Chapter 3 Variables and Operators

Input, process, output...input, process, output...input, process, output...

It’s all computers do. Think about it: no matter what software you’re using,
that’s all that’s going on. Input, process, output (IPO), is a computer model that

all processes in a computer must follow.
For example:

e Inpute.g. read from network/disk/database/hardware, accept user input.

e Process e.g. FFT, sum, product, random shuffle.

e Output e.g. write to network/disk/database, flash lights, change display,
respond to user input.

Before we can do any processing, we need to have data. And once we get that
data we need to hold onto it in some way. How do we do this? We use variables.

3.1 Variables

A variable is a “container” in which a data value can be stored inside O

the computer’s memory. ‘

The stored value can be referenced by using its name later in the program.

A variable looks like a bottle in somewhat. A bottle can be used to hold different

liquids such as water, a variable can hold or store the value of different data

type.

Let’s imagine that if you were asked to remember a number: 5. What happened
in your brain? You stored this value in your memory. Then, if you were asked to
add 6 to the number, you should be retaining the numbers 11 (that is 5+6) in

your memory.

FNs AP fari

I
il

H
A7

51H

CIC++i2FiR1T(C/C++ Programming)

The whole process described above is a simile of what a computer can do with

two variables. That can be expressed in C/C++ with the following set of

statements:
a =5;
b = 6;

c =a+ b;

Variables are the lifeblood of software—the medium through which data travels
all around your programs. The operations described in this chapter demonstrate
how to store, process, assign, manipulate and transfer data through the use of

variables.
3.2 Variables and identifiers

Each variable needs a name that identifies it and distinguishes it from the others.
In the following chapters, we will give name to other programming elements,

such as functions, classes, etc. All these elements have a common name—

identifier.

An identifier is a name that is assigned by the user for a program element such

as variable, type, template, class, function or namespace.

When naming an identifier, we should obey the naming convention. A naming
convention is a set of rules for choosing the character sequence to be used for
identifiers.

(1) Only alphabets, digits and underscores are permitted.
(2) It must begin with either a letter or an underscore.
(3) Key words cannot be used as a name.

(4) Upper case and lower case letters are distinct. C/C++ is case-sensitive.

3.3 Data Types

Each variable has a specific type, which determines the size and layout of the

variable’s memory; the range of values that can be stored within that memory.

32

M WA

TAE s 1B 1L

FRiR (zhi) 7%

TR BT T

ST
X 4 R ANE 1

Hofk Ry

Chapter 3 Variables and Operators

There are following basic types of variable in C/C++ in Table 3-1.

Table 3-1 Data Types in C/C++

Type Description Size
bool Stores either value true or false 1 Byte
char Storage of individual text 1 Byte
int Storage of numbers without a fractional part 4 Bytes
float A single-precision floating point value 4 Bytes
double A double-precision floating point value 8 Bytes

Please notes:

o The character type “char” can be used to store numbers, but is generally used
to store characters, e.g. ‘a’, ‘H’, ‘?’. The character is stored as a number
which specified by ASCII.

e The range of values that can be stored in the int type is limited +2147483647.
And although this seems to be a very large number, the population of China
is currently (2020) 1366000000. So you would not be able to use an int to
store the total savings of the population of China, for example.

o The float type allows a wide range of values to be stored, but there are limits
in precision, that is how accurately a number can be represented in a floating
point format. A float will be able to accurately represent a number to 9
significant places.

e The bool type is used when looking at logical expressions where there are

only two possible results True and False.

The data types described above cover nearly all of the basic data types in
C/C++. However, there is always an exception and in C/C++ this is void. The
void data type represents nothing and this will make little sense to you until we
discuss functions .

3.4 Variables Declaration and Initialization

A variable must be declared before it is used. - O -

A

ASCII 4

%
e ek
BRIANX

H¥
%
i

PR

A) 75 WA)
stk

33

CIC++i2FiR1T(C/C++ Programming)

A declaration specifies a type, and contains a list of one or more variables of that
type as follows:

variableType variablelList;

Here, “variableType” must be a valid C/C++ data type including char, int, float,
double, bool or any user defined object, etc, and “VariableList” may consist of
one or more identifier names separated by commas. Some valid declarations are
shown here:

int i, j, k;

char c, ch;

float f, salary;
double d;

Variables are initialized (assigned a value) with an equal sign followed by a
constant expression. The general form of initialization is:

variable name = value;
Note that the use of the ‘=’ sign is for assignment rather than equivalence.
Variables can be initialized (assigned an initial value) in their declaration. The

initializer consists of an equal sign followed by a constant expression as follows:
type variable name = value;

For examples: int number = 12;

Let’s look at this line of C/C++ code in more detail:

int: this tells the compiler what the type of the variable is. The compiler needs to
know about the type of the variable because the amount of memory used will be
different and the way that the pattern of individual binary digits (bits) which is
decoded into a number will be different.

number: the name or label for the variable. Once memory has been allocated to
store our integer value, our programme can access that memory using the

variable name.

=: This is an assignment operation that stores the number 12 in our variable.

34

e

&

3@1 J

Rk

— kBT (B

bR%%s i
Vil

TR Is 5

Chapter 3 Variables and Operators

When C++ declares a variable, a block of the computer’s memory will be used
to store the value, it may already contain a bit pattern (from operations
performed elsewhere in your program or another program running on the
computer). This means that when we create a new variable, it will contain a
random value. Therefore, it is important that you assign a value to a variable

before you start to use it.

The program is below(see Figure 3-1).

#include <iostream>
using namespace std;

1

o

3

4 int main()
58 {

6

7

8

int a = 3, b = 5; // initializes a and b.
float c = 22.5; // initializes c.
double pi kb SR 7 // declares an approximation of pi.

9 char x s // the variable x has the value 'x'.
10

sl return 0;

L]

Figure 3-1 Assignment for different variables

3.5 Variable Names and Comments

Often in some C/C++ textbooks or when you look at coding examples on the
web, you see code that looks like:

int a, b, c;
float d, e;

This is valid C/C++ code, the first line declares three variables of type int with
the names or labels of a, b and ¢. The second line declares two variables to hold

floating point data and gives them the names d and e.

Although this code will work, it is not recommended when writing C/C++
programs. It is a legacy of the times when computers were very limited in terms
of memory storage and computing power. Today, the mobile phone in your
pocket or a laptop computer on your desk have computing power more than a
mainframe computer that would have been shared between 20 to 30 users at the

year when C was developed.

T SEHLA £ B
fr (D #3X

B ALLE

A B A4 R RE

LM W

RIEEHL

35

CIC++i2FiR1T(C/C++ Programming)

Modern C/C++ programming practice will use longer names for variables. The

name given to each variable should show what the variable will store.

If we have a variable called a, what does it store? Is it the number of apples in a
shop or the number of pigs that a farmer owns or the telephone number of a
friend? The variable name tells the person reading the program nothing useful.
This means that we would have to add comments to our code. Comments are

text in our source file that is ignored by our compiler.

A single line comment is indicated by using the symbol “//”. The compiler will
ignore all characters after the “//” symbol until the end of the line. Our code with

comments might look like:

int a; //used to store the number of apples in shop
int b; //used to store the number of pigs on a farm
int c; //used to store current telephone number

Even with comments we have to remember what each variable in the program
does, and we may need to keep looking back at the comments so that we are
reminded of what the variable holds. The preferred technique in modern coding
is to use what is known as self-commenting. In this approach the name of a
variable indicates what it is stored in the variable. Using this approach, we

would declare our variables as:

int applesinShop;
int pigsOnFarm;
int currentPhoneNumber ;

You can see, we hope, that the variable names show the information that we

expect the variable to hold.
Styles of Variable Names

C/C++ does not allow us to have space characters in a variable name. So we
need to be able to tell where the individual words in the variable name start.

[T3EE]

Some people use underscore characters where the spaces are:

apples in shop becomes apples_in_shop

In this book, we are using “camel case” where we don’t use underscore

36

FEFFERE

AT

BR
H 3R

>

Ap it 4 W%

i

Ggvge Xaiw 477 30

Chapter 3 Variables and Operators

characters to represent spaces, but we use a capital or upper case letter at the
start of each word in the variable name.

apples in shop becomes applesInShop

You can also see that the variable name starts with a small or lower case letter.
We will always follow this style throughout this book and you should do the

same.

Unlike some scripting languages, in C/C++ you must formally declare a
variable, that is, to define its type and name before we can use it elsewhere in
our program. This strict typing approach means that we have to think a little
more when we are writing our code but are less likely to have our code failing to
work correctly when it is executed.

C/C++ allows you to declare variables without assigning values to them in
which case the variable will have a random value, this can cause your program
to perform incorrectly or crash. It is good practice to give a variable a value
when you create it, and avoiding the circumstances such as dividing by zero,

multiplying by infinity, etc.

If you want to store a different value to your variable, then you need to assign a

@_9

new value to the variable using the assignment operator “=", the general form

for assignment is:
variableName = variableValue;
The value of a variable can be changed by setting a literal value, or by assigning

another variable to it, in which case the variable just takes on the value of the

variable on the right, that is to say, the original value of the variable is

overridden.
newBunnies = 15;
bunnyCounter = newBunnies;

JRIATE & 5 TESH
AL

T fEL
BHLIE
Ji bt

Febh—ATITK
1%

A (1)

37

CIC++i2FiR1T(C/C++ Programming)

3.6 Operators B

An operator is a symbol that tells the compiler to perform specific _\@/_

mathematical or logical manipulations. B AE
C++ is rich in built-in operators and provides the following types of operators: P, WE
e Arithmetic operators HARIBEAT
e Relational operators KRRBEFF
e Logical operators W AT
e Bitwise operators Pris SAF
e Assignment operators WRAE S AT

This chapter will examine the arithmetic, relational, logical, bitwise, assignment

operators one by one.
3.6.1 Arithmetic Operators

As a engineer, much of the data processing you are most likely to perform is %dfiab2E
going to be arithmetic based. Most programming languages are geared around

arithmetic, with C/C++ being no exception.

There are following arithmetic operators supported by C/ C++ language in Table
3-2.

Table 3-2 Arithmetic operators (Assume variable A holds 10 and variable B holds 20)

Operator Description Example

+ Addition, adds two operands A+B will give 30 1B

- Subtraction, subtracts second operand from the first A-B will give —10

* Multiplication, multiplies both operands A*B will give 200

/ Division B/A will give 2

% Modulus operator, remainder of after an integer division | B%A will give 0 RS RE
++ Increment operator, increases integer value by one A+ +will give 11 A 5 AT
-— Decrement operator, decreases integer value by one A——will give 9 H I BT

We often find in the code that we want to add something to the contents of a

variable and store the results in the original variable. The following line of code

38

Chapter 3 Variables and Operators

will perform this task.

applesInShop += applesFromFarm;

The operator “+=" takes the contents of the variable applesFromFarm and adds
it to the contents of the variable applesinShop where the result of the operation

is stored. It is equivalent to the statement below:

applesinShop = applesInShop +applesFromFarm;

There is a minor advantage in terms of the use of memory by using this operator. /ML CATER

i AN —28)
There are corresponding operators for subtraction, multiplication and division.
Table 3-3 Arithmetic operators
Original values
Operation 5 Value stored in variable a after operation
a
at=b; 4 2 6
a—=b; 4 2 2
a *=Db; 4 2 8
a/=b; 4 2 2
3.6.2 Logical Operators BRIEEG

There are three logical operators supported by C/C++ language: logical AND,
logical OR and logical NOT.

Table 3-4 gives a explaination for each logical operator.

Table 3-4 Logical operators (Assume variable A holds 1 and variable B holds 0)

Operator Description Example

Logical AND. If both the operands are true, then condition

&&
becomes true

(A&&B) is false

Logical OR. If any of the two operands is true, then

AlB)ist
I condition becomes true (AlB) is true
Logical NOT. Use to reverses the logical state of its|, Ais false
! operand. If a condition is true, then Logical NOT operator | = _ .
! B is true

will make false

39

CIC++i2FiR1T(C/C++ Programming)

3.6.3 Bitwise Operators

A bitwise operator works on bits and perform bit-by-bit operation. The truth

table for &, |, and * are as follows:

Table 3-5 Bitwise operators in C/C++

p q p&q plq P"q
0 0 0 0
0 1 0 1
1 1 1 1
1 0 0 1

The Bitwise operators supported by C/C++ language are listed in Figure 3-2.

Assume variable A holds 60 and variable B holds 13, then:

1 #include <iostream>
2 using namespace std;
o
4 main ()
58 {
6 unsigned int a =
il unsigned int b =
8 int ¢ = 0;
9
10 c=a & b;
il cout << "Line 1 -
1 e == | bz
13 gout £< "Line 2 -
14 c =a ® b;
il eout << "Line 3 =
16 ¢ = ~dj
Ly cout << "Line 4 -
18 c =a << 2;
e gout << "Line b ~
20 c=a > 2;
21 | gout << "Line 6 -
27 return 0;
25 |}

60; // 60 = 0011 1100

135 rf 18 =

0000 1101

// 12 = 0000 1100

Value of ¢ is

" << ¢ << endl;

// 61 = 0011 1101

Value of ¢ is:

k< ¢ <% eéndl;

// 49 = 0011 0001

Value of c is:

// —61 =
Value of c is:
// 240 =

Value of ¢ ig:

¥ << € << endl;

1100 0011

" << ¢ << endl;

1111 0000

Ve ¢ g éndli

// 15 = 0000 1111

Value of ¢ is:

T <X ¢ <X endl;

Figure 3-2 Bitwise operators example

The output of the program above is as Figure 3-3.

40

RIB AT

(VASTA J(3

Chapter 3 Variables and Operators

B | C:\MyProject\MyFirstProject\bin\Debug\MyFirstProject.exe

Line 1 — Value of ¢ is : 12
ine 2 - Value of ¢ is: 6

- Value of ¢

— Value of ¢
Value of ¢ i
Value of c is:

returned 0 (0x0) execution time : 0.978 s
ey to continue.

Figure 3-3 Output of the bitwise operators example
3.6.4 Relational Operators RRIBIFY
There are following relational operators supported by C/C++ language in Table
3-6.

Table 3-6 Relational operators in C/C++ (Assume variable A holds 10 and
variable B holds 20)

Operator Description Example

Checks if the values of two operands are equal or .
— i - (A==B) is not true
not, if yes, then condition becomes true

Checks if the values of two operands are equal or
1= not, if values are not equal, then condition becomes | (A!=B) is true
true

Checks if the value of left operand is greater than
> the value of right operand, if yes, then condition | (A>B) is not true
becomes true

Checks if the value of left operand is less than the
< value of right operand, if yes, then condition | (A<B) is true
becomes true

Checks if the value of left operand is greater than or
>= equal to the value of right operand, if yes, then | (A>=B) is not true
condition becomes true

Checks if the value of left operand is less than or
<= equal to the value of right operand, if yes, then | (A<=B)is true

condition becomes true

3.6.5 Operators Precedence in C/C++ BHAFREH

Operator precedence determines the value of an expression. Certain operators

have higher precedence than others. For example, the multiplication operator has

1

CIC++i2FiR1T(C/C++ Programming)

higher precedence than the addition operator. For example:

X =7+ 3 * 2;

Here, x is assigned 13, not 20, because operator * has higher precedence than.

In Table 3-7, operators with the highest precedence appear at the top, those with
the lowest appear at the bottom. Within an expression, higher precedence

operators will be evaluated first.

Table 3-7 Operators Precedence in C/C++

Category Associativity
Postfix Ofn->.++-- Left to right
Unary +— 1 ~++——(type)* & sizeof() Right to left
Multiplicative *1 % Left to right
Additive + - Left to right
Shift <<>> Left to right
Relational <<=>>= Left to right
Equality == Left to right
Bitwise AND & Left to right
Bitwise XOR " Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR I Left to right
Conditional 7 Right to left
Assignment =A4=—=*=/=Y=>>=<<= Right to left
Comma R Left to right

Below (see Figure 3-4) is the example for demonstrating the precedence of

operators.

42

JaE GEH)
—JLIBHAF
Fe. B, k4
T ¥k

AL

KRIEH
AHEEE

{5

7 EL

Chapter 3 Variables and Operators

1 #include <iostream>

2 using namespace std;

3

4 main() {

5 int a = 20;

6 i6E b= s

7 int c = i5;

8 int d = 5;

9) int e;

10

i e = (at+b)*c/d; // (30%15) /5

2 cout << "Value of (a+b)*c/d is:" << e << endl;
13 e = ((a+b)*c)/d; £ (B0¥15) /5

14 cout << "Value of ((a+b)*c)/d is:" << e << endl;
1159 e = (a+b)*(c/d); // (30)*(15/5)

A& cout << "Value of (atb)*(c/d) is:" << e << endl;
17 e = a+(b*c)/d; // 20+(150/5)

18 cout << "Value of a+(b*c)/d is:" << e << endl;
e return 0;

20 |}

Figure 3-4 Example of the precedence of operators

The output is as below (see Figure 3-5):

BT C:\MyProject\MyFirstProject\bin\Debug\MyFirstProject.exe = O X

e of (ath is:90

~eturned 0 (0x0) execution time : 0.488 s
to continue.

Figure 3-5 Output for code of precedence of operators

3.7 Some Much Used Operators in C/ C++

3.7.1 Increment and Decrement Operator IR s S

The increment operator ++ adds 1 to its operand, and the decrement operator—
subtracts 1 from its operand. Both the increment and decrement operators can
either precede (prefix) or follow (postfix) the operand. AUER: JEERK

When an increment or decrement is used as part of an expression, there is an

important difference in prefix and postfix forms.

Increment or decrement will be done before rest of the expression for
a prefix increment or decrement operation, and increment or @
decrement will be done after the complete expression is evaluated for <=

a postfix increment or decrement operation.

43

CIC++i2FiR1T(C/C++ Programming)

Let’s see some examples of ++ as prefix and postfix in C and C++ (see Figure
3-6).

T [finclude <iostream>

2 using namespace std;

3

4 int main ()

5 [{

6 int varl = 1, var2 = 1;

7

8 cout << varl++ << endl; // varl is displayed as 1, then it is increased to 2.
9 cout << varl++ << endl;

10

11

12 cout << ++var2 << endl; // yar2 is increased to 2 then, it is displayed.
13

pRA! return 0;

15 |}

Figure 3-6 Increment and decrement operators
3.7.2 sizeof() Operator

The sizeof() operator is a compiling time unary operator which can be used to
compute the size of its operand. The result of sizeof() is of unsigned integral
type. sizeof can be applied to any data-type, including primitive types such as
integer and floating-point types, pointer types, or compound datatypes such as
classes, structures, unions and any other user defined data type. The syntax of

using sizeof is as follows:

sizeof (data type)

The following examples demonstrate the sizeof operator available in C and C++
(see Figure 3-7).

3

4 int main ()

5 [{

6 cout << "Size of char : " << sizeof (char) << endl;

7 cout << "Size of int : " << sizeof (int) << endl;

8 cout << "Size of float : " << sizeof (float) << endl:
9 cout << "Size of double : " << sizeof (double) << endl;
10 cout << "Size of bool : " << sizeof (bool) << endl;
1
12 return 0O;
13 1}

Figure 3-7 Demonstration of the sizeof operator

The output is:

Size of char : 1

44

—SEERA
R e
R (5D
REHRAL B
R, WK, &

k. B G
GEC P

Chapter 3 Variables and Operators

Size of iInt : 4
Size of float : 4
Size of double : 8
Size of bool : 1

Note: sizeof() may give different output according to machines.

3.7.3 Modulus (%) Operator RIZHA CRRD
The modulus operator produces the remainder of an integer division. R

Syntax: If x and y are integers, then the expression:

X %y

produces the remainder when x is divided by y.

The % operator cannot be applied to floating-point numbers, i.e float .
or double. If you try to use the modulus operator with floating-point - Q -

constants or variables, the compiler will produce an error.

e Ifx is completely divided by vy, the result of the expression is 0. R
e If x is not completely divisible by y, then the result will be the remainder in
the range [1, y—1].

e Ifyis 0, then a compile-time error will be produced.

Basic code for explaination is as below (see Figure 3-8).

1 #include <stdio.h>

2 int main ()

34

4 int x, vy, z;

1 X = 6;

6 y = 5;

7 zZ = 3;

8

9 printf ("$d\n", x % y);
10 printf ("sd\n", v % X);
il printf ("$d\n", x % z);
12 printf ("$d\n", z % x);
Bl
14 return 0;
15 |}

Figure 3-8 Demonstration of modulus operator

45

CIC++i2FiR1T(C/C++ Programming)

3.7.4 Conditional Operator (?:)

variable = expressionl ? expression2 : expression3;

Where expressionl, expression2, and expression3 are expressions, variable

holds the value of the entire expression.

First, expressionl is evaluated, if it is true, then expression2 is evaluated and
becomes the value of the entire expression. If expressionl is false, then

expression3 is evaluated and its value becomes the value of the expression.

The conditional operator is a kind of similar to the if-else statement that we will
learn in the next chapter. It follows the same algorithm as of if-else statement
but the conditional operator takes less space and helps to write the if-else

statements in the shortest way. It can be visualized into if-else statement as:

if(expressionl==true)

{

variable = expression2;
}
else
{

variable = expression3;
}

Since the conditional operator takes three operands to work, hence it is also

called ternary operator, and it is the only ternary operators in C and C++.

Below is the example of conditional operator.

#include<iostream>
using namespace std;
int main(Q)
{
int x = 3, y = 5, bigNumber;
bigNumber = (x >y) ? x : y;
cout << ""The big number is: " << bigNumber << endl;
return O;

}

3.7.5 comma “,” operator

In a C/C++ program, comma is used in two contexts: (1) A separator (2) An

46

(e

(1

HAF

Chapter 3 Variables and Operators

Operator. For example:

#include<iostream>
using namespace std;
int mainQ)

{

inta=3, b=4, c =5; //commas are used as separators
cout << "a="' << a << endl;

cout << "b=" << b << endl;

cout << "'c="'" << c << endl;

return O;

}

In the example above, commas work as separators, not as operators. The first

line of statement declares three variables and then do assignment one by one

from left to right. Below is the example for comma operator used as an operator:
#include<iostream>

using namespace std;
int main()

{
int a;
a=1, 2, 3;
cout<< a << endl;
return O;

}

In the program above, comma works as an operator. The comma operator has the

lowest precedence of any operator, so the assignment operator takes precedence H{KIatifsE4
over comma and the expression “a = 1, 2, 3” becomes equivalent to “(a = 1), 2,
3”. The output is 1.

For the program segment below: 2B

int a=1, b=2, c=3, d;
d=(a, b, ©);

Commas act as separators in the first line and as an operator in the second line.

In the second line, the round brackets are used, so comma operator is executed [H¥#55

first. The comma expression (a, b, c) is a sequence of expressions which JIfiF GtT) KA

47

CIC++i2FiR1T(C/C++ Programming)

evaluates to the last variable ¢, so the value of d is 3.

Look at the program segments below:

int a=3, b=4, c=5, d;
d=(CG+=1, a + b, a +c);

For the line 2 of statement, the expression (a += 1, a + b, a + ¢) is separated into

three parts by two commas:

The first part increases value of a by 1, so a holds 4.
The value of the second part is 8 (4+4).

The value of the third part is 9 (4+5).

As the value of the entire expression (a += 1, a + b, a + ¢) is the value of third
part, so the value of d is 9.

Chapter Review

1. What is a variable?
2. Evaluate the following expressions:

a. 12*3+4
b. 5+3/2

c. 4/5*5

d. 11%3

e. (4+5)/3

Programming Exercises

1. Write a program in C to print the sum of two numbers, and then change this

program into a C++ language program.

2. Write a program in C++ to find the size of fundamental data types using the
sizeof() operator. The output should look like this:

48

G

Chapter 3 Variables and Operators

Find Size of fundamental data types :

The sizeof char is: 1 bytes.
The sizeof int is: 4 bytes.
The sizeof float is: 4 bytes.
The sizeof double is: 8 bytes.
The sizeof bool is: 1 bytes.

3. Assume an integer takes 4 bytes, what is the output of the program below?

#include<stdio.h>
int main()

{
inti =5, J =10, k = 15;
printf(""%d ", sizeof(k /=1 + j));
printf("%d"”, k);
return O;

}

(A)41

B)415

©21

(D) Compile-time error

4. What is the output of the program below?

#include<stdio.h>
int mainQ)

{
inti = (1, 2, 3);
printf("%d", i);
return O;

}

(A1

(B)3

(C) Garbage value

(D) Compile time error

49

C/IC++2FFR 1T (C/C++ Programming)

5. What is the output of the program below?

#include<stdio.h>

int main(Q)
{
int a = 1;
int b = 1;
int c = a || --b;

int d = a-- && --b;
printf(a = %d, b = %d, ¢ = %d, d = %d", a, b, c, d);
return O;

}

(A)a=0,b=1,c=1,d=0
B)a=0,b=0,c=1,d=0
©Ca=1,b=1,c=1,d=1
(D)a=0,b=0,c=0,d=0

6. Write a program to produce the output as shown below:

Results:

x value y value expressions results
10 | 5 | x+=y | x=15
10 | 5 | x-=y-2 | x=7
10 | 5 | xx=yx*5 | x=250
10 | 5 | x/=x/y | x=5
10 | 5 | x%=y | x=0

7. Write a program in C++ to find the area and perimeter of a rectangle.

Sample output is:

Find the Area and Perimeter of a Rectangle :
Please input the length of the rectangle : 3
Please input the width of the rectangle : 4
The area of the rectangle is : 12

The perimeter of the rectangle is : 14

50

