The comma expression (a, b, c) is a sequence of expressions which

最低的运算优先级

程序段

圆括号

顺序（执行）表达式

C/C++程序设计(C/C++ Programming)

 48

evaluates to the last variable c, so the value of d is 3.

Look at the program segments below:

int a=3, b=4, c=5, d;
d = (a += 1, a + b, a + c);

For the line 2 of statement, the expression (a += 1, a + b, a + c) is separated into
three parts by two commas:

The first part increases value of a by 1, so a holds 4.

The value of the second part is 8 (4+4).

The value of the third part is 9 (4+5).

As the value of the entire expression (a += 1, a + b, a + c) is the value of third
part, so the value of d is 9.

Chapter Review

1. What is a variable?

2. Evaluate the following expressions:

a. 12*3 + 4
b. 5+3/2
c. 4/5*5
d. 11%3
e. (4+5)/3

Programming Exercises

1. Write a program in C to print the sum of two numbers, and then change this
program into a C++ language program.

2. Write a program in C++ to find the size of fundamental data types using the
sizeof() operator. The output should look like this:

评估为

Chapter 3 Variables and Operators

 49

Find Size of fundamental data types :

--

The sizeof char is: 1 bytes.
The sizeof int is: 4 bytes.

The sizeof float is: 4 bytes.

The sizeof double is: 8 bytes.
The sizeof bool is: 1 bytes.

3. Assume an integer takes 4 bytes, what is the output of the program below?

#include<stdio.h>
int main()

{

 int i = 5, j = 10, k = 15;
 printf("%d ", sizeof(k /= i + j));

 printf("%d", k);

 return 0;
}

(A) 4 1
(B) 4 15
(C) 2 1
(D) Compile-time error

4. What is the output of the program below?

#include<stdio.h>
int main()

{

 int i = (1, 2, 3);
 printf("%d", i);

 return 0;

}

(A) 1
(B) 3
(C) Garbage value
(D) Compile time error

C/C++程序设计(C/C++ Programming)

 50

5. What is the output of the program below?

#include<stdio.h>

int main()

{
 int a = 1;

 int b = 1;

 int c = a || --b;
 int d = a-- && --b;

 printf("a = %d, b = %d, c = %d, d = %d", a, b, c, d);

 return 0;
}

(A) a = 0, b = 1, c = 1, d = 0
(B) a = 0, b = 0, c = 1, d = 0
(C) a = 1, b = 1, c = 1, d = 1
(D) a = 0, b = 0, c = 0, d = 0

6. Write a program to produce the output as shown below:

Results:
x value y value expressions results

10 | 5 | x+=y | x=15

10 | 5 | x-=y-2 | x=7
10 | 5 | x*=y*5 | x=250
10 | 5 | x/=x/y | x=5

10 | 5 | x%=y | x=0

7. Write a program in C++ to find the area and perimeter of a rectangle.

Sample output is:

Find the Area and Perimeter of a Rectangle :

--

Please input the length of the rectangle : 3
Please input the width of the rectangle : 4

The area of the rectangle is : 12

The perimeter of the rectangle is : 14

