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222 Infinite Horizon Reinforcement Learning Chap. 5

In this chapter, we consider the use of approximate DP/RL methods for
suboptimal solution of the infinite horizon SSP and discounted problems of
the preceding chapter. In particular, we will consider approximate versions
of the fundamental value iteration (VI) and policy iteration (PI) algorithms.
In the process, we will make frequent references to the DP operators T and
Tµ (or Bellman operators), which map an n-dimensional vector J into the
n-dimensional vectors TJ and TµJ , and provide shorthand notation for
algorithms and analysis. For the purpose of easy reference, we state these
operators here:

For SSP problems:

(TJ)(i) = min
u∈U(i)



pit(u)g(i, u, t) +
n
∑

j=1

pij(u)
(

g(i, u, j) + J(j)
)



 , (5.1)

for all i = 1, . . . , n, and

(TµJ)(i) = pit
(

µ(i)
)

g
(

i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+J(j)
)

, (5.2)

for all policies µ and states i = 1, . . . , n.
For discounted problems:

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, (5.3)

and

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ(j)
)

, (5.4)

for all policies µ and states i = 1, . . . , n.

5.1 APPROXIMATION IN VALUE SPACE - PERFORMANCE
BOUNDS

In this section we will discuss the general framework for approximation in
value space for infinite horizon DP, beginning with discounted problems.
Consistently with the corresponding finite horizon schemes of Chapter 2,
the general idea is to compute some approximation J̃ of the optimal cost
function J*, and then use one-step or multistep lookahead to implement a
suboptimal policy µ̃. Thus, a one-step lookahead policy applies at state i
the control µ̃(i) that attains the minimum in the expression

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, (5.5)
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Approximations:

Replace E{·} with nominal values

Simple choices Parametric approximation Problem approximation

Simple choices Parametric approximation Problem approximation

Approximate minimization

Rollout Model Predictive Control

Aggregation

Aggregation Adaptive simulation Monte-Carlo Tree Search

Aggregation Adaptive simulation Monte-Carlo Tree Search (certainty equivalence)

Monte Carlo tree search

)

Computation of J̃ :

Monte Carlo tree search First Step “Future”Monte Carlo tree search First Step “Future”

Approximate PI Range of Weighted Projections

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

Figure 5.1.1 Schematic illustration of various options for approximation in value
space with one-step lookahead in infinite horizon problems. The lookahead func-
tion values J̃(j) approximate the optimal cost-to-go values J∗(j), and can be
computed by a variety of methods. There may be additional approximations in
the minimization over uk and the computation of the expected value.

see Fig. 5.1.1.
Similarly, at state i, a two-step lookahead policy applies the control

µ̃(i) attaining the minimum in the preceding equation, where now J̃ is
obtained itself on the basis of a one-step lookahead approximation. In
other words, for all states j that can be reached from i, we have

J̃(j) = min
u∈U(j)

n
∑

m=1

pjm(u)
(

g(j, u,m) + αĴ(m)
)

,

where Ĵ is some approximation of J*. Thus J̃ is the result of a single
value iteration starting from Ĵ . Policies with lookahead of more than two
stages are similarly defined. The “effective one-step” cost approximation J̃
in ℓ-step lookahead is the result of ℓ− 1 successive value iterations starting

from some initial approximation Ĵ . Otherwise expressed, ℓ-step lookahead

with Ĵ at the end is the same as one-step lookahead with T ℓ−1Ĵ at the end ,
where T is the Bellman operator [cf. Eq. (5.3)].

Types of Approximation in Value Space Schemes

In Chapter 2 we described several types of limited lookahead schemes,
where J̃ is obtained in different ways, such as problem approximation, roll-
out, and others. Some of these schemes can be fruitfully adapted to infinite
horizon problems; see Fig. 5.1.1. For example, the problem approximation
approaches of Section 2.3 admit straightforward extensions to infinite hori-
zon settings, whereby the function J̃(j) in Eq. (5.5) is obtained by solving
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exactly an infinite horizon (or even finite horizon) problem that is related
to the original in some way. Aggregation is another possible approximation
approach, which will be discussed in Chapter 6.

Imperfect state observation problems pose special challenges in the
case of an infinite horizon. Such problems can be reformulated to ones
involving perfect observation of the belief state, which, however, is infinite
dimensional (cf. Section 1.3.6).† Problem approximation based on forms
of certainty equivalence is particularly interesting within this context, be-
cause a natural approximating problem is often evident. For example, the
lookahead function J̃ may be derived by solving a perfect state informa-
tion variant of the original problem, where an estimate of the system state
is used as if it were exact. The perfect state information variant may
be tractable, because it may be deterministic or it may involve a modest
number of states.

In this chapter, the approximation in value space schemes that we will
focus on in Sections 5.1-5.5 are primarily based on approximate (optimistic)
PI and operate as follows, starting with an initial policy µ0:

(a) We generate (usually off-line) several policies µ0, µ1, . . . , µm.

(b) We evaluate each policy µk approximately, with a cost function J̃µk ,
often by using a parametric approximation/neural network approach,
and possibly including the use of truncated rollout.

(c) We generate the next policy µk+1 using one-step or multistep policy
improvement based on J̃µk .

(d) We use (on-line) the approximate evaluation J̃µm of the last policy
in the sequence as the lookahead approximation J̃ in the one-step
lookahead minimization (5.5), or its multistep counterpart.

We will view rollout as a simple form of approximate PI, which involves
a single policy iteration, executed with the aid of simulation. The roll-
out may be truncated and supplemented with a (potentially sophisticated)
terminal cost function approximation (cf. Section 2.4). We will give some
performance bounds for limited lookahead schemes and for rollout in Sec-
tions 5.1.1 and 5.1.2, respectively. We will discuss performance bounds for
the general approximate PI scheme in Section 5.1.3.

5.1.1 Limited Lookahead

We will now consider performance bounds for ℓ-step lookahead. In partic-
ular, for a given state i0, let µ̂0, . . . , µ̂ℓ−1 attain the minimum in the ℓ-step

† Because of the infinite dimensionality of the belief space, the theory of

Chapter 4 has to be extended before it can be applied, since it was developed for

finite state space. Usually this is fairly straightforward for discounted problems,

but less so for SSP problems. We will not provide further discussion in this book.
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lookahead minimization

min
µ0,...,µℓ−1

E

{

ℓ−1
∑

k=0

αkg
(

ik, µk(ik), jk
)

+ αℓJ̃(iℓ)

}

.

We focus on the suboptimal policy that applies control µ̃(i0) = µ̂0(i0), and
we refer to µ̃ as the ℓ-step lookahead policy corresponding to J̃ . Equivalently,
in the shorthand notation of the Bellman operators T and Tµ̃ of Eqs. (5.3)
and (5.4), the ℓ-step lookahead policy µ̃ is defined by

Tµ̃(T ℓ−1J̃) = T ℓJ̃ .

We will derive a bound for the performance of µ̃ in part (a) of the following
proposition, proved in the appendix.

We will also derive a bound for the case of a useful generalized one-
step lookahead scheme [part (b) of the following proposition]. This scheme
aims to reduce the computation to obtain µ̃(i), by performing the lookahead
minimization over a subset U(i) ⊂ U(i). Thus, the control µ̃(i) used in this
scheme is one that attains the minimum in the expression

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

.

This is attractive when by using some heuristic, we can identify a subset
U(i) of promising controls, and to save computation, we restrict attention
to this subset in the one-step lookahead minimization.

Proposition 5.1.1: (Limited Lookahead Performance Bounds)

(a) Let µ̃ be the ℓ-step lookahead policy corresponding to J̃ . Then

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖J̃ − J*‖, (5.6)

where ‖ · ‖ denotes the maximum norm ‖J‖ = maxi=1,...,n

∣

∣J(i)
∣

∣.

(b) Define

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n,

(5.7)
where U(i) ⊂ U(i) for all i = 1, . . . , n, and let µ̃ be the one-step
lookahead policy obtained by minimization in the right side of
this equation. Then we have
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Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n, (5.8)

where
c = max

i=1,...,n

(

Ĵ(i)− J̃(i)
)

.

An important point regarding the bound (5.6) is that µ̃ is unaffected
by a constant shift in J̃ [an addition of a constant β to all values J̃(i)]. Thus
‖J̃ − J*‖ in Eq. (5.6) can be replaced by the potentially smaller number

min
β∈ℜ

max
i=1,...,n

∣

∣J̃(i) + β − J*(i)
∣

∣. (5.9)

Another interesting point is that it is sufficient to take maximum in the
preceding expression over just the states i that can occur following the ℓ
steps of lookahead, thus potentially improving the bound of Eq. (5.6) even
further. This can be used to obtain sharper versions of Prop. 5.1.1(a), as
well as the related subsequent Prop. 5.1.3(a), although we will not pursue
this analysis further.

The bound (5.6) suggests that performance is improved when the
length ℓ of the lookahead is increased, and also when the lookahead cost
approximation J̃ is closer to the optimal cost J* (when modified with an
optimal constant shift β). Both of these conclusions are intuitive and also
consistent with practical experience. Note that we are not guaranteeing
that multistep lookahead will lead to better performance than one-step
lookahead; we know that this is not necessarily true (cf. Example 2.2.1). It
is the performance bound that is improved with multistep lookahead.

Regarding the bound (5.8), we note that it guarantees that when
c ≤ 0, the cost Jµ̃ of the one-step lookahead policy is no larger than J̃ .

The case c = 0 is equivalent to Ĵ ≤ J̃ , which resembles the consistent
improvement condition for deterministic rollout methods (cf. Section 2.4.1).
If J̃ = Jµ for some policy µ with µ(i) ∈ U(i) for all i (as in the case of the
pure form of rollout to be discussed in Section 5.1.2), then c = 0, and from
Eq. (5.8) it follows that we have cost improvement, i.e., Jµ̃ ≤ Jµ.

Unfortunately, the bound (5.6) is not very reassuring when α is close
to 1. Nonetheless, the following example shows that the bound can be tight
even in very simple problems with just two states. What is happening here
is that an O(ǫ) difference in single stage cost between two controls can
generate an O

(

ǫ/(1 − α)
)

difference in policy costs (through discounted
accumulation over an infinite number of steps), yet it can be “nullified” in
Bellman’s equation by an O(ǫ) difference between J* and J̃ .

Example 5.1.1

Consider the two-state discounted problem shown in Fig. 5.1.2, where ǫ is a
positive scalar and α ∈ [0, 1) is the discount factor. Here there are two control
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Policy µ Policyµ Policy µ
∗

1 2 1 21 2 1 2

Cost = 0 Cost =

Cost = 0 Cost =Cost = 0 Cost = Cost = 2αǫ

Figure 5.1.2 A two-state problem for proving the tightness of the performance
bound of Prop. 5.1.1(b) (cf. Example 5.1.1). All transitions are deterministic as
shown. At state 1 there are two possible decisions: move to state 2 at cost 0
(policy µ∗) or stay at state 1 at cost 2αǫ (policy µ).

choices at state 1: move to state 2 at cost 0 (policy µ∗) or stay at state 1
at cost 2αǫ (policy µ). The optimal policy is µ∗, and the optimal cost-to-go
function is J∗(1) = J∗(2) = 0. Consider the cost function approximation J̃

J̃(1) = −ǫ, J̃(2) = ǫ,

so that
‖J̃ − J∗‖ = ǫ.

The policy µ that decides to stay at state 1 is a one-step lookahead policy
based on J̃ , because

2αǫ+ αJ̃(1) = αǫ = 0 + αJ̃(2).

Moreover, we have

Jµ(1) =
2αǫ

1− α
=

2α

1− α
‖J̃ − J∗‖,

so the bound of Eq. (5.6) holds with equality when ℓ = 1.

5.1.2 Rollout and Approximate Policy Improvement

Let us first consider rollout in its pure form, where J̃ in Eq. (5.5) is the
cost function of some stationary policy µ (also called the base policy or base
heuristic), i.e., J̃ = Jµ. Then, the rollout policy is the result of a single

policy iteration starting from µ. The policy evaluation that yields the costs
Jµ(j) needed for policy improvement may be done in any suitable way.
Monte-Carlo simulation (averaging the costs of many trajectories starting
from j) is one major possibility. Of course if the problem is deterministic,
a single simulation trajectory starting from j is sufficient, in which case
the rollout policy is much less computationally demanding. Note also that
in discounted problems the simulated trajectories can be truncated after a
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number of transitions, which is sufficiently large to make the cost of the
remaining transitions insignificant in view of the discount factor.

An important fact is that in the pure form of rollout, the rollout policy
improves over the base policy, consistent with the finite horizon case; cf.
Section 2.4. This is shown by the following proposition [a special case of
Prop. 5.1.1(b) as noted earlier], and it is to be expected since rollout is
one-step PI, so the general policy improvement property of PI applies. A
related result is given as Lemma 5.9.1 in the appendix (Section 5.9.3).

Proposition 5.1.2: (Cost Improvement by Rollout) Let µ̃ be
the rollout policy obtained by the one-step lookahead minimization

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

,

where µ is a base policy [cf. Eq. (5.7) with J̃ = Jµ] and we assume
that µ(i) ∈ U(i) ⊂ U(i) for all i = 1, . . . , n. Then Jµ̃ ≤ Jµ.

Let us also mention the variation of rollout that uses multiple base
heuristics, and simultaneously improves on all of them. This variant, also
called parallel rollout because of its evident parallelization potential, is
similar to its finite horizon counterpart; cf. Section 2.4.1.

Example 5.1.2 (Rollout with Multiple Heuristics)

Let µ1, . . . , µM be stationary policies, let

J̃(i) = min
{

Jµ1 (i), . . . , JµM
(i)
}

, i = 1, . . . , n,

let U(i) ⊂ U(i), and assume that

µ1(i), . . . , µM (i) ∈ U(i), i = 1, . . . , n.

Then, for all i and m = 1, . . . ,M , we have

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµm(j)
)

≤

n
∑

j=1

pij
(

µm(i)
)

(

g
(

i, µm(i), j
)

+ αJµm (j)
)

= Jµm (i),
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Selective Depth Lookahead Tree

States ik+1

States ik+2

Adaptive Simulation Terminal Cost Function

µ Approximation J̃

= 0 ik

y Selective Depth Rollout Policy

Selective Depth Rollout Policy µ

Figure 5.1.3 Illustration of two-step lookahead, rollout with a policy µ for a
limited and state-dependent number of steps, and a terminal cost function ap-
proximation J̃ . A Monte Carlo tree search scheme may also be used for multistep
lookahead; cf. Section 2.4.2.

which, by taking minimum of the right-hand side over m, yields

Ĵ(i) ≤ J̃(i), i = 1, . . . , n.

Using Prop. 5.1.1(b), we see that the rollout policy µ̃, obtained by using J̃ as
one-step lookahead approximation satisfies

Jµ̃(i) ≤ J̃(i) = min
{

Jµ1 (i), . . . , JµM
(i)
}

, i = 1, . . . , n,

i.e., it improves over each of the policies µ1, . . . , µM .

Truncated Rollout with Multistep Lookahead and Terminal
Cost Function Approximation

Let us next discuss a truncated variant of the rollout approach, whereby
we use ℓ-step lookahead, we then apply rollout with policy µ for a limited
number of steps, and finally we approximate the cost of the remaining steps
using some terminal cost approximation J̃ ; see Fig. 5.1.3 for a case where
ℓ = 2. We can view this form of rollout as a single optimistic policy iteration
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combined with multistep lookahead (the iteration is optimistic because it
evaluates µ withm value iterations starting from J̃). This type of algorithm
was used in Tesauro’s rollout-based backgammon player [TeG96] (it was
also used in AlphaGo in a modified form, with Monte Carlo tree search in
place of ordinary limited lookahead). We will give more details later.

Note that the three components of this rollout scheme (multistep
lookahead, rollout with µ, and cost approximation J̃) can be designed in-
dependently of each other. Moreover, while the multistep lookahead is im-
plemented on-line, µ and J̃ should ordinarily be available from an earlier
off-line computation.

The following proposition generalizes the performance bounds given
for limited lookahead (cf. Props. 5.1.1). In particular, part (a) of the propo-
sition follows by applying Prop. 5.1.1(a), since the truncated rollout scheme
of this section can be viewed as ℓ-step approximation in value space with
terminal cost function Tm

µ J̃ at the end of the lookahead, where Tµ is the
Bellman operator corresponding to µ.

Proposition 5.1.3: (Performance Bounds for Truncated Roll-
out with Terminal Cost Function Approximation) Let ℓ and
m be positive integers, let µ be a policy, and let J̃ be a function of the
state. Consider a truncated rollout scheme consisting of ℓ-step looka-
head, followed by rollout with a policy µ for m steps, and a terminal
cost function approximation J̃ at the end of the m steps. Let µ̃ be the
policy generated by this scheme.

(a) We have

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖Tm

µ J̃ − J*‖, (5.10)

where Tµ is the Bellman operator of Eq. (5.4), and ‖ · ‖ denotes
the maximum norm ‖J‖ = maxi=1,...,n

∣

∣J(i)
∣

∣.

(b) We have

Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n,

where
c = max

i=1,...,n

(

(TµJ̃)(i)− J̃(i)
)

.

(c) We have

Jµ̃(i) ≤ Jµ(i) +
2

1− α
‖J̃ − Jµ‖, i = 1, . . . , n.
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Some of the insights provided by the preceding proposition are:

(a) Part (a) of the proposition implies that as the size of lookahead ℓ
increases, the bound on the performance of the rollout policy also
improves. Moreover, assuming that µ is close to optimal (so that
Tm
µ J̃ is close to J* as m → ∞), the bound on the performance of

the rollout policy µ̃ improves as m increases (the improvement is
enhanced if J̃ is also close to Jµ).†

(b) Part (c) suggests that if J̃ is close to Jµ, the performance of the
rollout policy µ̃ is nearly improved relative to the performance of the
base policy µ. This is consistent with the cost improvement property
of rollout, cf. Prop. 5.1.2. Part (b) admits a similar interpretation.

In summary, the guidelines for truncated rollout that these results
suggest are to choose as large lookahead as practical, and choose J̃ as close

to Jµ or J* as possible. It is not clear to what extent increasing m, the
length of rollout of µ, improves performance, and some examples suggest
that m should not be chosen to be very large. A small value of m is also
beneficial in another way: it limits the amount of computation needed for
rollout, and reduces the variance of the cost estimates. In practice, for an
infinite horizon problem, m is ordinarily chosen in some empirical fashion.

Regarding the terminal cost approximation J̃ in truncated rollout
schemes, it may be heuristic, based on problem approximation, or based
on a more systematic simulation methodology. For example, the values
Jµ(i) may be computed by simulation for all i in a subset of representative
states, and J̃ may be selected from a parametric class of vectors by a
least squares regression of the computed values. This approximation may
be performed off-line, outside the time-sensitive restrictions of a real-time
implementation, and the result J̃ may be used on-line in place of Jµ as a
terminal cost function approximation. Note that a good choice of terminal
cost approximation is crucial for some types of SSP problems where most or
all of the cost is incurred upon reaching the termination state (for example
winning or losing a game). Note also that once cost function approximation
is introduced at the end of the rollout, the cost improvement property of
the rollout policy over the base policy may be lost [cf. Prop. 5.1.3(c)].

The truncated rollout scheme of Fig. 5.1.3 has been adopted in the
rollout backgammon algorithm of Tesauro and Galperin [TeG96]. The pol-
icy µ and the terminal cost function approximation J̃ were provided by the
TD-Gammon algorithm of Tesauro [Tes94], which was based on a neural
network, trained using a form of optimistic policy iteration and TD(λ).
A similar algorithm (with Monte Carlo tree search instead of ℓ-step looka-
head) was used in the AlphaGo program (Silver et al. [SHM16]), with µ and
J̃ obtained using an approximate PI scheme and a deep neural network.

† Note that µ̃ is unaffected by a constant shift in J̃ , so that an optimized

constant β may be added to J̃ in the bound (5.10) [cf. Eq. (5.9)].
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5.1.3 Approximate Policy Iteration

When the number of states is very large, the policy evaluation step and/or
the policy improvement step of the PI method may be implementable only
through approximations. In an approximate PI scheme, each policy µk is
evaluated approximately, with a cost function J̃µk , often with the use of a
feature-based architecture or a neural network, and the next policy µk+1

is generated by (perhaps approximate) policy improvement based on J̃µk .
To formalize this type of procedure, we assume a policy evaluation

error satisfying

max
i=1,...,n

∣

∣J̃µk (i)− Jµk(i)
∣

∣ ≤ δ, (5.11)

and a policy improvement error satisfying

max
i=1,...,n

∣

∣

∣

∣

n
∑

j=1

pij
(

µk+1(i)
)(

g(i, µk+1(i), j) + αJ̃µk (j)
)

− min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µk (j)
)

∣

∣

∣

∣

≤ ǫ,

(5.12)
where δ and ǫ are some nonnegative scalars. Here ǫ includes the simulation
errors, plus any additional errors due to function approximation. Also δ
is a measure of the accuracy of the lookahead minimization in the policy
improvement operation (in many cases δ = 0).

The following proposition, proved in the appendix (and also in the
original source [BeT96], Section 6.2.2), provides a performance bound for
discounted problems (a similar result is available for SSP problems; see
[BeT96], Section 6.2.2).

Proposition 5.1.4: (Performance Bound for Approximate PI)
Consider the discounted problem, and let {µk} be the sequence gener-
ated by the approximate PI algorithm defined by the approximate pol-
icy evaluation (5.11) and the approximate policy improvement (5.12).
Then the policy error

max
i=1,...,n

∣

∣Jµk (i)− J*(i)
∣

∣,

becomes less or equal to
ǫ + 2αδ

(1 − α)2
,

asymptotically as k → ∞.
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µ
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Figure 5.1.4 Illustration of typical behavior of approximate PI. In the early
iterations, the method tends to make rapid and fairly monotonic progress, until
Jµk gets within an error zone of size less than

ǫ+ 2αδ

(1− α)2
.

After that Jµk oscillates randomly within that zone. The figure is oversimplified
since it shows the difference Jµk − J∗ at a single state. For different states the
nature of the error oscillation may be different.

The preceding performance bound is important, because it is in quali-
tative agreement with the empirical behavior of approximate PI. Typically,
in the beginning, the method tends to make rapid and fairly monotonic
progress, but eventually it gets into an oscillatory pattern. This happens
after Jµk gets within an error zone of size

ǫ+ 2αδ

(1− α)2

or smaller, and then Jµk oscillates fairly randomly within that zone; see Fig.
5.1.4. In practice, the error bound of Prop. 5.1.4 tends to be pessimistic, so
the zone of oscillation is usually much narrower than what is suggested by
the bound. However, the bound itself can be proved to be tight, in worst
case. This is shown with an example in the book [BeT96], Section 6.2.3.
Note that the bound of Prop. 5.1.4 also holds in the case of infinite state
and control spaces discounted problems, when there are infinitely many
policies (see [Ber18a], Prop. 2.4.3).

Performance Bound for the Case Where Policies Converge

Generally, the policy sequence {µk} generated by approximate PI may
oscillate between several policies, as noted earlier. However, under some
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Figure 5.1.5 Illustration of typical behavior of approximate PI when policies
converge. The method tends to make monotonic progress, and Jµk converges
within an error zone of size less than (ǫ+ 2αδ)/(1 − α).

circumstances the sequence will converge to some policy µ̃, i.e.,

µk+1 = µk = µ̃ for some k. (5.13)

An important case where this happens is aggregation methods, which will
be discussed in Chapter 6. In this case the behavior of the method is more
regular, and we can show the following bound, which is more favorable than
the one of Prop. 5.1.4 by a factor 1/(1−α), as illustrated in Fig. 5.1.5. For
the proof, see the appendix (or the original source [BeT96], Section 6.2.2).

Proposition 5.1.5: (Performance Bound for Approximate PI
when Policies Converge) Let µ̃ be a policy generated by the ap-
proximate PI algorithm under conditions (5.11), (5.12), and (5.13).
Then we have

max
i=1,...,n

∣

∣Jµ̃(i)− J*(i)
∣

∣ ≤
ǫ+ 2αδ

1− α
.

We finally note that related performance bounds hold for optimistic
PI methods, where the policy evaluation is performed with just a few ap-
proximate value iterations (cf. Section 4.6.2). These bounds are similar to
the ones of the nonoptimistic method, and do not suggest superiority of one
type of PI method over the other. Their derivation is quite complicated;
see [Ber12], Chapter 2, or [Ber18a], Section 2.5.2, and the end-of-chapter
references. Moreover, there are versions of the preceding bounds, which
apply to more general abstract DP problems, such as the semi-Markov
problems of Section 4.4 and others; see [Ber18a], Section 2.4.1.
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5.2 FITTED VALUE ITERATION

In Chapter 4 we discussed the VI algorithm for SSP problems,

Jk+1(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + Jk(j)
)



 , (5.14)

and its discounted version

Jk+1(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJk(j)
)

. (5.15)

It is one of the principal methods for calculating the optimal cost function
J*.

Unfortunately, when the number of states is large, the iterations
(5.14) and (5.15) may be prohibitively time consuming. This motivates
an approximate version of VI, which is patterned after the least squares
regression/fitted VI scheme of Section 3.3 for finite horizon problems.

We start with some initial approximation to J*, call it J̃0. Then we
generate a sequence {J̃k}, where J̃k+1 is equal to the exact value iterate
T J̃k plus some error [we are using here the shorthand notation for the
Bellman operator T given in Eqs. (5.1) and (5.3)]. Assuming that values
(T J̃k)(i) may be generated for sample states i, we may obtain J̃k+1 by
some form of least squares regression. We will now discuss how the error
(J̃k − J*) is affected by this type of approximation process.

Error Bounds and Pathologies of Fitted Value Iteration

We will focus on fitted VI for discounted problems. The analysis for SSP
problems is qualitatively similar. We first consider estimates of the cost

function error

max
i=1,...,n

∣

∣J̃k(i)− J*(i)
∣

∣, (5.16)

and the policy error

max
i=1,...,n

∣

∣Jµ̃k (i)− J*(i)
∣

∣, (5.17)

where the policy µ̃k is obtained from the one-step lookahead minimization

µ̃k(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j)
)

.

It turns out that such estimates are possible, but under assumptions
whose validity may be hard to guarantee. In particular, it is natural to
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assume that the error in generating the value iterates (T J̃k)(i) is within
some δ > 0 for every state i and iteration k, i.e., that

max
i=1,...,n

∣

∣

∣

∣

∣

∣

J̃k+1(i)− min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j)
)

∣

∣

∣

∣

∣

∣

≤ δ. (5.18)

It is then possible to show that asymptotically, as k → ∞, the cost error
(5.16) becomes less or equal to δ/(1 − α), while the policy error (5.17)
becomes less or equal to 2δ/(1− α)2.

Such error bounds are given in Section 6.5.3 of the book [BeT96] (see
also Prop. 2.5.3 of [Ber12]), but it is important to note that the condition
(5.18) may not be satisfied by the natural least squares regression/fitted
VI scheme of Section 3.3. This is illustrated by the following example
due to [TsV96] (see also [BeT96], Section 6.5.3), which shows that the
errors from successive approximate value iterations can accumulate to the
point where the condition (5.18) cannot be maintained (with a scalar δ
that is independent of k), and the approximate value iterates J̃k can grow
unbounded.

Example 5.2.1 (Error Amplification in Approximate Value
Iteration)

Consider a two-state discounted problem with states 1 and 2, and a single
policy. The transitions are deterministic: from state 1 to state 2, and from
state 2 to state 2. The transitions are also cost-free; see Fig. 5.2.1. Thus the
Bellman equation is

J(1) = αJ(2), J(2) = αJ(2),

and its unique solution is J∗(1) = J∗(2) = 0. Moreover, exact VI has the
form

Jk+1(1) = αJk(2), Jk+1(2) = αJk(2).

We consider a VI approach that approximates cost functions within the
one-dimensional subspace of linear functions S =

{

(r, 2r) | r : scalar
}

; this
is a favorable choice since the optimal cost function J∗ = (0, 0) belongs to
S. We use a weighted least squares regression scheme. In particular, given
J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1) as follows; see Fig. 5.2.2:

(a) We compute the exact VI iterate from J̃k:

T J̃k =
(

αJ̃k(2), αJ̃k(2)
)

= (2αrk, 2αrk).

(b) For some weights ξ1, ξ2 > 0, we obtain the scalar rk+1 as

rk+1 ∈ argmin
r

[

ξ1
(

r − (T J̃k)(1)
)2

+ ξ2
(

2r − (T J̃k)(2)
)2
]

,
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a 1 2
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u Cost 1 Cost 1
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) Terminal State 2 0

J∗(1) = J∗(2) = 0 Exact VI :

Termination State Infinite Horizon Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) = αJk(2)

Figure 5.2.1 Illustration of the discounted problem of Example 5.2.1. There
are two states, 1 and 2, and a single policy. The transitions are deterministic:
from state 1 to state 2, and from state 2 to state 2. These transitions are also
cost-free.

or equivalently

rk+1 ∈ argmin
r

[

ξ1(r − 2αrk)
2 + ξ2(2r − 2αrk)

2
]

.

To perform the preceding minimization, we set to zero the derivative
with respect to r of the quadratic cost function, and obtain after some calcu-
lation

rk+1 = αζrk where ζ =
2(ξ1 + 2ξ2)

ξ1 + 4ξ2
> 1. (5.19)

Thus if ξ1 and ξ2 are chosen so that α > 1/ζ, the sequence {rk} diverges
and so does {J̃k}. In particular, for the natural choice ξ1 = ξ2 = 1, we have
ζ = 6/5, so the approximate VI scheme diverges for α in the range (5/6, 1);
see Fig. 5.2.2.

The difficulty here is that the approximate VI operator that generates
J̃k+1 by a weighted least squares-based approximation of T J̃k is not a con-
traction (even though T itself is a contraction). At the same time there is
no δ such that the condition (5.18) is satisfied for all k, because of error
amplification in each approximate VI.

The preceding example indicates that the choice of the least squares
weights is important in determining the success of least squares-based ap-
proximate VI schemes. Generally, in regression-based parametric architec-
ture training schemes of the type discussed in Section 3.1.2, the weights
are related to the way samples are collected: the weight ξi for state i is the
proportion of the number of samples in the least squares summation that
correspond to state i. Thus ξ1 = ξ2 = 1 in the preceding example means
that we use an equal number of samples for each of the two states 1 and 2.

Now let us consider an approximation architecture J̃(i, ·) and a sam-
pling process for approximating the value iterates. In particular, let

J̃k(i) = J̃(i, rk), i = 1, . . . , n,

where rk is the parameter vector corresponding to iteration k. Then the
parameter rk+1 used to represent the next value iterate as

J̃k+1(i) = J̃(i, rk+1), i = 1, . . . , n,
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J̃k = (rk, 2rk) Exact VI iterate

) Exact VI iterate J̃k+1

) Exact VI iterate J

) Exact VI iterate Approximate
) Exact VI iterate Approximate

(2) (2αrk, 2αrk)

Termination State Infinite Horizon Approximation Subspace

) Terminal State 2 0 J∗ = (0, 0)

Orthogonal Projection

π/4 Sample State

Range of Weighted Projections

Range of Weighted Projections

Figure 5.2.2 Illustration of Example 5.2.1. The iterates of approximate VI lie

on the approximation subspace, which is the line
{

(r, 2r) | r ∈ ℜ
}

. Given an

iterate J̃k = (rk , 2rk), the next exact VI iterate is

(

αJ̃k(2), αJ̃k(2)
)

= (2αrk , 2αrk).

This exact VI iterate is approximated by J̃k+1 obtained by least squares regres-
sion, which can be viewed as weighted projection onto the line {(r, 2r) | r ∈ ℜ},
and depends on the weights (ξ1, ξ2). The range of weighted projections as the
weights vary is shown in the figure. For the natural choice ξ1 = ξ2 = 1 and α
sufficiently close to 1, J̃k+1 is further away from J∗ = (0, 0) than J̃k. The diffi-
culty here is that the mapping that consists of an exact VI followed by weighted
projection onto the line {(r, 2r) | r ∈ ℜ} need not be a contraction.

is obtained by the minimization

rk+1 ∈ argmin
r

q
∑

s=1

(

J̃(is, r)− βs
)2
, (5.20)

where (is, βs), s = 1, . . . , q, is a training set with each βs being the value
iterate at the state is:

βs = (T J̃k)(is).

The critical question now is how to select the sample states is, s =
1, . . . , q, to guarantee that the iterates rk remain bounded, so that a con-
dition of the form (5.18) is satisfied and the instability illustrated with
Example 5.2.1 is avoided. It turns out that there is no known general
method to guarantee this in infinite horizon problems. However, some
practical methods have been developed. One such method is to weigh each
state according to its “long-term importance,” i.e., proportionally to the
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number of its occurrences over a long trajectory under a “good” heuris-
tic policy.† To implement this, we may run the system with the heuristic
policy starting from a number of representative states, wait for some time
for the system to approach steady-state, and record the generated states
is, s = 1, . . . , q, to be used in the regression scheme (5.20). There is no
theoretical guarantee for the stability of this scheme in the absence of ad-
ditional conditions: it has been used with success in several reported case
studies, although its rationale has only a tenuous basis in analysis; see the
discussion of a related algorithm, called projected value iteration, in the
book [Ber12], Section 6.3, and the end-of-chapter references.

We finally note that in the absence of special modifications, opti-
mistic PI with approximations is also subject to the error amplification
phenomenon illustrated in Example 5.2.1. Indeed approximate VI is a spe-
cial case of an optimistic PI method, where each policy evaluation is done
with a single VI, and then approximated by least squares regression.

5.3 SIMULATION-BASED POLICY ITERATION WITH
PARAMETRIC APPROXIMATION

In this section we will discuss PI methods where the policy evaluation and
policy improvement steps are carried out with the use of parametric ap-
proximations and Monte-Carlo simulation. We will focus on the discounted
problem, but similar methods can be used for the SSP problem.

5.3.1 Self-Learning and Actor-Critic Methods

The name “self-learning” in RL usually refers to some form of PI method
that involves the use of simulation for approximate policy evaluation and/or
approximate policy improvement. The algorithm that performs the policy
evaluation is usually called a critic, and if a neural network is used as the
parametric architecture, it is called a critic network . The algorithm that
performs the policy improvement is usually called an actor , and if a neural
network is involved, it is called an actor network .

A PI-type method is often called an actor-critic method if it involves
approximations in both its actor and its critic portions. The term “actor-
critic” actually applies more generally, to methods beyond PI-type, such
as for example policy gradient methods to be discussed later.

The two operations needed at each policy iteration are as follows:

† In the preceding Example 5.2.1, weighing the two states according to their

“long-term importance” would choose ξ2 to be much larger than ξ1, since state

2 is “much more important,” in the sense that it occurs almost exclusively in

system trajectories. Indeed, from Eq. (5.19) it can be seen that when the ratio

ξ1/ξ2 is close enough to 0, the scalar ζ is close enough to 1, making the scalar αζ

strictly less than 1, and guaranteeing convergence of J̃k to J∗.
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(a) Evaluate the current policy µk (critic): Here algorithm, system, and
simulator are merged in one, and the system “observes itself” by gen-
erating simulation cost samples under the policy µk. It then combines
these samples to “learn” an approximate policy evaluation J̃µk . Usu-
ally this is done through some kind of incremental method that in-
volves a least squares minimization/regression using cost samples, and
either a linear feature-based architecture or a neural network. Note
that the evaluation may be optimistic, in the sense that the number
of samples used between policy updates may be limited, even very
small, with cost function approximation used to correct for the small
number of samples. In effect, the policy evaluation of the preceding
policy is used as the starting iterate for an optimistic evaluation of
the current policy (cf. Section 4.6.2).

(b) Improve the current policy µk (actor): Given the approximate policy
evaluation J̃µk , we generate or “learn” the new policy µk+1 through
the lookahead minimization

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µk (j)
)

, i = 1, . . . , n,

(5.21)
(or its multistep version). Alternatively we compute the minimizing
control us at a set of sample states is, s = 1, . . . , q, through

us ∈ arg min
u∈U(is)

n
∑

j=1

pisj(u)
(

g(is, u, j) + αJ̃µk (j)
)

.

These are the sample values of the improved policy µk+1 at the sample
states is. They are generalized to “learn” a complete policy µk+1

by using some parametric approximation in policy space scheme (cf.
Section 2.1.5). This scheme may be incremental in the sense that the
improved policy may be updated using very few sample pairs (is, us).

The preceding two operations are sequentially performed up to the
point where some form of “convergence” occurs. To summarize, actor-critic
PI methods can be viewed as a repeated application of a two-step process:†

(a) Critic step: A form of least squares regression based on (many or
few) cost samples, and aiming to evaluate better the cost function of
the current policy (while keeping that policy unchanged).

(b) Actor step: The improved policy is computed when needed at states
of interest via the lookahead minimization (5.21) (or its multistep ver-
sion). Alternatively, a form of incremental least squares regression is

† Actor-critic methods also arise in other, non-PI contexts, which combine

parametric approximation in both policy and value space, and involve gradient

descent-type of parameter adjustments. We will briefly discuss such methods in

Section 5.7.
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Figure 5.3.1 Block diagram of model-based approximate PI for cost functions.

performed based on (many or few) state-control sample pairs, aiming
to improve a parametric form of the current policy (while keeping the
policy evaluation unchanged).

Note that while approximate PI schemes of the type described above
have been widely reported and advocated, they offer very little in the way of
performance guarantees (at least when either costs or policies, or both, are
represented with approximation architectures). Moreover, while in these
schemes the system learns by itself, it does not learn itself, in the sense
that it does not construct a mathematical model for itself . An alternative
is to adopt instead a two-phase approach: first use system identification
and simulation to construct a mathematical model of the system, and then
use a model-based PI method (cf. Section 1.3.8). However, we will not
discuss system identification and the construction of models in this book.

In what follows in this section, in Section 5.4 (Q-learning, SARSA,
and DQN), and in Section 5.5 (temporal differences), we will focus on critic-

only PI methods, where the policy improvement steps are “exact” in the
sense that they are performed with Eq. (5.21). Actor-critic methods, as
well as actor-only methods that involve approximations only in the actor
step, will be discussed further in Section 5.7.

5.3.2 Model-Based Variant of a Critic-Only Method

We will first provide an example of a model-based approximate PI im-
plementation and then discuss its model-free version in Section 5.3.3. In
particular, we assume that the cost per stage g(i, u, j) and transition prob-
abilities pij(u) are available, and that the cost function Jµ of any given
policy µ is approximated using a parametric architecture J̃µ(i, r).

We recall that given any policy µ, the exact PI algorithm for costs
generates the new policy µ̃ with a policy evaluation/policy improvement
process. We approximate this process as follows; see Fig. 5.3.1.
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(a) Approximate policy evaluation: To evaluate µ, we determine the value
of the parameter vector r by generating a number of training pairs
(is, βs), s = 1, . . . , q, and by using least squares training:

r ∈ argmin
r

q
∑

s=1

(

J̃µ(is, r) − βs
)2
. (5.22)

The scalar βs is a sample cost corresponding to is and µ.

In particular, βs is generated by starting at is, simulating a state-
control trajectory using µ and the known transition probabilities for
some number N of stages, accumulating the corresponding discounted
costs, and adding a terminal cost approximation αN Ĵ(iN ), where
iN is the terminal state of the N -stage trajectory and Ĵ is some
initial guess of Jµ. The guess Ĵ may be obtained with additional
training or some other means, such as using the result of the policy
evaluation of the policy preceding µ. Note that this is similar to

the cost function approximation implicitly used in optimistic policy

iteration; cf. Section 4.6.2. It is also possible to simplify the method
by using Ĵ(iN ) = 0, or obtaining Ĵ via a problem approximation
process.†

The approximate policy evaluation problem of Eq. (5.22) can be
solved with the incremental methods of Section 3.1.3. In particular,
the incremental gradient method for this problem is given by

rk+1 = rk − γk∇J̃(isk , rk)
(

J̃(isk , rk)− βsk
)

,

where γk is a stepsize, (isk , βsk ) is the state-cost sample pair that
is used at the kth iteration, and r0 is an initial parameter guess.
Here the architecture J̃(i, r) may be linear or may be nonlinear and
differentiable. In the case of a linear architecture, problem (5.22) may
also be solved in closed form, i.e., by using exact least squares.

(b) Policy improvement : Having solved the approximate policy evalua-
tion problem (5.22), the new “improved” policy µ̃ is obtained (at the
states needed, when needed) by the policy improvement operation

µ̃(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, (5.23)

where r is the parameter vector obtained from the policy evaluation
(5.22). [The transition probabilities pij(u) are required for this.]

† The choice of the terminal cost function approximation Ĵ may pose dif-

ficulties in SSP problems, particularly when most of the cost is incurred upon

termination. Dealing with this issue may be problem-dependent. We will not

discuss it further in this book.
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Trajectory Reuse and Bias-Variance Tradeoff

As we have noted, to each training pair (is, βs) there corresponds an N -
stage trajectory over which the sample cost βs is accumulated, but the
length of the trajectory may depend on s. This allows sampling effort
economies based on trajectory reuse. In particular, suppose that starting
at some state i0 we generate a long trajectory (i0, i1, . . . , iN) using the
policy µ. Then we can obtain the state-cost sample that corresponds to
i0, as discussed above, but we can also obtain additional cost samples for
the subsequent states i1, i2, . . ., by using the tail portions of the trajectory
(i0, i1, . . . , iN) that start at these states.

Clearly, it is necessary to truncate the sample trajectories to some
number of stages N , since we cannot simulate an infinite length trajectory
in practice. If N is large, then because of the discount factor, the error for
neglecting the stage costs beyond stage N will be small. However, there
are other important concerns when choosing the trajectory lengths N .

In particular, a short length reduces the sampling effort, but is also a
source of inaccuracy. The reason is that the cost of the tail portion of the
trajectory (from stage N to infinity) is approximated by αN Ĵ(iN ), where
iN is the terminal state of the N -stage trajectory and Ĵ is the initial guess
of Jµ. This terminal cost compensates for the costs of the neglected stages
in the spirit of optimistic PI, but adds an error to the cost samples βs,
which becomes larger as the trajectory length N becomes smaller.

We note two additional benefits of using many training trajectories,
each with a relatively short trajectory length:

(1) The cost samples βs are less noisy, as they correspond to summation
of fewer random stage costs. This leads to the so-called bias-variance

tradeoff : short trajectories lead to larger bias but smaller variance of
the cost samples.

(2) With more starting states i0, there is better opportunity for explo-

ration of the state space. By this we mean adequate representation of
all possible initial trajectory states in the sample set. This is a major
issue in approximate PI, as we will discuss in Section 5.3.4.

Let us also note that the bias-variance tradeoff underlies the motiva-
tion for a number of alternative policy evaluation methods such as TD(λ),
LSTD(λ), and LSPE(λ), which we will summarize in Section 5.5; see Sec-
tion 6.3 of the book [Ber12] and other approximate DP/RL books refer-
enced earlier. The papers [Ber13b], [YuB12], and the book [Ber12], Section
6.4, discuss a broad range of short trajectory sampling methods.

5.3.3 Model-Free Variant of a Critic-Only Method

We recall the exact PI algorithm for Q-factors (cf. Section 4.6.3), which
given any policy µ, generates the new policy µ̃ with a policy evalua-
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Figure 5.3.2 Block diagram of model-free approximate PI for Q-factors.

tion/policy improvement process. We will provide an approximate version
of this algorithm, which involves a model-free simulation-based implemen-
tation. To this end, we will use Q-factors to bypass the need for transition
probabilities pij(u) in Eq. (5.23).

We introduce a parametric architecture Q̃µ(i, u, r) for the Q-factors
of µ. This architecture may be nonlinear, involving for example a neural
network. It may also be a feature-based linear architecture, with a feature
vector that depends either on both the state and the control or on just the
state. In the former case, the architecture has the form

Q̃µ(i, u, r) = r′φ(i, u),

where r is a weight vector that is independent of u. In the latter case, the
architecture has the form

Q̃µ(i, u, r) = r(u)′φ(i),

where r(u) is a separate weight vector for each control u. This architecture
is suitable for problems with a relatively small number of control options
at each stage.

We approximate the PI process as follows; see Fig. 5.3.2.

(a) Approximate policy evaluation: Here, given a policy µ, we determine
the value of the parameter vector r by generating (using a simulator
of the system) a number of training triplets (is, us, βs), s = 1, . . . , q,
and by using a least squares fit:

r ∈ argmin
r

q
∑

s=1

(

Q̃µ(is, us, r)− βs
)2
. (5.24)
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In particular, for a given pair (is, us), the scalar βs is a sample Q-
factor corresponding to (is, us). It is generated by starting at is,
using us at the first stage, simulating a trajectory of states and con-
trols using µ for a total of N stages, accumulating the corresponding
discounted costs, and adding a terminal cost approximation, similar
to Section 5.3.2. Thus, βs is a sample of

n
∑

j=1

pisj(us)
(

g(is, us, j) + αJN−1
µ (j) + αN Ĵ(iN )

)

,

where JN−1
µ (j) is the (N − 1)-stages cost of µ starting at j, and

αN Ĵ(iN ) is the terminal cost approximation. Note that βs is com-
puted similar to the scalar βs of Eq. (5.22), except that the first stage

control is us rather than µ(is). Similar to Section 5.3.2, the number
of stages N in the sample trajectories may be different for different
samples, and can be either large, or fairly small. Again an incremental
method may be used to solve the training problem (5.24).

(b) Policy improvement : Here we compute the new policy µ̃ (at the states
needed, when needed) according to

µ̃(i) ∈ arg min
u∈U(i)

Q̃µ(i, u, r), i = 1, . . . , n, (5.25)

where r is the parameter vector obtained from the policy evaluation
operation (5.24). [Contrary to Eq. (5.23), this does not require the
use of the transition probabilities pij(u).]

Unfortunately, trajectory reuse is more problematic in Q-factor eval-
uation than in cost evaluation, because each trajectory generates state-
control pairs of the special form

(

i, µ(i)
)

at every stage after the first, so
pairs (i, u) with u 6= µ(i) are not adequately explored ; cf. the discussion in
Section 5.3.2. For this reason, it is necessary to make an effort to include
in the samples a rich enough set of trajectories that start at pairs (i, u)
with u 6= µ(i). We discuss this issue in Section 5.3.4.

An important alternative to the preceding procedure is a two-stage
process for policy evaluation: first compute in model-free fashion a cost
function approximation J̃µ(j, r), using the regression (5.22), and then use a
second sampling process and regression to approximate further the (already
approximate) Q-factor of µ

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µ(j, r)
)

,

with some Q̃µ(i, u, r), possibly obtained with a model-free Q-factor approx-
imation process such as the one of Section 2.1.4. In view of the two-fold
approximation needed to obtain Q̃µ(i, u, r), this scheme is more complex,
but allows trajectory reuse and thus deals better with the exploration issue.
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5.3.4 Implementation Issues of Parametric Policy Iteration

Approximate PI in its various forms has been the subject of extensive
research, both theoretical and applied. Let us provide a few comments,
focusing on the preceding critic-only parametric PI schemes.

Architectural Issues and Cost Shaping

The choice of architectures for costs J̃µ(i, r) and Q-factors Q̃µ(i, u, r) is
critical for the success of parametric approximation schemes for PI. These
architectures may involve the use of features, and they can be linear, or
they can be nonlinear such as a neural network. A major advantage of a
linear feature-based architecture is that the corresponding policy evalua-
tions (5.22) and (5.24) involve linear least squares problems, which admit a
closed-form solution. Moreover, when linear architectures are used, there is
a broader variety of approximate policy evaluation methods with solid the-
oretical performance guarantees, such as TD(λ), LSTD(λ), and LSPE(λ),
which will be summarized in Section 5.5, and are described in detail in
several textbook sources.

Another interesting possibility for architecture choice has to do with
cost shaping, which we discussed in Section 4.2. This possibility involves a
modified cost per stage

ĝ(i, u, j) = g(i, u, j) + V (j)− V (i), i = 1, . . . , n,

for SSP problems, where V can be any approximation to J* with V (t) = 0.
The corresponding formula for discounted problems is

ĝ(i, u, j) = g(i, u, j) + αV (j)− V (i), i = 1, . . . , n.

As noted in Section 4.2, cost shaping may change significantly the sub-
optimal policies produced by approximate DP methods and approximate
PI in particular. Generally, V should be chosen close (at least in terms
of “shape”) to J* or to the current policy cost function Jµk , so that the
difference J* − V or Jµk − V , respectively, can be approximated by an
architecture that matches well the characteristics of the problem. It is
possible to approximate V with a parametric architecture or some other
approximation method, depending on the problem at hand. Moreover, in
the context of approximate PI, the choice of V may change from one policy
evaluation to the next.

The papers referenced for Section 4.2 provide some applications of
cost shaping (or reward shaping as it is sometimes called in RL contexts).
An interesting possibility is to use complementary approximations for V
and for J* or Jµk . For example V may be approximated by a neural
network-based approach that aims to discover the general form of J* or Jµk ,
and then a different method may be applied to provide a local correction
to V in order to refine the approximation. We will also illustrate this idea
within the context of biased aggregation in Section 6.5.
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Exploration Issues

Generating an appropriate training set at the policy evaluation step of
approximate PI poses considerable challenges, and the literature contains
several related proposals. We will discuss the generic issue of inadequate
exploration, which we noted earlier in connection with model-based approx-
imate PI. This is indeed the Achilles’ heel of approximate simulation-based
PI schemes, and is often not addressed seriously enough in practice.

We recall that in the PI variant of Section 5.3.2, in order to evaluate
a policy µ, we determine the value of the parameter vector r by generating
a large number of training pairs (is, βs), s = 1, . . . , q, where βs is a sample
cost corresponding to is and µ. We then use least squares training:

r ∈ argmin
r

q
∑

s=1

(

J̃µ(is, r)− βs
)2
.

Each sample cost βs is generated by starting at is, simulating a trajectory of
states and controls using µ and the known transition probabilities for some
number Ns of stages, accumulating the corresponding discounted costs, and
adding a terminal cost approximation

αNs Ĵ(iNs),

where iNs is the terminal state of the Ns-stage trajectory and Ĵ is some
initial guess of Jµ. In this context, we also discussed trajectory reuse,
which aims at reducing the sampling effort, by using the tail portions of
any generated trajectory.

Thus with trajectory reuse, we will be generating many cost or Q-
factor samples that start from states frequently visited by µ, and this may
bias the simulation by underrepresenting states that are unlikely to occur
under µ. As a result, the cost estimates of these underrepresented states
may be highly inaccurate, causing potentially serious errors in the calcula-
tion of the improved policy µ̃ via the policy improvement operation.

One possibility to improve the exploration of the state space is to use
a large number of initial states. It may then be necessary to use relatively
short trajectories to keep the cost of the simulation low. To compensate for
the short length of the trajectories it will then be important to introduce a
terminal cost function approximation in the policy evaluation step in order
to make the cost sample βs more accurate, as noted earlier. Moreover,
when selecting the initial states of these trajectories, we should make sure
that they are a representative sample of the portion of the state space most
visited not just under the current policy and also under other policies.

A simple plausible scheme when evaluating policy µk, is to use ran-

domization over a memory buffer , which stores candidate initial states. In
particular, we may use a set of initial states that consists of the union of



248 Infinite Horizon Reinforcement Learning Chap. 5

multiple subsets I, I0, . . . , Ik−1, where I is a starting set of initial states, and
I0, . . . , Ik−1 are generated while evaluating the previous policies µ0, . . . , µk−1.
Each subset Im should consist of states generated while evaluating policy
µm. We evaluate µk, by using short trajectories whose starting states are
chosen randomly from the subsets I, I0, . . . , Ik−1 with probabilities that
may reflect a bias toward more recent policies (i.e., the probability of se-
lecting an initial state from set Im should increase with m). At the same
time, while evaluating policy µk, we generate the subset of states Ik to use
when training the next policy µk+1. The initial subset I is special and
should be carefully chosen so that it includes not only a subset of represen-
tative states, but also successor states under a variety of control choices.
The fine details of such a scheme are likely to be settled by trial and error.

Thus in the preceding scheme, all state transitions and associated
transition costs used to generate the costs βs of the training set are gen-
erated by using the current policy µk. However, the set of initial states
of the trajectories used to produce the cost samples is quite diverse: it is
obtained by randomization over the union of the starting set I and the set
I0∪· · ·∪Ik−1, which corresponds to states visited by the preceding policies.

A potential weakness of a scheme of the preceding type is the need
for a good terminal cost function approximation. Such a cost may not be
easily available, particularly for SSP problems involving substantial “late
costs;” for example when most of the cost is incurred upon reaching the
destination. Such problems generally require “deep exploration,” i.e., long
trajectories that reach or get close to the destination.

Exploration schemes like the one just described may also be used in
the context of model-free variants of approximate PI for Q-factors; cf. Sec-
tion 5.3.3. In fact, as we discussed in that section, the need for exploration
in the space of state-control pairs is more acute. Again we may gener-
ate short trajectories that start with state-control pairs chosen randomly
within a set of pairs that are representative of several policies.

Let us also note the possibility to partition the state space, and select
a rich enough representative set of initial states for each set of the partition.
This allows a better control of exploration, and also ushers the possibility of
using a distributed policy evaluation algorithm for each set of the partition;
see our earlier discussion and the papers [BeY10], [BeY12], [YuB13a].

There have also been other related approaches to improve exploration,
particularly in connection with the temporal difference methods to be dis-
cussed in Section 5.5. In some of these approaches, trajectories are gener-
ated through a mix of two policies: the policy being evaluated, sometimes
called the target policy, to distinguish from the other policy, a probabilis-
tically used policy, called the behavior policy that introduces enhanced ex-
ploration; see the end-of-chapter references. In the RL literature (see e.g.,
the book [SuB18]), methods that use a behavior policy are called off-policy

methods, while methods that do not are called on-policy methods. A com-
monly suggested scheme is to use as an off-policy one that is “ǫ-greedy,”
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i.e., that attains the minimum in the policy improvement phase within
some threshold ǫ > 0, which is experimentally chosen.

It is important to note, however, that using a behavior policy biases
the cost samples towards that policy. Special modifications are needed,
which can eliminate this source of bias and indeed can work exclusively
with a behavior policy. Such modifications were introduced by Bertsekas
and Yu [BeY09] (Section 3) to deal with the solution of general linear
systems of equations that do not involve transition probabilities; see also
the book [Ber12], Sections 6.4.2 and 7.3.1.

Generally, efficient sampling, and the issue of balancing exploration
and the choice of promising controls (the exploration-exploitation tradeoff)
is a subject of continuing research. Many authors have suggested practical
schemes that may work in given contexts, including on-line situations. For
some recent work, see the paper by Russo and Van Roy [RuV16], and the
monograph [RVK18]. The paper by Osband, Van Roy, Russo, and Wen
[OVR19] develops special schemes to deal with issues of deep exploration.

5.3.5 Convergence Issues of Approximate Policy Iteration-
                Oscillations

We will now consider the sequence of policies generated by approximate
PI. Contrary to exact PI, which is guaranteed to yield an optimal policy,
approximate PI produces a sequence of policies, which are only guaranteed
to lie asymptotically within a certain error bound from the optimal; cf.
Prop. 5.1.4. Moreover, the generated policies may oscillate. By this we
mean that after a few iterations, policies tend to repeat in cycles.

This oscillation phenomenon, first described by the author in a 1996
conference [Ber96b], occurs systematically in the absence of special condi-
tions, for both optimistic and nonoptimistic PI methods. It can be observed
even in simple examples (see [BeT96], Section 6.4.2, [Ber12], Section 6.4.3).

To describe a generic mechanism that may cause policy oscillations in
approximate PI, we focus on the discounted problem, and we introduce the
so called greedy partition. For a given approximation architecture J̃(·, r),
this is a partition of the space ℜs of parameter vectors r into subsets Rµ,
each subset corresponding to a stationary policy µ, and defined by †

Rµ =
{

r | Tµ

(

J̃(·, r)
)

= T
(

J̃(·, r)
)}

or equivalently

Rµ =







r

∣

∣

∣

∣

∣

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, i = 1, . . . , n







.

† Since we are now dealing with multiple policies, our notation reflects the

dependence of the stage costs and transition probabilities on the control. Also Tµ

is the Bellman operator corresponding to a policy µ, while T is defined in terms

of minimization of Tµ over µ.
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Figure 5.3.3 Greedy partition and cycle of policies generated by nonoptimistic PI
with cost function approximation. In particular, µ yields µ by policy improvement
if and only if rµ ∈ Rµ. In this figure, the method cycles between four policies
and the corresponding parameters rµk , rµk+1 , rµk+2 , rµk+3 .

Thus, Rµ is the set of parameter vectors r for which µ is “greedy” with
respect to J̃(·, r). Note that the greedy partition depends only on the ap-

proximation architecture J̃(·, r) (which can be arbitrary, e.g., nonlinear),
and does not depend on the method used for policy evaluation.

We will first consider the nonoptimistic version of approximate PI;
a similar phenomenon occurs for optimistic PI, as we discuss later. For
simplicity, let us assume that we use a policy evaluation method that for
each given µ produces a unique parameter vector denoted rµ. The method
starts with a policy µ0 and generates rµ0 by using the given policy evalua-
tion method. It then finds a policy µ1 such that rµ0 ∈ Rµ1 . It then repeats
the process with µ1 replacing µ0. If some policy µk satisfying rµk ∈ Rµk is
encountered, the method converges to µk (it keeps generating µk). This is
the necessary and sufficient condition for policy convergence in the nonop-
timistic PI method.

In the case of an exact cost function representation where the param-
eter vector rµ is equal to the cost-to-go vector Jµ, the condition rµk ∈ Rµk

is equivalent to rµk = Trµk , and is satisfied if and only if µk is optimal.
When there is cost function approximation, however, this condition need
not be satisfied for any policy. Since there is a finite number of possible vec-
tors rµ, one generated from another in a deterministic way, the algorithm
ends up repeating some cycle of policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m−1 ∈ Rµk+m , rµk+m ∈ Rµk ;

(see Fig. 5.3.3). Furthermore, there may be many different cycles of this
type, and the method may end up converging to any one of them. The
actual cycle obtained depends on the initial policy µ0. This is similar to
gradient methods applied to minimization of functions with multiple local
minima, where the limit of convergence depends on the starting point.
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rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

Figure 5.3.4 Illustration of a trajectory of optimistic policy iteration with cost
function approximation. The algorithm settles into an oscillation between policies
µ1, µ2, µ3 with

rµ1 ∈ Rµ2 , rµ2 ∈ Rµ3 , rµ3 ∈ Rµ1 .

The parameter vectors converge to the common boundary of Rµ1 , Rµ2 , Rµ3 .

Oscillations can in principle be quite damaging, because there is no
guarantee that the oscillating policies are “good” policies, and there is often
no way to verify how well they perform relative to the optimal. However,
we will later give an argument (from Section 6.4.2 of the book [BeT96]),
which suggests that oscillations may not degrade significantly the approx-
imate PI performance for many types of problems. Moreover, we note
that oscillations can be avoided and convergence can be shown under spe-
cial conditions, which arise in particular when an aggregation approach is
used; see Chapter 6 and the approximate PI survey [Ber11a]. Also, when
policies converge, there is a more favorable error bound, cf. Prop. 5.1.5.

Oscillations and Chattering in Optimistic PI Methods

We now consider policy oscillations in the context of optimistic approximate
PI. Then the trajectory of the method is less predictable and depends on
the fine details of the policy evaluation, such as the frequency of the policy
updates.

Generally, given the current policy µ, optimistic PI will move towards
the corresponding “target” parameter rµ, for as long as µ continues to be
greedy with respect to the current cost-to-go approximation J̃(·, r), that is,
for as long as the current parameter vector r belongs to the set Rµ. Once,
however, the parameter r crosses into another set, say Rµ, the policy µ
becomes greedy, and r changes course and starts moving towards the new
“target” rµ. Thus, the “targets” rµ of the method, and the corresponding
policies µ and sets Rµ may keep changing, similar to nonoptimistic pol-
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icy iteration. Simultaneously, the parameter vector r will move near the
boundaries that separate the regions Rµ that the method visits, thus fol-
lowing reduced versions of the cycles that nonoptimistic PI may follow (see
Fig. 5.3.3). Furthermore, as Fig. 5.3.4 indicates, if diminishing parameter
changes are made between policy updates (such as for example when a di-
minishing stepsize is used by the policy evaluation method) and the method
eventually cycles between several policies, the parameter vectors will tend
to converge to the common boundary of the regions Rµ corresponding to
these policies.

The simultaneous oscillation in policy space and convergence in pa-
rameter space in optimistic PI is called chattering. The literature reflects
some confusion regarding the nature of this phenomenon, and in fact it
is often erroneously assumed that if the sequence of generated parameters
converges, the same is true for the sequence of generated policies.

An interesting observation is that the choice of the approximate pol-
icy evaluation method and exploration scheme may not be crucial for the
quality of the final policy obtained. Using a different method changes the
targets rµ somewhat, but leaves the greedy partition unchanged. As a re-
sult, different methods “fish in the same waters” and tend to yield similar
ultimate cycles of policies.

Note that when chattering occurs, the limit of optimistic PI tends to
be on a common boundary of several subsets of the greedy partition and
may not meaningfully represent a cost approximation for any of the policies

involved in the oscillation. Thus, the parameter limit of the method cannot
always be used to construct an approximation of the cost-to-go of any policy
or the optimal cost-to-go. As a result, at the end of optimistic PI one may
need to go back and perform a screening process; that is, evaluate the many
policies generated by the method and select the most promising.

Still even with chattering, it is possible that the cost functions of the
different policies involved in oscillation may not be “too different,” so the
cost functions of the generated policies may appear to be “nearly converg-
ing” (which is not the same as saying that they are all “good” policies). For
an explanation, suppose that we have convergence to a parameter vector r
and that there is a steady-state policy oscillation involving a collection of
policies M. Then, all the policies in M are greedy with respect to J̃(·, r),
which implies that there is a subset of states i such that there are at least
two different controls µ1(i) and µ2(i) satisfying

min
u∈U(i)

∑

j

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

=
∑

j

pij
(

µ1(i)
)

(

g
(

i, µ1(i), j
)

+ αJ̃(j, r)
)

=
∑

j

pij
(

µ2(i)
)

(

g
(

i, µ2(i), j
)

+ αJ̃(j, r)
)

.
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Each equation of this type can be viewed as a constraining relation on the
parameter vector r. Thus, excluding singular situations, there will be at
most s relations of the preceding form holding, where s is the dimension
of r. This implies that there will be at most s “ambiguous” states where
more than one control is greedy with respect to J̃(·, r).

Now assume that we have a problem where the total number of states
is much larger than s, and in addition there are no “critical” states; that
is, the cost consequences of changing a policy in just a small number of
states (say, of the order of s) is relatively small. It then follows that all
policies in the set M involved in chattering have roughly the same cost
function (although these policies are not necessarily “good” policies). Fur-
thermore, one may argue that the cost approximation J̃(·, r) is close to the
cost approximation J̃(·, rµ) that would be generated for any of the policies
µ ∈ M. Note, however, that the assumption of “no critical states” may be
hard to quantify and check, and may also not be true.

5.4 Q-LEARNING

In this section we will focus on discounted problems and discuss various
Q-learning algorithms, which can be implemented in model-free fashion (if
this is desirable). The original method of this type is related to the VI
algorithm for Q-factors, described in Sections 4.2 and 4.3. Instead of ap-
proximating the cost functions of successive policies as in the PI method, it
aims to obtain the optimal Q-factors, thereby avoiding the multiple policy
evaluation steps of PI. We will consider Q-learning as well as a variety of
related methods with the shared characteristic that they involve exact or
approximate Q-factors. Some of these methods are also related to (highly)
optimistic PI methods that are based on the use of Q-factors (cf. the meth-
ods of Section 5.3.3).

We first discuss the original form of Q-learning for discounted prob-
lems; the books [BeT96] and [Ber12], and the papers [Tsi94] and [YuB13b]
contain discussions of Q-learning for SSP problems. Then we consider PI
algorithms for Q-factors, including optimistic asynchronous versions, with
Q-factor approximation.

In the discounted problem, the optimal Q-factors are defined for all
pairs (i, u) with u ∈ U(i), by

Q*(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αJ*(j)
)

.

As discussed in Section 4.3, these Q-factors satisfy for all (i, u),

Q*(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q*(j, v)

)

,
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and are the unique solution of this set of equations. Moreover the optimal
Q-factors can be obtained by the VI algorithm Qk+1 = FQk, where F is
the Bellman operator for Q-factors defined by

(FQ)(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q(j, v)

)

, for all (i, u).

(5.26)
It is straightforward to show that F is a contraction with modulus α,
similar to the Bellman operator for costs [cf. Eq. (5.3)]. Thus the algorithm
Qk+1 = FQk converges to Q* from every starting point Q0.

The original and most widely known Q-learning algorithm ([Wat89])
is a stochastic version of VI, whereby the expected value in Eq. (5.26) is
suitably approximated by sampling and simulation. In particular, an in-
finitely long sequence of state-control pairs {(ik, uk)} is generated according
to some probabilistic mechanism. For each pair (ik, uk), a state jk is gener-
ated according to the probabilities pikj(uk). Then the Q-factor of (ik, uk)
is updated using a stepsize γk ∈ (0, 1] while all other Q-factors are left
unchanged:

Qk+1(i, u) = (1− γk)Qk(i, u) + γk(FkQk)(i, u), for all (i, u), (5.27)

where

(FkQk)(i, u) =

{

g(ik, uk, jk) + αminv∈U(jk)
Qk(jk, v) if (i, u) = (ik, uk),

Qk(i, u) if (i, u) 6= (ik, uk).
(5.28)

Note that (FkQk)(ik, uk) is a single sample approximation of the expected
value defining (FQk)(ik, uk) in Eq. (5.26).

To guarantee the convergence of the algorithm (5.27)-(5.28) to the
optimal Q-factors, some conditions must be satisfied. Chief among these
are that all state-control pairs (i, u) must be generated infinitely often
within the infinitely long sequence {(ik, uk)}, and that the successor states
j must be independently sampled at each occurrence of a given state-control
pair. Furthermore, the stepsize γk should satisfy the conditions

γk > 0, for all k,

∞
∑

k=0

γk = ∞,

∞
∑

k=0

(γk)2 < ∞,

which are typical of stochastic approximation methods (see e.g, the books
[BeT96], [Ber12], Section 6.1.4), as for example when γk = c1/(k + c2),
where c1 and c2 are some positive constants. In addition some other tech-
nical conditions should hold. A mathematically rigorous convergence proof
was given in the paper [Tsi94], which embeds Q-learning within a broad
class of asynchronous stochastic approximation algorithms. This proof
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(also reproduced in [BeT96]) combines the theory of stochastic approxi-
mation algorithms with the convergence theory of asynchronous DP and
asynchronous iterative methods; cf. the papers [Ber82], [Ber83], and the
book [BeT89].

In practice, Q-learning has some drawbacks, the most important of
which is that the number of Q-factors/state-control pairs (i, u) may be
excessive. To alleviate this difficulty, we may introduce a Q-factor approx-
imation architecture. One of these possibilities will be considered next.

5.4.1 Optimistic Policy Iteration with Parametric Q-Factor
               Approximation - SARSA and DQN

We have discussed so far Q-learning algorithms with an exact representa-
tion of Q-factors. We will now consider Q-learning with Q-factor approx-
imation. As we noted earlier, we may view Q-factors as optimal costs of
a certain discounted DP problem, whose states are the state-control pairs
(i, u) in addition to the original states. We may thus apply the approximate
PI methods discussed earlier. For this, we need to introduce a parametric
architecture Q̃(i, u, r). This architecture could be linear feature-based, or
nonlinear such as one that uses a neural network.

We have already discussed in Section 5.3.3 a model-free approximate
PI method that is based on Q-factors and least squares training/regression.
There are also optimistic approximate PI methods, which use a policy
for a limited number of stages with cost function approximation for the
remaining states, and/or a few samples in between policy updates.

As an example, let us consider an extreme version that uses a single
sample between policy updates. At the start of iteration k, we have the
current parameter vector rk, we are at some state ik, and we have chosen
a control uk. Then:

(1) We simulate the next transition (ik, ik+1) using pikj(u
k).

(2) We generate the control uk+1 with the minimization

uk+1 ∈ arg min
u∈U(ik+1)

Q̃(ik+1, u, rk).

[In some schemes, to enhance exploration, uk+1 is chosen with a small
probability to be a random element of U(ik+1) or one that is “ǫ-
greedy,” i.e., attains within some ǫ the minimum above.]

(3) We update the parameter vector via

rk+1 = rk − γk ∇Q̃(ik, uk, rk)

·
(

Q̃(ik, uk, rk)− g(ik, uk, ik+1)− αQ̃(ik+1, uk+1, rk)
)

,
(5.29)

where γk is a positive stepsize, and∇(·) denotes gradient with respect
to r evaluated at the current parameter vector rk. To get a sense
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for the rationale of this iteration, note that if Q̃ is a linear feature-
based architecture, Q̃(i, u, r) = φ(i, u)′r, then ∇Q̃(ik, uk, rk) is just
the feature vector φ(ik, uk), and iteration (5.29) becomes

rk+1 = rk − γkφ(ik, uk)
(

φ(ik, uk)′rk − g(ik, uk, ik+1)− αφ(ik+1, uk+1)′rk
)

.

Thus rk is changed in an incremental gradient direction: the one
opposite to the gradient (with respect to r) of the incremental error

(

φ(ik, uk)′r − g(ik, uk, ik+1)− αφ(ik+1, uk+1)′rk
)2
,

evaluated at the current iterate rk.

The process is now repeated with rk+1, ik+1, and uk+1 replacing rk, ik,
and uk, respectively.

Extreme optimistic PI schemes of the type just described have been
used in practice, and are often referred to as SARSA (State-Action-Reward-
State-Action); see e.g., the books [BeT96], [BBD10], [SuB18]. When Q-
factor approximation is used, their behavior is very complex, their the-
oretical convergence properties are unclear, and there are no associated
performance bounds in the literature. The method just described is more
commonly used in a less extreme/optimistic form, whereby several (per-
haps many) state-control-transition cost-next state samples are batched
together and suitably averaged before updating the vector rk.

Other variants of the method attempt to save in sampling effort by
storing the generated samples in a buffer and reusing them in some ran-
domized fashion in subsequent iterations (cf. our discussion of exploration
in Section 5.3.4). This is also called sometimes experience replay, an idea
that has been used since the early days of RL, both to save in sampling
effort and to enhance exploration. The DQN (Deep Q Network) scheme,
championed by DeepMind (see Mnih et al. [MKS15]), is based on this idea
(the term “Deep” is a reference to DeepMind’s affinity for deep neural net-
works, but experience replay does not depend on the use of a deep neural
network architecture).

5.5 ADDITIONAL METHODS - TEMPORAL DIFFERENCES

In this section, we summarize a few additional methods for approximation
in value space in infinite horizon problems. We focus on policy evaluation

with a linear parametric architecture, and on the simulation-based temporal
difference methods. One of the aims of these methods is to address a bias-
variance tradeoff that is similar in nature to the one discussed in Section
5.3.2. Our presentation is brief, somewhat abstract, and makes use of linear
algebra mathematics. It may be skipped without loss of continuity. This
is only a summary; it is meant to provide a connection to other material in
this chapter, and orientation for further reading into both the optimization
and artificial intelligence literature on the subject.
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Approximate Policy Evaluation Using Projections

Our main concern in policy evaluation is to solve approximately the Bell-
man equation corresponding to a given policy µ. Thus, for discounted
problems, we are interested in solving the linear system of equations

Jµ(i) =

n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, i = 1, . . . , n,

or in shorthand,
Jµ = TµJµ, (5.30)

where Tµ is the Bellman operator for µ, given by

(TµJ)(i) =
n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ(j)
)

, i = 1, . . . , n. (5.31)

Let us consider the approximate solution of this equation by parametric
approximation (cf. Section 5.3). This amounts to replacing Jµ with some
vector that lies within the manifold represented by the approximation ar-
chitecture

M =
{

(

J̃(1, r), . . . , J̃(n, r)
) ∣

∣ all parameter vectors r
}

. (5.32)

The approximate solution of systems of equations within an approxi-
mation manifold of the form (5.32) has a long history in scientific computa-
tion, particularly when the manifold is linear. A central approach involves
the use of projections with respect to a weighted quadratic norm

‖J‖2 =

n
∑

i=1

ξi
(

J(i)
)2
, (5.33)

where J(i) are the components of the vector J and ξi are some positive
weights. The projection of a vector J onto the manifold M is denoted by
Π(J). Thus

Π(J) ∈ arg min
V ∈M

‖J − V ‖2.

Note that for a nonlinear parametric architecture, such as a neural network,
the projection may not exist and may not be unique. However, in the case
of a linear architecture, where the approximation manifold M is a sub-
space, the projection does exist and is unique; this is a consequence of the
fundamental orthogonal projection theorem of calculus and real analysis.

We may consider three general approaches for approximation of Jµ.

(a) Project Jµ onto M to obtain Π(Jµ), which we use as an approxima-
tion of Jµ.
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(b) Start with some approximation Ĵ of Jµ, perform N value iterations

to obtain TN
µ Ĵ , and project onto M to obtain Π(TN

µ Ĵ). We then use

Π(TN
µ Ĵ) as an approximation to Jµ.

(c) Solve a projected version Jµ = Π(TµJµ) of the Bellman Eq. (5.30),
and use the solution of this projected equation as an approximation
to Jµ. We will also discuss related projected versions that involve
other operators in place of Tµ.

The preceding three approaches are hard to implement exactly; for
example, (a) is impossible since we do not know the values of Jµ. However,
it turns out that it is possible to implement approximately these approaches
by using a Monte Carlo simulation methodology that is suitable for large
problems. To explain this methodology we first discuss the implementa-
tion of the projection operation through sampling for the case where the
parametric architecture is linear and M is a subspace.

Projection by Monte Carlo Simulation

Let us focus on the case where the manifold M is a subspace of the form

M = {Φr | r ∈ ℜm}, (5.34)

where ℜm is the space of m-dimensional vectors, and Φ is an n ×m ma-
trix with rows denoted by φ(i)′, i = 1, . . . , n. Here we use the notational
convention that all vectors are column vectors, and prime denotes transpo-
sition, so φ(i)′ is an m-dimensional row vector, and the subspace M may
be viewed as the space spanned by the n-dimensional columns of Φ.

We consider projection with respect to the weighted Euclidean norm
of Eq. (5.33), so Π(J) is of the form Φr∗, where

r∗ ∈ arg min
r∈ℜm

‖Φr − J‖2ξ = arg min
r∈ℜm

n
∑

i=1

ξi
(

φ(i)′r − J(i)
)2
. (5.35)

We can perform the above minimization by setting to 0 the gradient of the
cost function,

2

n
∑

i=1

ξiφ(i)
(

φ(i)′r∗ − J(i)
)

= 0.

We then obtain the solution in closed form,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)J(i), (5.36)

assuming that the inverse above exists. One of the difficulties here is that
when n is very large, the matrix-vector calculations in this formula can be
very time-consuming.
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On the other hand, assuming (by normalizing ξ if necessary) that
ξ = (ξ1, . . . , ξn) is a probability distribution, we may view the two terms
in the right side of Eq. (5.36) as expected values with respect to ξ, and
approximate them by Monte Carlo simulation. In particular, suppose that
we generate a set of state index samples is, s = 1, . . . , q, according to the
distribution ξ, and form the Monte Carlo estimates

1

q

q
∑

s=1

φ(is)φ(is)′ ≈

n
∑

i=1

ξiφ(i)φ(i)′,
1

q

q
∑

s=1

φ(is)βs ≈

n
∑

i=1

ξiφ(i)J(i),

(5.37)
where βs is a simulation-based approximation to the exact value J(is). It
may be modeled as

βs = J(is) + n(is),

where n(is) is a random variable (“noise”) resulting from the random-
ness of the simulation. For the Monte Carlo estimate in the right side of
Eq. (5.37) to be asymptotically correct [in the sense that it converges to
∑n

i=1 ξiφ(i)φ(i)
′ as q → ∞], we must have

1

q

q
∑

s=1

φ(is)n(is) ≈ 0, (5.38)

which is implied by a zero sample mean condition for the noise.†
Given the Monte Carlo approximations (5.37) of the two terms in Eq.

(5.36), we can estimate r∗ with

r =

(

q
∑

s=1

φ(is)φ(is)′

)−1 q
∑

s=1

φ(is)βs, (5.40)

† A suitable zero mean condition for the noise n(is) has the form

lim
q→∞

∑q

s=1
δ(is = i)n(is)

∑q

s=1
δ(is = i)

= 0, for all i = 1, . . . , n, (5.39)

where δ(is = i) = 1 if is = i and δ(is = i) = 0 if is 6= i. It states that the Monte
Carlo averages of the noise terms corresponding to every state i are zero. Then
the expression in Eq. (5.38) has the form

1

q

q
∑

s=1

φ(is)n(is) =
1

q

n
∑

i=1

φ(i)

q
∑

s=1

δ(is = i)n(is)

=
1

q

n
∑

i=1

φ(i)

(

q
∑

s′=1

δ(is
′
= i)

)

∑q

s=1
δ(is = i)n(is)

∑q

s=1
δ(is = i)

,

and converges to 0 as q → ∞, assuming Eq. (5.39) [and also that each index i is

sampled infinitely often so that Eq. (5.39) makes sense].
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(assuming sufficiently many samples are obtained to ensure the existence of
the inverse above).† This is also equivalent to estimating r∗ by approximat-
ing the least squares minimization (5.35) with the following least squares
training problem

r ∈ arg min
r∈ℜm

q
∑

s=1

(

φ(is)′r − βs
)2
. (5.41)

Thus simulation-based projection can be implemented in two equiva-
lent ways:

(a) Replacing the expected values in the exact projection formula (5.36)
with the simulation-based estimates (5.37) [cf. Eq. (5.40)].

(b) Replacing the exact least squares problem (5.35) with the simulation-
based least squares approximation (5.41).

These dual possibilities of implementing projection by simulation can be
used interchangeably. In particular, the least squares training problems

for approximation in value space considered in this book may be viewed as

simulation-based approximate projection calculations .
Generally, we wish that the estimate r converges to r∗ as the number

of samples q increases. An important point is that it is not necessary that
the simulation produces independent samples. Instead it is sufficient that
the long term empirical frequencies by which the indices i appear in the
simulation sequence are consistent with the probabilities ξi of the projection
norm, i.e.,

ξi = lim
k→∞

1

q

q
∑

s=1

δ(is = i), i = 1, . . . , n, (5.42)

where δ(is = i) = 1 if is = i and δ(is = i) = 0 if is 6= i.
Another important point is that the probabilities ξi need not be pre-

determined. In fact, often the exact values of ξi do not matter much, and
one may wish to first specify a reasonable and convenient sampling scheme,

and let ξi be implicitly specified via Eq. (5.42).

Projected Equation View of Approximate Policy Evaluation

Let us now discuss the approximate policy evaluation method for costs of
Section 5.3.2 [cf. Eq. (5.22)]. It can be interpreted in terms of a projected
equation, written abstractly as

J̃µ ≈ Π(TN
µ Ĵ), (5.43)

† The preceding derivation and the formula (5.40) actually make sense even if

ξ = (ξ1, . . . , ξn) has some zero components, as long as the inverses in Eqs. (5.36)

and (5.40) exist. This is related to the concept of seminorm projection; see the

paper by Yu and Bertsekas [YuB12] for a discussion related to approximate DP.
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where:†

(a) Ĵ is some initial guess of Jµ (the terminal cost function approximation
discussed in Section 5.3.2), and J̃µ is the vector

J̃µ =
(

J̃(1, r), . . . , J̃(n, r)
)

,

which is the approximate policy evaluation of µ, used in the policy
improvement operation (5.23). Here r is the solution of the training
problem (5.22).

(b) Tµ is the Bellman operator corresponding to µ, which maps a vector
J =

(

J(1), . . . , J(n)
)

into the vector TµJ of Eq. (5.31).

(c) TN
µ denotes the N -fold application of the operator Tµ, where N is the

length of the sample trajectories used in the least squares regression
problem (5.22). In particular, (TN

µ Ĵ)(i) is the cost of starting at i,

using µ for N stages, with terminal cost function Ĵ (or equivalently,
the result of an optimistic policy evaluation using N value iterations
starting from Ĵ). The sample state-cost pairs (is, βs) are obtained
from trajectories corresponding to this N -stage problem.

(d) Π(TN
µ Ĵ) denotes projection of the vector TN

µ Ĵ on the manifold of
possible approximating vectors M with respect to a weighted norm,
where each weight ξi represents the relative frequency of the state i as
initial state of a training trajectory. This projection is approximated
by the least squares regression (5.22). In particular, the cost samples
βs of the training set are noisy samples of the values (TN

µ Ĵ)(is), and
the projection is approximated with a least squares minimization, to
yield the function J̃µ of Eq. (5.43).

Suppose now that TN
µ Ĵ is close to Jµ (which happens if either N is

large or Ĵ is close to Jµ, or both) and the number of samples q is large
(so that the simulation-based regression approximates well the projection
operation Π). Then from Eq. (5.43), the approximate evaluation J̃µ of
µ approaches the projection of Jµ on the approximation manifold (5.32),
which can be viewed as the best possible approximation of Jµ (at least
relative to the distance metric defined by the weighted projection norm).
This provides an abstract formal rationale for the parametric PI method
of Section 5.3.2, which is based on Eq. (5.43).

TD(λ), LSTD(λ), and LSPE(λ)

Projected equations also fundamentally underlie temporal difference meth-

ods (TD for short), a prominent class of simulation-based methods for ap-

† The equation (5.43) assumes that all trajectories have equal length N ,

and thus does not allow trajectory reuse. If trajectories of different lengths are

allowed, the term TN
µ in the equation should be replaced by a more complicated

weighted sum of powers of Tµ; see the paper [YuB12] for related ideas.
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proximate evaluation of a policy. Examples of such methods are TD(λ),
LSTD(λ), and LSPE(λ), where λ is a scalar with 0 ≤ λ < 1.†

These three methods require a linear parametric approximation ar-
chitecture J̃µ = Φr, and all aim at the same problem. This is the problem
of solving a projected equation of the form

Φr = Π
(

T
(λ)
µ Φr

)

, (5.44)

where Tµ is the operator (5.31), T
(λ)
µ J is defined by

(T
(λ)
µ J)(i) = (1− λ)

∞
∑

ℓ=0

λℓ (T ℓ+1
µ J)(i), i = 1, . . . , n, (5.45)

and Π is projection on the approximation subspace

M = {Φr | r ∈ ℜm},

with respect to some weighted projection norm. One interpretation of the

equation J = T
(λ)
µ J is as a multistep version of Bellman’s equation. It has

the same solution, Jµ, as the “one-step” Bellman equation J = TµJ , which
corresponds to λ = 0.

Of course the projected equation (5.44) cannot be solved exactly when
the number of states n is large, since the projection is a high dimensional
operation that requires computations of order n. Instead the key idea is to
replace the projection by a simulation-based approximate projection, of the
type discussed earlier. This leads to the problem of finding a vector r such
that

Φr = Π̃
(

T
(λ)
µ Φr

)

, (5.46)

where Π̃ is an approximate projection implemented by sampling.
The meaning of the above equation is to find a vector Φr ∈ M,

which when transformed with T
(λ)
µ and then projected approximately (using

Π̃) back onto M, yields itself . To implement the approximate projection,
suppose that for q samples of initial states is, s = 1, . . . , q, we were able

compute the corresponding samples of (T
(λ)
µ Φr)(is) (this is hypothetical

since r is unavailable). Then the parameter vector r would be obtained as

r ∈ argmin
r

q
∑

s=1

(

φ(is)′r − sample of (T
(λ)
µ Φr)(is)

)2
, (5.47)

where φ(i)′ is the ith row of Φ, so that the inner product φ(i)′r denotes the
ith component of the vector Φr. This least squares problem implements the

† TD stands for “temporal difference,” LSTD stands for “least squares tem-

poral difference,” and LSPE stands for “least squares policy evaluation.”
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approximate projection Π̃ of Eq. (5.46) [i.e., r, the solution of Eq. (5.46)
minimizes over r the quadratic expression in Eq. (5.47) (which also involves
r̄!)].

A key fact now is that the optimality condition for the problem in Eq.
(5.47) can be written as a closed form equation that can be solved for r,
and indeed LSTD(λ) does exactly that. By contrast LSPE(λ) and TD(λ)
solve this optimality condition iteratively and incrementally, in the spirit
of the methods of Section 3.1.3. We will first give a high level description
of the three methods, and then focus on the simpler case where λ = 0.

(a) The LSTD(λ) method, after the q samples have been collected, writes
the optimality condition for Eq. (5.47) as a linear equation of the form

Cλr = dλ, (5.48)

where Cλ is some m×m square matrix, and dλ is an m-dimensional
vector (which depend on λ). The components of Cλ and dλ are explic-
itly computed, and LSTD(λ) produces the approximate cost function
J̃µ(i) = Φr, where r = C−1

λ dλ is the solution of Eq. (5.48).

(b) The LSPE(λ) method solves the projected equation (5.44) by using
a simulation-based projected value iteration,

Jk+1 = Π̃
(

T
(λ)
µ Jk

)

. (5.49)

Here the projection is implemented iteratively, with sampling-based
least squares regression, in a manner that resembles the incremental
aggregated gradient method of Section 3.1.3.

(c) The TD(λ) method is a simpler iterative stochastic approximation
method for solving the linear equation (5.48), which resembles the
incremental gradient method of Section 3.1.3. It can also be viewed
as a stochastic version of the proximal algorithm for solving this linear
equation (the parameter λ is related to the penalty parameter of the
proximal algorithm; see the author’s papers [Ber16c] and [Ber18d]).

An interesting question is how to select λ and what is its role. There
is a bias-variance tradeoff here, similar to the one we discussed in Section
5.3.2. We will address this issue later in this section.

TD(0), LSTD(0), and LSPE(0)

Let us describe in more detail LSTD(0) for evaluation of a given policy µ.
We assume that the simulation generates a sample sequence of q transitions
using µ:

(i1, i2), (i2, i3), . . . , (iq, iq+1),

with corresponding transition costs

g(i1, i2), g(i2, i3), . . . , g(iq, iq+1).
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Here, to simplify notation, we do not show the dependence of the transi-
tion costs on the control applied by µ. As earlier, let the ith row of the
matrix Φ be the m-dimensional row vector φ(i)′, so that the cost Jµ(i) is
approximated as the inner product φ(i)′r:

Jµ(i) ≈ φ(i)′r.

Since λ = 0, we have T
(λ)
µ = Tµ, the samples of TµΦr in Eq. (5.47) are

g(is, is+1) + αφ(is+1)′r, s = 1, . . . , q,

and the least squares problem in Eq. (5.47) has the form

r ∈ argmin
r

q
∑

s=1

(

φ(is)′r − g(is, is+1)− αφ(is+1)′r
)2
. (5.50)

(Note that this is an unusual optimization problem because its solution
r appears in its quadratic cost function.) By setting the gradient of the
minimized expression above to zero, we obtain the condition for r to attain
the above minimum:

q
∑

s=1

φ(is)
(

φ(is)′r − g(is, is+1)− αφ(is+1)′r
)

= 0. (5.51)

Solving this equation for r yields the LSTD(0) solution:

r =

(

q
∑

s=1

φ(is)
(

φ(is)− αφ(is+1)
)′

)−1 q
∑

s=1

φ(is)g(is, is+1). (5.52)

Note that the inverse in the preceding equation must exist for the
method to be well-defined; otherwise the iteration has to be modified. A
modification is also needed when the matrix inverted is nearly singular; in
this case the simulation noise may introduce serious numerical problems.
Various methods have been developed to deal with the near singularity issue
using regularization/stabilization ideas; see Wang and Bertsekas [WaB13a],
[WaB13b], and the DP textbook [Ber12], Section 7.3.

The expression

ds(r) = φ(is)′r − g(is, is+1)− αφ(is+1)′r (5.53)

that appears in Eq. (5.51) is referred to as the temporal difference associated

with the sth transition and parameter vector r. In the artificial intelligence
literature, temporal differences are viewed as fundamental to learning and
are accordingly interpreted, but we will not go further in this direction; see
the RL textbooks that we have cited.
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The LSPE(0) method is similarly derived. It consists of a simulation-
based approximation of the projected value iteration method

Jk+1 = Π̃
(

TµJk
)

,

[cf. Eq. (5.49)]. At the kth iteration, it uses only the samples s = 1, . . . , k,
and updates the parameter vector according to

rk+1 = rk −

(

k
∑

s=1

φ(is)φ(is)′

)−1
k
∑

s=1

φ(is)ds(rk), k = 1, 2, . . . , (5.54)

where ds(rk) is the temporal difference of Eq. (5.53), evaluated at the iter-
ate rk; the form of this iteration is derived similar to the case of LSTD(0).
The vector rq obtained after q iterations, when all the samples have been
processed, is the one used for the approximate evaluation of Jµ. Note that
the inverse in Eq. (5.54) can be updated economically from one iteration
to the next, using fast linear algebra operations (cf. the use of the Sherman
Morrison formula in the incremental Newton method in Section 3.1.3).

Overall, it can be shown that LSTD(0) and LSPE(0) [with efficient
matrix inversion in Eq. (5.54)] require essentially identical amount of work
to process the q samples associated with the current policy µ [this is also
true for the LSTD(λ) and LSPE(λ) methods; see [Ber12], Section 6.3].
An advantage offered by LSPE(0) is that because it is iterative, it allows
carrying over the final parameter vector rq , as a “hot start” when passing
from one policy evaluation to the next, in the context of an approximate
PI scheme.

The TD(0) method has the form

rk+1 = rk − γkφ(ik)dk(rk), k = 1, 2, . . . , (5.55)

where γk is a diminishing stepsize parameter and dk(rk) is the temporal
difference, cf. Eq. (5.53). It can be seen that TD(0) resembles an incremen-

tal gradient iteration for solving the least squares training problem (5.50),
but with r replaced by the current iterate rk. The reason is that the gra-
dient of the typical kth term in the least squares sum of Eq. (5.50) is the
vector φ(ik)dk(rk) that appears in the TD(0) iteration (5.55) (cf. Section
3.1.3). Thus at each iteration, TD(0) uses only one sample, and changes rk

in the opposite direction to the corresponding incremental gradient using
a stepsize γk that must be carefully controlled.

By contrast the LSPE(0) iteration (5.54) uses the full sum

k
∑

s=1

φ(is)ds(rk),

which may be viewed as an aggregated incremental method, with scaling

provided by the matrix
(

∑k
s=1 φ(i

s)φ(is)′
)−1

. This explains why TD(0) is
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generally much slower and more fragile than LSPE(0). While TD(0) does
not require a matrix inversion, the same is true for LSPE(0), once modified
to replace the scaling matrix with its diagonal approximation, similar to the
incremental Newton method (cf. Example 3.1.9). On the other hand there
is no way to avoid matrix inversion in the implementation of LSTD(0).

The properties, the analysis, and the implementation of TD methods
in the context of approximate PI are quite complicated. In particular,
the issue of exploration is important and must be addressed. Moreover
there are convergence, oscillation, and reliability issues to contend with.
LSTD(λ) relies on matrix inversion and not on iteration, so it does not have
a serious convergence issue, but the system (5.48) may be singular or nearly
singular, in which case very accurate simulation is needed to approximate
the matrix C well enough for its inversion to be reliable, as we have noted
earlier (see [WaB13a], [WaB13b], and [Ber12], Section 7.3). LSPE(λ) has

a convergence issue because the mapping ΠT
(λ)
µ may not be a contraction

mapping (even though Tµ is) and the projected value iteration (5.49) may

not be convergent. It turns out that the mapping ΠT
(λ)
µ is guaranteed to

be a contraction for λ sufficiently close to 1, so the convergence difficulty
may be circumvented by suitably increasing λ (see [Ber12], Section 6.3.6).

Direct and Indirect Policy Evaluation Methods

In trying to compare the approximate policy evaluation methods discussed
in this section, we may draw a distinction between direct methods , which
aim to compute approximately the projection Π(Jµ), and indirect methods ,
which try to solve the projected equation (5.44).

The method of Section 5.3.2 is direct and is based on Eq. (5.43). In
particular, as N → ∞ and q → ∞, it yields the approximate evaluation
Π(Jµ). The TD methods are indirect, and aim at computing the solution
of the projected equation (5.44). The solution of this equation is of the
form Φr∗λ, where the parameter vector r∗λ depends on λ. In particular the
projected equation solution Φr∗λ is different from Π(Jµ). It can be shown
that it satisfies the error bound

‖Jµ − Φr∗λ‖ξ ≤
1

√

1− α2
λ

‖Jµ −Π(Jµ)‖ξ, (5.56)

where

αλ =
α(1 − λ)

1− αλ

and ‖ · ‖ξ is a special projection norm of the form (5.33), where ξ is the
steady-state probability distribution of the controlled system Markov chain
under policy µ. Moreover as λ → 1 the projected equation solution Φr∗λ
approaches Π(Jµ). Based on this fact, methods which aim to compute
Π(Jµ), such as the direct method of Section 5.3.2 are sometimes called
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µ (Φr)
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Π(Jµ)
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Subspace M = {Φr | r ∈ ℜm}

of projected equation Bias
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λ
of projected equation

Steps Φr∗
λ

Figure 5.5.1 Illustration of the bias-variance tradeoff in estimating the solution
of the projected equation for different values of λ. As λ increases from λ = 0
towards λ = 1, the solution Φr∗

λ
of the projected equation

Φr = Π
(

T (λ)(Φr)
)

approaches the projection Π(Jµ). The difference

Φr∗λ −Π(Jµ)

is the bias, and it decreases to 0 as λ approaches 1, while the simulation error
variance increases.

TD(1). We refer to [Ber12], Section 6.3.6, for an account of this analysis,
which is beyond the scope of this book.

The difference Φr∗λ−Π(Jµ) is commonly referred to as the bias and is
illustrated in Figure 5.5.1. As indicated in this figure and as the estimate
(5.56) suggests, there is a bias-variance tradeoff . As λ is decreased, the so-
lution of the projected equation (5.44) changes and more bias is introduced
relative to the “ideal” approximation ΠJµ (this bias can be embarrassingly
large as shown by examples in the paper [Ber95]). At the same time, how-

ever, the simulation samples of T
(λ)
µ J contain less noise as λ is decreased

[cf. Eq. (5.45)]. This provides another view of the bias-variance tradeoff,
which we discussed in Section 5.3.2 in connection with the use of short
trajectories.

5.6 EXACT AND APPROXIMATE LINEAR PROGRAMMING

Another method for exact solution of infinite horizon DP problems is based
on the use of linear programming. In particular, J* can be shown to
be the unique optimal solution of a certain linear program. Focusing
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J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)
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J(1) =

J
∗ =

(

J
∗(1), J∗(2)

)

Figure 5.6.1 A linear program associated with a two-state discounted problem.
The constraint set is shaded, and the objective to maximize is J(1) + J(2). Note
that because we have J(i) ≤ J∗(i) for all i and vectors J in the constraint set,
the vector J∗ maximizes any linear cost function of the form

∑n

i=1
βiJ(i), where

βi ≥ 0 for all i. If βi > 0 for all i, then J∗ is the unique optimal solution of the
corresponding linear program.

on α-discounted problems, the key idea is that J* is the “largest” (on
a component-by-component basis) vector J that satisfies the constraint

J(i) ≤

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, for all i = 1, . . . , n and u ∈ U(i),

(5.57)
so that J*(1), . . . , J*(n) solve the linear program

maximize

n
∑

i=1

J(i)

subject to the constraint (5.57),

(5.58)

(see Fig. 5.6.1). The constraint (5.57) is sometimes called the Bellman

inequality, and is used in a variety of DP contexts besides the framework
of this section.

To verify this, let us use the VI algorithm to generate a sequence of
vectors Jk =

(

Jk(1), . . . , Jk(n)
)

starting with an initial condition vector

J0 =
(

J0(1), . . . , J0(n)
)

such that

J0(i) ≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ0(j)
)

= J1(i), for all i.
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This inequality and the monotonicity property of the Bellman operator can
be used to show that

J0(i) ≤ J1(i) ≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ1(j)
)

= J2(i), for all i,

and similarly

J(i) = J0(i) ≤ Jk(i) ≤ Jk+1(i), for all i and k.

Since Jk(i) converges to J*(i) as k → ∞, it follows that we will also have

J(i) = J0(i) ≤ J*(i), for all i.

Thus out of all J satisfying the constraint (5.57), J* is the largest on a
component-by-component basis.

Unfortunately, for large n the dimension of the linear program (5.58)
can be very large and its solution can be impractical, particularly in the
absence of special structure. In this case, we may consider finding an
approximation to J*, which can be used in turn to obtain a (suboptimal)
policy through approximation in value space.

One possibility is to approximate J*(i) with a linear feature-based
architecture

J̃(i, r) =

m
∑

ℓ=1

rℓφℓ(i),

where r = (r1, . . . , rm) is a vector of parameters, and for each state i, φℓ(i)
are some features. It is then possible to determine r by using J̃(i, r) in
place of J* in the preceding linear programming approach. In particular,
we compute r as the solution of the program

maximize
∑

i∈Ĩ

J̃(i, r)

subject to J̃(i, r) ≤

n
∑

i=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, i ∈ Ĩ , u ∈ Ũ(i),

where Ĩ is either the state space I = {1, . . . , n} or a suitably chosen subset
of I, and Ũ(i) is either U(i) or a suitably chosen subset of U(i). This is a
linear program because J̃(i, r) is assumed linear in the parameter vector r.

The major difficulty with this approximation approach is that while
the dimension of r may be moderate, the number of constraints can be ex-
tremely large. It can be as large as nm, where n is the number of states and
m is the maximum number of elements of the control constraint sets U(i).
Thus for a large problem it is essential to reduce drastically the number of
constraints. Random sampling methods may be used to select a suitable
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subset of the constraints to enforce (perhaps using some known subopti-
mal policies), and progressively enrich the subset as necessary. With such
constraint sampling schemes, the linear programming approach may be
practical even for problems with a very large number of states. Its appli-
cation, however, may require considerable sophistication and computation
(see de Farias and Van Roy [DFV03], [DFV04], [DeF04]).

We finally mention the possibility of using linear programming to
evaluate approximately the cost function Jµ of a stationary policy µ in
the context of approximate PI. The motivation for this is that the linear
program to evaluate µ involves fewer constraints (a single constraint for
each state).

5.7 APPROXIMATION IN POLICY SPACE

We will now consider an alternative to approximation in value space: ap-
proximation within the space of policies, restricting ourselves to α-discoun-
ted problems.† In particular, we parametrize stationary policies with a
parameter vector r and denote them by µ̃(r), with components

µ̃(i, r), i = 1, . . . , n.

The parametrization may involve features and/or a neural network. The
idea is then to optimize some measure of performance with respect to r.
Thus in marked difference to approximation in value space, the point of de-
parture for approximation in policy space is not the DP framework, and the
algorithmic ideas of VI and PI. Instead it is general purpose optimization
methodologies, such as gradient descent and random search.

Note that it is possible for a suboptimal control scheme to employ
both types of approximation: in policy space and in value space, with a
distinct architecture for each case (examples of such schemes have been
discussed briefly in Sections 2.1.5 and 5.3.3). When neural networks are
used, this is known as the simultaneous use of a “policy network” (or “actor
network”) and a “value network” (or “critic network”), each with its own
set of parameters (see e.g., the following discussion on expert training).

Let us provide some examples where policy parametrization is natural
and/or has been successful in practice.

Example 5.7.1: (Supply Chain Parametrization)

There are many problems where the general structure of an optimal or near-
optimal policy is known through analysis or insight into the problem’s struc-

† The SSP case is somewhat more complicated because of the need to focus

on proper policies, i.e., policies that are guaranteed to terminate starting from

all initial states. However, the techniques of Sections 5.7.1 and 5.7.2 apply, with

modest modifications, to finite horizon problems.
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Figure 5.7.1. Illustration of a simple supply chain system.

ture. An important case are supply chain systems involving production, in-
ventory, and retail centers that are connected with transportation links. A
simple example is illustrated in Fig. 5.7.1.

Here a retail center places orders to the production center, depending
on current stock. There may be orders in transit, and stochastic demand and
delays. Such a problem can be formulated by DP but can be very difficult
to solve exactly. However, intuitively, there is a near-optimal policy that has
a simple form: when the retail inventory goes below some critical level r1,
order an amount to bring the inventory to a target level r2. Here the policy
is specified by the parameter vector r = (r1, r2), and can be trained by one of
the methods of this section. This type of approach readily extends to the case
of a complex network of production/retail centers, multiple products, etc.

Example 5.7.2: (PID Control)

A time-honored and very popular scheme for control system design is the PID
(Proportional-Integral-Derivative) controller. It is widely used to maintain
the output of a single-input single-output dynamic system around a set point
(or to follow a sequence of set points). The internal description of the system
is not assumed known, but the error ek between the output and the set point
at time k can be measured; see Fig. 5.7.2.†

The input/control uk applied at time k is the sum of three terms that
depend on the observed errors e0, . . . , ek up to time k. The first term, called
proportional , is rpek where rp is some constant. The second term, called
integral , is

ri

k
∑

m=0

em

(i.e., it is proportional to a running sum of the errors), where ri is another
constant. The third term, called derivative, is rddk, where rd is a third
constant and dk is the most recent error difference,

dk = ek − ek−1,

† Note that PID control by its nature applies to problems with continuous
state and control spaces, and it may not be readily applicable to the discounted
and SSP problems of the present chapter. We discuss it here because it has a
strong connection to the approximation in policy space material of this section,
so it may become the starting point for extensions of the methodology given here.
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y ek = yk − y +uk = rpek + rizk + rddk

Figure 5.7.2. Illustration of PID control for a system with a single control
input uk and a single output yk. The objective is to keep the output near
a “set point” y. The controller observes the error ek = yk − y and applies
control

uk = rpek + rizk + rddk,

where rp, ri, and rd are scalar parameters to be determined, zk is the sum of
all errors up to time k,

zk =

k
∑

m=0

em,

generated by
zk = zk−1 + ek,

and dk is a damped version of the error difference ek − ek−1, generated by

dk = (1 − β)dk−1 + β(ek − ek−1),

where β is a damping factor with 0 < β < 1. A mathematical model of the
system need not be known. The three terms comprising the controller, rpek,
rizk, rddk are the proportional, integral, and derivative terms, respectively.

or a damped version thereof generated by a recursion such as

dk = (1− β)dk−1 + β(ek − ek−1),

where β is damping factor with 0 < β < 1 (this is to mitigate the effects of
noise in the error ek).

The three constants (rp, ri, rd) can be viewed as a parametrization of
the controller, and they can be tuned to achieve good performance (typi-
cally a stable closed-loop system, zero error in steady-state, and satisfactory
transient behavior). The proportional term serves to drive the error towards
0. The integral term guarantees that for a stable closed-loop system, the
error vanishes asymptotically, and among others, is very important to neu-
tralize the effects of nonzero mean disturbances in the system’s dynamics.
The derivative term is often not needed, and when it is, its purpose is mainly
to improve the transient behavior of the closed-loop system by “anticipating”
changes in the error ek.
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Note that, contrary to the MPC controllers discussed in Section 2.5.1,

PID control is a model-free scheme: a mathematical model of the system need
not be known. Moreover a single set of (rp, ri, rd) values may be sufficient to
provide good performance over a wide range of operating conditions for the
system.

There are many variations and extensions of the PID scheme, and many
practical methods for tuning the parameters have been developed over the
years, some of them manual/heuristic; see e.g., the books by Astrom and
Hagglund [AsH95], [AsH06]. The approach of optimizing the parameters
of a controller by using a cost function that encodes the steady-state and
transient system performance is known as extremum seeking control ; see e.g.,
the books by Ariyur and Krstic [ArK03], and by Zhang and Ordonez [ZhO11].
Its application to the PID case is described in several sources; see e.g., the
paper by Killingsworth and Krstic [KiK06]. For recent related work, see
Frihauf, Krstic, and Basar [FKB13], Radenkovic and Krstic [RaK18], and the
references quoted there. Another related optimization-based method that
has been applied to PID control is iterative feedback tuning ; see Lequin et al.
[LGM03], and the references quoted there. Collectively these methods address
reasonably well the tuning of PID-type schemes as applied to problems where
the model parameters change slowly.

Our main purpose in this example is to point out that PID controller
design can also be viewed within the context of approximation in policy space.
This brings to bear the methodology of this section for the purpose of deter-
mining the controller parameters. We note, however, that PID control and
other related schemes are often intended for use in real-time adaptive control
of systems with frequently and unpredictably changing parameters (cf. Sec-
tion 1.3.8). This is a challenging application context that RL methods are
not able to fully address with the current state of the art.

Example 5.7.3: (Policy Parametrization Through Cost
Parametrization)

In an important approach for parametrization of policies we start with a
parametric cost function approximation J̃(j, r). We then define a policy
parametrization through the one-step lookahead minimization

µ̃(i, r) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, (5.59)

where J̃ is a function of a given form that depends on r.† For example, J̃
may be a linear feature-based architecture, with features possibly obtained
through a separately trained neural network. The policies µ̃(r) of Eq. (5.59)
form a class of one-step lookahead policies parametrized by r. We may then
determine r through some form of policy training method if this is convenient.

† The policy parametrization (5.59) may not be differentiable with respect
to r, and this may make it unsuitable for use in some methods that rely on
gradients. In such cases one may approximate the policy µ̃(i, r) of Eq. (5.59) with
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As an illustration, we note that this type of scheme has been used for
learning a high-scoring strategy in the game of tetris; see Szita and Lorinz
[SzL06], and Thiery and Scherrer [ThS09]. The parametrization in policy
space was derived through a feature-based parametrization in value space
(cf. Example 3.1.3). The algorithm used for training was the cross-entropy
method, a random search algorithm to be discussed in Section 5.7.1.

Example 5.7.4: (Policy Parametrization Through Feature
Parametrization)

An interesting special case of policy parametrization is based on state features,
so that µ̃ depends on the state i through some feature vector φ(i), i.e.,

µ̃(i, r) = µ̂
(

φ(i), r
)

,

for some function µ̂. Then to implement the policy, we only need to know φ(i)
rather than i. Moreover, to train the policy with most of the simulation-based
methods of this section, we only need a cost simulator [to generate samples
of Jµ̃(i)], and a feature simulator [to generate feature values φ(i)]. In partic-
ular, we do not need the simulated values of i. An example of feature-based
policy parametrization is provided by the cost parametrization approach of
the preceding example, in the case where the cost function approximation J̃
is based on features.

Another context where feature parametrization may be useful is in par-
tial state information problems (POMDP), where we use as state at a given
time k the entire observation and control history Ik up to k (the information
record considered in Example 3.1.6). When the horizon is infinite, the size of
Ik increases without bound, thus complicating the implementation of meth-
ods based on approximation in policy space. On the other hand, convenient
features for policy parametrization may be obtained from sufficient statistics
of the information record Ik, such as those discussed in Example 3.1.6. Some
possibilities include a partial control-observation history (a subset of Ik), or
some estimate of the state or other “good” features of Ik.

a randomized policy that applies at state i a control u ∈ U(i) with probability

p(u | i, r) =
e−βQ̃(i,u,r)

∑

v∈U(i)
e−βQ̃(i,v,r)

,

where Q̃(i, u, r) is the approximate Q-factor given by

Q̃(i, u, r) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

,

and β is a positive scalar, which controls the accuracy of the approximation. This
is called the soft-min approximation in the literature (or soft-max approximation
in the case of maximization of reward).
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The feature-based policy parametrization approach may also be conve-
nient for rollout algorithms with a base policy that is feature-parametrized
(e.g., a finite history controller for POMDP). It may also be useful in the
context of the rollout-based approximate PI methods to be given later in this
chapter (cf. Section 5.7.3).

Example 5.7.5: (Policy Parametrization, Unconventional
Problem Structures, and Multiagent Problems)

An important point to keep in mind is that approximation in policy space is

a more broadly applicable methodology than approximation in value space. In
particular, policy space approximation is not tied to the cost-to-go formalism
of DP, which is the essential framework for the development of the approxi-
mate VI and PI methodologies. As a result, the idea of policy parametriza-
tion applies to problems that share some structure with the finite and infinite
horizon DP problems we have discussed so far, but do not admit a formal
treatment by DP.

Situations of this type are common in practice. For example, the tran-
sition probabilities between states may depend not just on the control, but
also on preceding transitions. This dependence may be hard to understand
or model mathematically, but may be captured in a simulator that can be
used to implement approximation in policy space.

Another important example is multiagent problems, where there is a
dynamic system whose state evolves in time, and there are multiple decision
makers that do not share the same information about the (collective) system
state. Each agent has access to local observations, and may receive some of
the other agents’ observations (or a summary thereof) with delay: the agent’s
decision at each time is based on just the information available to him/her
at that time. This type of information pattern is unconventional and is not
allowed in the DP context (except through the use of approximations; see,
e.g., [BBD08], [Ber19c], [KMP13], [QuL19], [ZYL18], for related work and
references). Consequently there is no legitimate DP framework and associated
Bellman’s equation for this type of problem, and the VI and PI methods are
not valid anymore. Still, however, while approximation in value space does
not apply, it is possible to parametrize the policies of the agents and set up a
framework for parameter optimization of the type to be described.

In what follows we will discuss three training approaches for approx-
imation in policy space. The first approach (Section 5.7.1) is based on
determining the parameter r by optimization of some measure of cost de-
rived from the given DP problem. The second approach (Section 5.7.2) is
less ambitious and is reminiscent of supervised learning. Here we collect
state-control data produced by a human or software “expert,” and we ob-
tain the parameter r by matching approximately the decision making of the
expert through some least squares error minimization. The third approach
(Section 5.7.3) uses approximation in policy space for policy improvement
within an actor-only PI framework. Here we apply the expert training
approach of Section 5.7.2, with rollout being used as a software expert.
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Figure 5.7.3 The optimization framework for approximation in policy space.
Here policies are parametrized with a parameter vector r and denoted by µ̃(r),
with components µ̃(i, r), i = 1, . . . , n. Each parameter value r determines a policy
µ(r), and a cost Jµ̃(r)(i0) for each initial state i0, as indicated in the figure. The
optimization approach determines r through the minimization

min
r

E
{

Jµ̃(r)(i0)
}

,

where the expected value above is taken with respect to a suitable probability
distribution of i0.

5.7.1 Training by Cost Optimization - Policy Gradient, Cross-
              Entropy, and Random Search Methods

In this section we discuss a major training approach for approximation
in policy space. It is based on controller parameter optimization: we
parametrize the policies by a vector r, and we optimize the corresponding
expected cost over r. In particular, we determine r through the minimiza-
tion

min
r

E
{

Jµ̃(r)(i0)
}

, (5.60)

where Jµ̃(r)(i0) is the cost of the policy µ̃(r) starting from the initial state i0,
and the expected value above is taken with respect to a suitable probability
distribution of the initial state i0 (cf. Fig. 5.7.3).

Note that in the case where the initial state i0 is known and fixed,
the method involves just minimization of Jµ̃(r)(i0) over r. This simplifies a
great deal the minimization, particularly when the problem is deterministic.

Gradient Methods for Cost Optimization

Let us first consider methods that perform the minimization (5.60) by
using a gradient method, and for simplicity let us assume that the initial
condition i0 is known. Thus the aim is to minimize Jµ̃(r)(i0) over r by
using the gradient method

rk+1 = rk − γk∇Jµ̃(rk)(i0), k = 0, 1, . . . , (5.61)



Sec. 5.7 Approximation in Policy Space 277

assuming that Jµ̃(r)(i0) is differentiable with respect to r. Here γk is a
positive stepsize parameter, and ∇(·) denotes gradient with respect to r
evaluated at the current iterate rk.

The difficulty with this method is that the gradients ∇Jµ̃(rk)(i0) may
not be explicitly available. In this case, the gradients can be approximated
by finite differences of cost function values Jµ̃(rk)(i0). Unfortunately, when
the problem is stochastic, the cost function values may be computable
only through Monte Carlo simulation. This may introduce a large amount
of noise, so it is likely that many samples will need to be averaged in
order to obtain sufficiently accurate gradients, thereby making the method
inefficient. On the other hand, when the problem is deterministic, this
difficulty does not appear, and the use of the gradient method (5.61) or
other methods that do not rely on the use of gradients (such as coordinate
descent) is facilitated.

In this section we will focus on alternative and typically more effi-
cient gradient-like methods for stochastic problems, which are based on
sampling. Some popular methods of this type are based on incremental
gradient ideas (cf. Section 3.1.3) and the use of randomized policies [i.e.,
policies that map a state i to a probability distribution over the set of con-
trols U(i), rather than mapping onto a single control].† We discuss these
gradient-like methods next.

Incremental Gradient Methods Based on Randomization

To get a sense of the general principle underlying the incremental gradient
approach that uses randomization and sampling, let us digress from the
DP context of this chapter, and consider the generic optimization problem

min
z∈Z

F (z), (5.62)

where Z is a subset of the m-dimensional space ℜm, and F is some real-
valued function over ℜm.

We will take the unusual step of converting this problem to the
stochastic optimization problem

min
p∈PZ

Ep

{

F (z)
}

, (5.63)

† The AlphaGo and AlphaZero programs (Silver et al. [SHM16], [SHS17])

also use randomized policies, and a policy adjustment scheme that involves in-

cremental changes along “directions of improvement.” However, these changes

are implemented through the MCTS algorithm used by these programs, without

the explicit use of a gradient (see the discussion in Section 2.4.2). Thus it may

be said that the AlphaGo and AlphaZero programs involve a form of approxi-

mation in policy space (as well as approximation in value space), which bears

resemblance but cannot be classified as a policy gradient method.
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where z is viewed as a random variable, PZ is the set of probability dis-
tributions over Z, p denotes the generic distribution in PZ , and Ep{·} de-
notes expected value with respect to p. Of course this enlarges the search
space from Z to PZ , but it enhances the use of randomization schemes
and simulation-based methods, even if the original problem is determinis-
tic. Moreover, the stochastic optimization problem (5.63) may have some
nice differentiability properties that are lacking in the original deterministic
version (5.62); see the paper [Ber73] for an analysis of this differentiability
issue under convexity assumptions on F .

At this point it is not clear how the stochastic optimization problem
(5.63) relates to our stochastic DP context of this chapter. We will return
to this question later, but for the purpose of orientation, we note that to
obtain a problem of the form (5.63), we must take another unusual step:
enlarge the set of policies to include randomized policies , mapping a state
i into a probability distribution over the set of controls U(i).

Suppose now that we restrict attention to a subset P̃Z ⊂ PZ of prob-
ability distributions p(z; r) that are parametrized by some continuous pa-
rameter r, e.g., a finite-dimensional vector in some Euclidean space.† In
other words, we approximate the stochastic optimization problem (5.63)
with the restricted problem

min
r

Ep(z;r)

{

F (z)
}

.

Then we may use a gradient method for solving this problem, such as

rk+1 = rk − γk∇
(

Ep(z;rk)

{

F (z)
}

)

, k = 0, 1, . . . , (5.64)

where∇(·) denotes gradient with respect to r of the function in parentheses,
evaluated at the current iterate rk.

Likelihood-Ratio Policy Gradient Methods

We will first consider an incremental version of the gradient method (5.64).
This method requires that p(z; r) is differentiable with respect to r. It relies
on a convenient gradient formula, sometimes referred to as the log-likelihood
trick , which involves the natural logarithm of the sampling distribution.

This formula is obtained by the following calculation, which is based
on interchanging gradient and expected value, and using the gradient for-
mula ∇(log p) = ∇p/p. We have

∇
(

Ep(z;r)

{

F (z)
}

)

= ∇

(

∑

z∈Z

p(z; r)F (z)

)

† To be on safe mathematical ground, we assume that p(z; r) is a discrete

distribution in what follows in this section.
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=
∑

z∈Z

∇p(z; r)F (z)

=
∑

z∈Z

p(z; r)
∇p(z; r)

p(z; r)
F (z)

=
∑

z∈Z

p(z; r)∇
(

log
(

p(z; r)
)

)

F (z),

and finally

∇
(

Ep(z;r)

{

F (z)
}

)

= Ep(z;r)

{

∇
(

log
(

p(z; r)
)

)

F (z)

}

, (5.65)

where for any given z, ∇
(

log
(

p(z; r)
)

)

is the gradient with respect to r of

the function log
(

p(z; ·)
)

, evaluated at r (the gradient is assumed to exist).
The preceding formula suggests an incremental implementation of

the gradient iteration (5.64) that approximates the expected value in the
right side in Eq. (5.65) with a single sample (cf. Section 1.3). The typical
iteration of this method is as follows.

Sample-Based Gradient Method for Parametric Approxima-
tion of minz∈Z F (z)

Let rk be the current parameter vector.

(a) Obtain a sample zk according to the distribution p(z; rk).

(b) Compute the gradient ∇
(

log
(

p(zk; rk)
)

)

.

(c) Iterate according to

rk+1 = rk − γk∇
(

log
(

p(zk; rk)
)

)

F (zk). (5.66)

The advantage of the preceding sample-based method is its simplic-
ity and generality. It allows the use of parametric approximation for any

minimization problem (well beyond DP), as long as the logarithm of the
sampling distribution p(z; r) can be conveniently differentiated with respect
to r, and samples of z can be obtained using the distribution p(z; r).

Note that in iteration (5.66) r is adjusted along a random direction.
This direction does not involve at all the gradient of F , only the gradient
of the logarithm of the sampling distribution! As a result the iteration has
a model-free character : we don’t need to know the form of the function F
as long as we have a simulator that produces the cost function value F (z)
for any given z. This is also a major advantage offered by many random
search methods.
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An important issue is the efficient computation of the sampled gra-
dient ∇

(

log
(

p(zk; rk)
))

. In the context of DP, including the SSP and dis-
counted problems that we have been dealing with, there are some special-
ized procedures and corresponding parametrizations to approximate this
gradient conveniently. The following is an example.

Example 5.7.6 (Policy Gradient Method for Discounted DP)

Consider the α-discounted problem and denote by z the infinite horizon state-
control trajectory:

z = {i0, u0, i1, u1, . . .}.

We consider a parametrization of randomized policies with parameter r, so
the control at state i is generated according to a distribution p(u | i; r) over
U(i). Then for a given r, the state-control trajectory z is a random vector
with probability distribution denoted p(z; r). The cost corresponding to the
trajectory z is

F (z) =

∞
∑

m=0

αmg(im, um, im+1), (5.67)

and the problem is to minimize over r

Ep(z;r)

{

F (z)
}

.

To apply the sample-based gradient method (5.66), given the current
iterate rk, we must generate the sample state-control trajectory zk, according
to the distribution p(z; rk), compute the corresponding cost F (zk), and also
calculate the gradient

∇
(

log
(

p(zk; rk)
)

)

. (5.68)

Let us assume that the logarithm of the randomized policy distribution p(u |
i; r) is differentiable with respect to r (a soft-min policy parametrization is of-
ten recommended for this purpose). Then the logarithm that is differentiated
in Eq. (5.68) can be written as

log
(

p(zk; rk)
)

= log

∞
∏

m=0

pimim+1(um)p(um | im; rk)

=

∞
∑

m=0

log
(

pimim+1(um)
)

+

∞
∑

m=0

log
(

p(um | im; rk)
)

,

and its gradient (5.68), which is needed in the iteration (5.66), is given by

∇
(

log
(

p(zk; rk)
)

)

=

∞
∑

m=0

∇
(

log
(

p(um | im; rk)
)

)

. (5.69)

This gradient involves the current randomized policy, but does not involve
the transition probabilities and the costs per stage.
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The policy gradient method (5.66) can now be implemented with a
finite horizon approximation whereby rk is changed after a finite number N
of time steps [so the infinite cost and gradient sums (5.67) and (5.69) are
replaced by finite sums]. The method takes the form

rk+1 = rk − γk

N−1
∑

m=0

∇ log
(

p(um | im; rk)
)

FN(zkN ),

where zkN = (i0, u0, . . . , iN−1, uN−1) is the generated N-step trajectory, and
FN(zkN ) is the corresponding cost. The initial state i0 of the trajectory is
chosen randomly, with due regard to exploration issues.

Policy gradient methods for other types of DP problems can be sim-
ilarly developed, as well as variations involving a combination of policy
and cost function approximations [e.g., replacing F (z) of Eq. (5.67) by
a parametrized estimate that has smaller variance]. Cost shaping is also
useful in this connection (cf. Section 5.3.4). This leads to a class of actor-
critic methods that differ from the PI-type methods that we discussed in
Section 5.3.1. A further discussion is beyond our scope, and we refer to the
end-of-chapter literature for a variety of specific schemes.

Implementation Issues

There are several issues to consider in the implementation of the sample-
based gradient method (5.66). The first of these is that the problem solved
is a randomized version of the original. If the method produces a parameter
r in the limit and the distribution p(z; r) is not atomic (i.e., it is not
concentrated at a single point), then a solution z ∈ Z must be extracted
from p(z; r). In the SSP and discounted problems of this chapter, the subset
P̃Z of parametric distributions typically contains the atomic distributions,
while it can be shown that minimization over the set of all distributions
PZ produces the same optimal value as minimization over Z (the use of
randomized policies does not improve the optimal cost of the problem), so
this difficulty does not arise.

Another issue is how to collect the samples zk. Different methods
must strike a balance between convenient implementation and a reasonable
guarantee that the search space Z is sufficiently well explored.

Finally, there is the issue of improving sampling efficiency. To this
end, let us note a simple generalization of the gradient method (5.66), which
can often improve its performance. It is based on the gradient formula

∇
(

Ep(z;r)

{

F (z)
}

)

= Ep(z;r)

{

∇
(

log
(

p(z; r)
)

)

(

F (z)− b
)

}

, (5.70)

where b is any scalar. This formula generalizes Eq. (5.65), where b = 0,
and holds in view of the following calculation, which shows that the term
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multiplying b in Eq. (5.70) is equal to 0:

Ep(z;r)

{

∇
(

log
(

p(z; r)
)

)

}

= Ep(z;r)

{

∇p(z; r)

p(z; r)

}

=
∑

z∈Z

p(z; r)
∇p(z; r)

p(z; r)

=
∑

z∈Z

∇p(z; r) = ∇

(

∑

z∈Z

p(z; r)

)

= 0,

where the last equality holds because
∑

z∈Z p(z; r) is identically equal to 1
and hence does not depend on r.

Based on the gradient formula (5.70), we can modify the iteration
(5.66) to read as follows:

rk+1 = rk − γk∇
(

log
(

p(zk; rk)
)

)

(

F (zk)− b
)

, (5.71)

where b is some fixed scalar, called the baseline. Whereas the choice of b

does not affect the gradient ∇
(

Ep(z;r)

{

F (z)
}

)

[cf. Eq. (5.70)], it affects

the incremental gradient

∇
(

log
(

p(zk; rk)
)

)

(

F (zk)− b
)

,

which is used in Eq. (5.71). Thus, by optimizing the baseline b, empiri-
cally or through a calculation (see e.g., [DNP11]), we can improve the per-
formance of the algorithm. Moreover, for discounted and SSP problems,
state-dependent baseline functions may be used, whereby F (z) is replaced
in Eq. (5.67) by F (z) + V (i0), where V (i0) is a suitably obtained estimate
of F (z) or J*(i0) (cf. the idea of cost shaping of Sections 4.2 and 5.3.4).

Random Direction Methods

We will now consider an alternative class of incremental versions of the
policy gradient method (5.64), repeated here for convenience:

rk+1 = rk − γk∇
(

Ep(z;rk)

{

F (z)
}

)

, k = 0, 1, . . . . (5.72)

These methods are based on the use of a random search direction and only
two sample function values per iteration. They are generally faster than
methods that use a finite difference approximation of the entire cost func-
tion gradient; see the book by Spall [Spa03] for a detailed discussion, and
the paper by Nesterov and Spokoiny [NeS17] for a more theoretical view.
Moreover they do not require the derivative of the sampling distribution
or its logarithm.
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Figure 5.7.4 The distribution p(z; r) used in the gradient iteration (5.73).

We first consider the case where z and r are scalars, and later discuss
the multidimensional case. As earlier, to avoid mathematical complica-
tions, we assume that p(z; r) is a discrete distribution; the development is
similar for more general distributions. In particular, we assume that p(z; r)
is symmetric and is concentrated with probabilities pi at the points r + ǫi
and r− ǫi, where ǫ1, . . . , ǫm are some small positive scalars. Thus we have

Ep(z;r)

{

F (z)
}

=

m
∑

i=1

pi
(

F (r + ǫi) + F (r − ǫi)
)

,

and

∇
(

Ep(z;r)

{

F (z)
}

)

=

m
∑

i=1

pi
(

∇F (r + ǫi) +∇F (r − ǫi)
)

.

The gradient iteration (5.72) becomes

rk+1 = rk − γk

m
∑

i=1

pi
(

∇F (r + ǫi) +∇F (r − ǫi)
)

, k = 0, 1, . . . . (5.73)

Let us now consider approximation of the gradient by finite differ-
ences:

∇F (r + ǫi) ≈
F (r + ǫi)− F (r)

ǫi
, ∇F (r − ǫi) ≈

F (r) − F (r − ǫi)

ǫi
.

We approximate the gradient iteration (5.73) by

rk+1 = rk − γk

m
∑

i=1

pi
F (rk + ǫi)− F (rk − ǫi)

ǫi
, k = 0, 1, . . . . (5.74)

One possible sample-based/incremental version of this iteration is

rk+1 = rk − γk
F (rk + ǫik)− F (rk − ǫik )

ǫik
, (5.75)
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where ik is an index generated with probabilities that are proportional to
pik . This algorithm uses one out of the m terms of the gradient in Eq.
(5.74).

The extension to the case, where z and r are multidimensional, is
straightforward. Here p(z; r) is a probability distribution, whereby z takes
values of the form r + ǫd, where d is a random vector that lies on the
surface of the unit sphere, and ǫ (independently of d) takes scalar values
according to a distribution that is symmetric around 0. The idea is that at
rk, we first choose randomly a direction dk on the surface of the unit sphere,
and then change rk along dk or along −dk, depending on the sign of the
corresponding directional derivative. For a finite difference approximation
of this iteration, we sample zk along the line {rk+ ǫdk | ǫ ∈ ℜ}, and similar
to the iteration (5.75), we set

rk+1 = rk − γk
F (rk + ǫkdk)− F (rk − ǫkdk)

ǫk
dk, (5.76)

where ǫk is the sampled value of ǫ.
Let us also discuss the case where p(z; r) is a discrete but nonsym-

metric distribution, i.e., z takes values of the form r + ǫd, where d is a
random vector that lies on the surface of the unit sphere, and ǫ is a zero
mean scalar. Then the analog of iteration (5.76) is

rk+1 = rk − γk
F (rk + ǫkdk)− F (rk)

ǫk
dk, (5.77)

where ǫk is the sampled value of ǫ. Thus in this case, we still require two
function values per iteration. Generally, for a symmetric sampling distri-
bution, iteration (5.76) tends to be more accurate than iteration (5.77),
and is often preferred.

Algorithms of the form (5.76) and (5.77) are known as random direc-

tion methods . They use only two cost function values per iteration, and
a direction dk that need not be related to the gradient of F in any way.
There is some freedom in selecting dk, which could potentially be exploited
in specific schemes. However, selecting the stepsize γk and the sampling
distribution for ǫ can be tricky, particularly when the values of F are noisy.

Random Search and Cross-Entropy Methods

The main drawback of the policy gradient methods that we have considered
in this section is potential unreliability due to the stochastic uncertainty
corrupting the calculation of the gradients, the slow convergence that is
typical of gradient methods in many settings, and the presence of local
minima. For this reason, methods based on random search have been con-
sidered as potentially more reliable alternatives. Viewed from a high level,
random search methods are similar to policy gradient methods in that they
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Ek

Ek+1

rk+1

rk

Figure 5.7.5 Schematic illustration of the cross-entropy method. At the current
iterate rk, we construct an ellipsoid Ek centered at rk. We generate a number of
random samples within Ek, and we “accept” a subset of the samples that have
“low” cost. We then choose rk+1 to be the sample mean of the accepted samples,
and construct a sample “covariance” matrix of the accepted samples. We then
form the new ellipsoid Ek+1 using this matrix and a suitably enlarged radius, and
continue. Notice the resemblance with a policy gradient method: we move from
rk to rk+1 in a direction of cost improvement.

aim at iterative cost improvement through sampling. However, they need
not involve randomized policies, they are not subject to cost differentiabil-
ity restrictions, and they offer some global convergence guarantees, so in
principle they are not affected much by local minima.

Let us consider a parametric policy optimization approach based on
solving the problem

min
r

E
{

Jµ̃(r)(i0)
}

,

cf. Eq. (5.60). Random search methods for this problem explore the space of
the parameter vector r in some randomized but intelligent fashion. There
are several types of such methods for general optimization, and some of
them have been suggested for approximate DP. We will briefly describe the
cross-entropy method , which has gained considerable attention.

The method, when adapted to the approximate DP context, bears
resemblance to policy gradient methods, in that it generates a parameter
sequence {rk} by changing rk to rk+1 along a direction of “improvement.”
This direction is obtained by using the policy µ̃(rk) to generate randomly
cost samples corresponding to a set of sample parameter values that are
concentrated around rk. The current set of sample parameters are then
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screened: some are accepted and the rest are rejected, based on a cost
improvement criterion. Then rk+1 is determined as a “central point” or as
the “sample mean” in the set of accepted sample parameters, some more
samples are generated randomly around rk+1, and the process is repeated;
see Fig. 5.7.5. Thus successive iterates rk are “central points” of succes-
sively better groups of samples, so in some broad sense, the random sample
generation process is guided by cost improvement. This idea is shared with
evolutionary programming; see e.g., the books [Bac96], [DeJ06].

The cross-entropy method is very simple to implement, does not suf-
fer from the fragility of gradient-based optimization, does not involve ran-
domized policies, and relies on some supportive theory. Importantly, the
method does not require the calculation of gradients, and it does not re-
quire differentiability of the cost function. Moreover, it does not need a
model to compute the required costs of different policies; a simulator is
sufficient.

Like all random search methods, the convergence rate guarantees of
the cross-entropy method are limited, and its success depends on domain-
specific insights and the skilled use of heuristics. However, the method
relies on solid ideas and has gained a favorable reputation. In particular,
it was used with impressive success in the context of the game of tetris;
see Szita and Lorinz [SzL06], and Thiery and Scherrer [ThS09]. There
have also been reports of domain-specific successes with alternative but
related random search methods; see Salimans et al. [SHC17]. We refer to
the end-of-chapter literature for details and examples of implementation.

5.7.2 Expert-Based Supervised Learning

According to the second approach for approximation in policy space, we
choose the parameter r by “training” on a large number of sample state-
control pairs (is, us), s = 1, . . . , q, such that for each s, us is a “good”
control at state is. This can be done for example by solving the least
squares problem†

min
r

q
∑

s=1

∥

∥us − µ̃(is, r)
∥

∥

2
(5.78)

(possibly with added regularization). In particular, we may determine us

by a human or a software “expert” that can choose “near-optimal” controls
at given states, so µ̃ is trained to match the behavior of the expert. We
have also discussed this approach in Section 2.4.3, in the context of finite
horizon problems, and in Section 3.5 in the context of classification methods

† It is implicitly assumed here (and in similar situations later) that the con-

trols are members of a Euclidean space so that the distance between two controls

can be measured by their normed difference.
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for approximation in policy space. In the context of artificial intelligence,
it comes within the framework of supervised learning methods.†

Another possibility, which we have already discussed in various forms,
is to select a large number of sample states is, s = 1, . . . , q, and generate
the controls us, s = 1, . . . , q, through the one-step lookahead minimization

us = arg min
u∈U(is)

n
∑

j=1

pij(u)
(

g(is, u, j) + αJ̃(j)
)

, (5.79)

where J̃ is a suitable one-step lookahead function (multistep lookahead
can also be used). Similarly, once a parametric Q-factor approximation
architecture Q̃(i, u, r) is chosen, we can select a large number of sample
states is, s = 1, . . . , q, and then compute the controls us, s = 1, . . . , q,
through the one-step lookahead minimization

us = arg min
u∈U(is)

Q̃(is, u, r). (5.80)

In this case, we will be collecting sample state-control pairs (is, us), s =
1, . . . , q, using approximation in value space through Eq. (5.79) or Eq.
(5.80), and then applying approximation in policy space through Eq. (5.78).

Note that once the sample state-control pairs (is, us), s = 1, . . . , q,
have been collected, an alternative to solving the least squares problem
(5.78) is to use interpolation (rather than parametric approximation). By
this we mean to specify for each i /∈ {i1, . . . , is} a probability distribution
{φi1, . . . , φis}, and to use the policy µ̃ defined by

µ̃(i) =

q
∑

s=1

φisus, i = 1, . . . , n. (5.81)

In general, this requires that the control constraint set is a convex subset of
a Euclidean space so that the interpolated controls (5.81) are feasible. This
is not necessary if all the interpolation probabilities φis are either 0 or 1 (an
example in the nearest neighbor approach, where for a given state i, we set
φis̄ = 1 for the state is̄ that is “closest” to i in some sense). Interpolation
approaches are central to the aggregation methodology of Chapter 6, and
will be discussed in greater detail there.

† Tesauro [Tes89a], [Tes89b] constructed a backgammon player, trained by

a neural network and a supervised learning approach (called “comparison train-

ing”), which used examples from human expert play (he was the expert who

provided the training samples). However, his subsequent TD-based algorithm

[Tes92], [Tes94], [Tes95], performed substantially better, and his rollout-based

algorithm [TeG96] performed even better. The Deepchess program by David,

Netanyahu, and Wolf [DNW16] provides another example of an expert-based

supervised training approach.
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Of course in the expert training approach we cannot expect to obtain
a policy that performs better than the expert with which it is trained, in
the case of Eq. (5.78), or the one-step lookahead policy that is based on
the approximation J̃ or Q̃, in the case of Eq. (5.79) or Eq. (5.80), respec-
tively. However, a major advantage is that once the parametrized policy
is obtained, its on-line implementation is fast and does not involve exten-
sive calculations such as minimizations of the form (5.79). This advantage
is generally shared by schemes that are based on approximation in pol-
icy space. Moreover the policy obtained by emulating the expert can be
improved through rollout.

5.7.3 Approximate Policy Iteration, Rollout, and
               Approximation in Policy Space

In this section we revisit approximate PI, but with a view towards com-
bining it with rollout and approximation in policy space. We describe how
approximation in policy space can provide the basis for an alternative PI
implementation, namely approximate the generated policies directly instead

of approximating their cost functions or Q-factors . This is an actor-only

method, as opposed to the approximate PI methods of Sections 5.3.2 and
5.3.3, which involve a critic component.

In particular, the approximate PI methods given in Sections 5.3.2 and
5.3.3 use approximate policy evaluation (approximation in value space to
represent the cost function or Q-factors of the current policy) followed by
fairly exact policy improvement through one-step or multistep lookahead.
By contrast, the methods described in this section use fairly exact policy
evaluation through the use of rollout for a sample set of states, followed
by approximate policy improvement [representation of the improved (or
rollout) policy using a policy architecture]. The idea is to view the PI
algorithm as a perpetual rollout process , which uses at any one time one out
of a parametrized collection of base policies, and occasionally “improves”
the base policy using the rollout results and approximation in policy space.

As an example, let us consider a PI algorithm where at the typical
iteration we have a policy µ, which we use as the base policy for generating
by (possibly truncated) rollout many state-control sample pairs (is, us),
s = 1, . . . , q (cf. the rollout algorithm of Section 5.1.2).† We then obtain
an “improved” policy µ̃(i, r), using an approximation architecture (such

† The approximation of the rollout policy using state control samples is sub-

ject to exploration issues, i.e., the choice of states starting from which we generate

rollout trajectories with a given base policy. In particular, it is important to in-

clude in the sample set of initial states is, s = 1, . . . , q, a subset of states that

are “favored” by the rollout trajectories; e.g., start from some initial subset of

states is and selectively add to this subset states that are encountered along the

rollout trajectories.
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Policy Improvement by Rollout

Policy Improvement by Rollout

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy

Initial Base Policy

Initial Base Policy Generate (State-Rollout Control) Samples Using Current Base Policy

Initial Base Policy Generate (State-Rollout Control) Samples Using Current Base Policy
Initial Base Policy Generate (State-Rollout Control) Samples Using Current Base Policy

Approximate the Rollout Policy in Policy Space

Approximate the Rollout Policy in Policy Space and Use as New Base Policy

Approximate the Rollout Policy in Policy Space and Use as New Base Policy

Figure 5.7.6 Block diagram of approximate PI based on policy improvement
by rollout and policy approximation in policy space. Here the policy evalua-
tion and policy improvement processes may be exact, but the implementation of
the “improved” policy is approximate, using approximation in policy space and
regression.

as a neural network), where the parameter r is obtained from the least
squares/regression minimization

r ∈ argmin
r

q
∑

s=1

∥

∥us − µ̃(is, r)
∥

∥

2
(5.82)

(possibly with added regularization); see Fig. 5.7.6. The “improved” policy
µ̃(i, r) is then used as a base policy to generate samples of the correspond-
ing rollout policy, which is then approximated in policy space, etc. This
is similar to the expert training approach of Section 5.7.2 [cf. Eq. (5.78)];
we just use the rollout policy as the “expert” and emulate its decisions us-
ing sampling and supervised learning. The training problem (5.82) relates
to the ones solved in classification problems (often with the use of neural
networks or other architectures), and can be addressed with similar algo-
rithms: the parameter r defines a classifier, which given a state i, classifies
i as requiring control µ̃(i, r); cf. Section 3.5.†

Among notable characteristics of the scheme just described, we men-
tion the substantial computation required to generate the rollout policy
sample pairs (is, us), s = 1, . . . , q, particularly for a stochastic problem.
This PI process must be performed off-line. However, it can take advan-
tage of parallelization and a partitioned architecture, whereby the state

† A simpler alternative to parametric approximation and the least squares

minimization (5.82) is the interpolation scheme (5.81).
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space is appropriately divided into subsets, and the rollout policy is ap-
proximated separately within each subset. The scheme shares the common
advantage of policy space approximation: it yields in the end a policy that
can be easily implemented on-line, without the need for one-step or multi-
step lookahead minimization. Alternatively, once the final policy has been
obtained off-line, it can be used on-line as a base policy for generation of
rollout controls, thus allowing on-line replanning.

Favorable Special Cases - Linear Quadratic Optimal Control
Without a Mathematical Model

The approximate PI scheme of this section can actually produce an optimal

policy in some interesting special cases. In particular, let M be the set of
policies µ that can be represented by the approximation architecture, i.e.,
have the form µ = µ̃(r) for some parameter vector r. Suppose that M
has the property that if a policy that belongs to M is used as a base
policy, then the corresponding rollout policy also belongs to M (i.e., exact
policy improvement produces a policy in M). Then it can be seen that
the algorithm of this section, starting with a policy within M and using
a large number of samples q for the least squares minimization (5.82) (so
that the rollout policy is the same as the one produced by exact policy
improvement) produces a sequence of policies in M, which is essentially
the same sequence as the one produced by the exact PI algorithm.

It follows that in this favorable case, the algorithm of this section
inherits the convergence properties of exact PI, without requiring a math-
ematical model; a simulator of the system is sufficient. This supports the
conjecture that if the set M “nearly contains” the policies produced by
exact PI, then the policies generated by the approximate PI scheme of this
section generates a sequence of policies whose performance oscillates at
near optimal levels.

An important special case is when the system is linear, the cost func-
tion is infinite horizon-discounted quadratic, and M is the class of control
laws that consist of a linear function of the state (so perfect state infor-
mation is assumed). It can then be shown (under mild assumptions, cf.
[Ber12], Section 4.2) that the optimal policy belongs to M.† Moreover, ex-
act PI, starting from a policy in M, generates policies within M and con-
verges to an optimal policy. Thus the scheme of this section also converges
to an optimal policy for this choice of M, and works without requiring a
model of the system.

† We have not discussed in this book infinite horizon problems with continu-

ous state and control spaces. While such problems can be challenging in general,

the linear quadratic case is well behaved, and is supported by a solid VI and PI

methodology; see e.g., [Ber12], [Ber17]. In our discussion here, we simply quote

results from this methodology without a proof elaboration.
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Rollout and Approximate PI for POMDP

We will now discuss the application of the rollout-based approximate PI
algorithm to the partially observable version of the α-discounted problem.
Here at each stage, instead of observing the current state, we obtain an
observation z with probabilities p(z | j, u), where j is the current state, and
u is the preceding control. We assume that at each stage, the belief state
b =

(

b(1), . . . , b(n)
)

is available, where b(i) is the conditional probability
that the state is i, given the past history, and that we can also compute
B(b, u, z), the next belief state, given that the current belief state is b, the
control applied at b is u, and that the next measurement is z. We can view
B(b, u, z) as a belief state generator . Finally, we assume that the initial
base policy and all the base policies generated by the policy space scheme
(5.82) are functions of b.

Let us consider the computation of the rollout control µ̃(b) at some
fixed b, using the truncated rollout algorithm, with µ being the current base
policy (some function of the belief state), and J̃ being some cost function
approximation. This rollout control is given by

µ̃(b) ∈ argmin
u∈U

n
∑

i=1

b(i)F̃µ(i, b, u), (5.83)

where F̃µ(i, b, u) can be viewed as an approximate Q-factor, obtained by
starting from state i, applying control u, then applying the policy µ for some
number m of stages, and finally approximating the cost of the remaining
stages using the function J̃ . [A multistep lookahead version of Eq. (5.83)
is also possible.] For given values of b and u, the expression minimized in
Eq. (5.83) can be approximated by simulation. Here is a possibility, which
involves simultaneous simulation of the states of the original system, as well

as the belief states obtained by the belief state generator ; the corresponding
simulator is illustrated in Fig. 5.7.7.

The state space is sampled according to the distribution b to obtain
a dataset of states I = {im | m = 1, . . . ,M} (if n is relatively small, we
can take I = {1, . . . , n}). Then for each state in the dataset, say im, and
each control u ∈ U , we do the following: We obtain the next state j1
according to the transition probabilities pimj(u), and we record the cost
g(im, u, j1). Then we obtain a random observation sample z1 according
to p(z1 | j1, u), and compute the next belief state b1 = B(b, u, z1) [which
allows us to compute the next control µ(b1) for the next simulation step].
In a similar manner, we run a simulation trajectory starting from j1 for m
stages, using policy µ, while obtaining a sequence of m successive control-
next state-observation-belief state quadruplets

(

µ(b1), j2, z2, b2
)

, . . . ,
(

µ(bm), jm+1, zm+1, bm+1

)

;
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Figure 5.7.7 Block diagram of simultaneous simulation of the states of the orig-
inal system, and the belief states obtained by the belief state generator, under a
base policy µ(b).

cf. Fig. 5.7.7. Simultaneously, we obtain the corresponding sum of stage
costs plus the terminal (approximate) cost

g(im, u, j1)+αg
(

j1, µ(b1), j2
)

+· · ·+αmg
(

jm, µ(bm), jm+1

)

+αm+1J̃(bm+1).

In this way we obtain a single sample of F̃µ(im, b, u) that corresponds to
the state-control pair (im, u).

By averaging many such random samples for every state im ∈ I, we
compute an estimate of

∑n
i=1 b(i)F̃µ(i, b, u) for each u ∈ U . By minimizing

this estimate over u, we obtain the rollout control µ̃(b) at b; cf. Eq. (5.83).
After collecting q such sample belief-rollout control pairs

(

bs, µ̃(bs)
)

, s =
1, . . . , q, we can generate a new base policy by using approximation in
policy space [cf. Eq. (5.82)]. The computations are similar to the perfect
state information case, except that obtaining each belief-rollout control pair
through the minimization of Eq. (5.83) requires one additional operation:
sampling the state space using the current belief state b and carrying out
the computations for each pair (im, u) with im ∈ I and u ∈ U , rather
than a single state-control pair. Still, a lot more computation may be
needed relative to the perfect state information case, depending on the
number of states i such that b(i) > 0. This argues for small lengths of
lookahead minimization and rollout, and greater emphasis on the terminal
cost function approximation J̃ .

Variations

There are many variations of the actor-only approximate PI scheme of this
section. Basically, all the variants of rollout (multistep lookahead, roll-
out truncation, and terminal cost function approximation) are applicable.
Moreover, optimistic variants of PI can be used, whereby only a small num-
ber of samples q are generated between changes in the parameter vector
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and the attendant change of base policy. To implement such an optimistic
variant, one may use an incremental gradient or Newton method (cf. Sec-
tion 3.1.3) to solve the regression minimization (5.82) while adding new
terms to the least squares sum as new samples (is, us) become available,
with us being the control obtained with the current policy (the one that
corresponds to the current value of r). Naturally, as in all approximate PI
methods, exploration is an important issue to address, using a judicious
choice of the sampled states is.

Here is an example of an extreme case of optimistic incremental
gradient-type algorithm, where the parameter r is updated after each sam-
ple of state control pair (is, us) is obtained. The algorithm parallels the
SARSA Q-learning algorithm given in Section 5.4.1.

At the start of iteration k, we have the current parameter vector rk,
and the corresponding policy µk = µ̃(·, rk). Then:

(1) We select a state ik (with due regard to exploration).

(2) We compute the rollout control uk at ik, using µk = µ̃(·, rk) as base
policy, i.e.,

uk ∈ arg min
u∈U(ik)

n
∑

j=1

pikj(u)
(

g(ik, u, j) + αJµk (j)
)

.

(3) We update the parameter vector via

rk+1 = rk − γk∇µ̃(ik, rk)
(

µ̃(ik, rk)− uk
)

,

where γk is a positive stepsize, and ∇µ̃(ik, rk) denotes the gradient
matrix of µ̃(ik, ·) evaluated at the current parameter vector rk.

As in the case of SARSA, there are also less optimistic variants of the
preceding algorithm, whereby several states and their rollout controls are
computed before updating the parameter vector r.

5.8 NOTES AND SOURCES

Section 5.1: The performance bound of Props. 5.1.1 for multistep looka-
head with a terminal cost function approximation is well known; see e.g.,
Prop. 6.1.1 in the author’s DP textbook [Ber17] (and earlier editions), as
well as [Ber18a], Section 2.2. The bound of Prop. 5.1.3 for multistep looka-
head, truncated rollout, and terminal cost function approximation is new.

The bounds of Section 5.1.3 for approximate PI were first given in the
neuro-dynamic book by Bertsekas and Tsitsiklis [BeT96], Sections 6.2.2 and
6.2.3, for both discounted and SSP problems. These bounds, together with
related bounds for approximate optimistic PI, due to Thiery and Scher-
rer [ThS10], are quite fundamental. While they are often conservative,
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they correctly describe the qualitative behavior of approximate PI and its
variations, and they differentiate the behavior of these methods from their
VI counterparts, which are generally unstable in the absence of a suitable
sampling policy (cf. Example 5.2.1). Extensions of these bounds to approx-
imate PI for general spaces abstract DP problems under contraction and
monotonicity assumptions can be found in the author’s abstract DP book
[Ber18a], Sections 2.4.1 and 2.5.2.

Section 5.2: Fitted VI algorithms have been used for finite horizon prob-
lems since the early days of DP. They are conceptually simple and easily
implementable, and they are used widely for approximation of either opti-
mal costs or Q-factors (see e.g., the papers by Gordon [Gor95], Longstaff
and Schwartz [LoS01], Ormoneit and Sen [OrS02], Ernst, Geurts, and We-
henkel [EGW06], Antos, Munos, and Szepesvari [AMS07], and Munos and
Szepesvari [MuS08]). Approximations to VI may also be implemented by
relaxing the constraints of the iteration and/or introducing bounding oper-
ations that simplify the calculations; see e.g., Lincoln and Rantzer [LiR06],
and Spaan and Vlassis [SpV05] in the context of POMDP.

Section 5.3: Approximate PI methods of the type considered in Section
5.3.3 has been proposed by Fern, Yoon, and Givan [FYG06], and vari-
ants have also been discussed and analyzed by several other authors. The
method (with some variations) has been used to train a tetris playing com-
puter program that performs impressively better than programs that are
based on other variants of approximate PI, and various other methods; see
Scherrer [Sch13], Scherrer et al. [SGG15], and Gabillon, Ghavamzadeh, and
Scherrer [GGS13], who also provide an analysis of the method.

Section 5.4: Q-learning was proposed by Watkins [Wat89], and had a ma-
jor impact in the development of the RL field. A rigorous convergence proof
of Q-learning was given by Tsitsiklis [Tsi94], in a more general framework
that combined several ideas from stochastic approximation theory and the
theory of distributed asynchronous computation. This proof covered dis-
counted problems, and SSP problems where all policies are proper. It also
covered SSP problems with improper policies, assuming that the Q-learning
iterates are either nonnegative or bounded. Convergence for SSP problems
without the nonnegativity or the boundedness assumption was shown by
Yu and Bertsekas [YuB13b]. Q-learning for optimal stopping problems was
analyzed by Tsitsiklis and Van Roy [TsV99b], with followup work by Yu
and Bertsekas [YuB07].

Optimistic asynchronous versions of PI based on Q-learning, which
have solid convergence properties, are given by Bertsekas and Yu [BeY10],
[BeY12], [YuB13a]. The distinctive feature of the Q-learning methods of
[BeY12], [YuB13a] is that the policy evaluation process aims towards the
solution of an optimal stopping problem rather than towards the solution
of the Bellman equation associated with the policy; this is needed to avoid
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the pathological behavior identified by Williams and Baird [WiB93], and
noted earlier in Section 4.6.3.

The original proposal of SARSA is attributed to Rummery and Ni-
ranjan [RuN94], with related work reported in the papers by Peng and
Williams [PeW96], and Wiering and Schmidhuber [WiS98]. The ideas of
the DQN algorithm attracted much attention following the paper by Mnih
et al. [MKS15], which reported impressive test results on a suite of 49
classic Atari 2600 games.

The advantage updating idea, which was noted in the context of finite
horizon problems in Section 3.4, can be readily extended to infinite horizon
problems. In this context, it was proposed by Baird [Bai93], [Bai94]; see
[BeT96], Section 6.6. A related variant of approximate PI and Q-learning,
called differential training and aiming to approximate cost-to-go differences
rather than cost-to-go values, has been proposed by the author in [Ber97b];
see also Weaver and Baxter [WeB99].

Section 5.5: Projected equations underlie Galerkin methods, which have
a long history in scientific computation. These methods are used widely
for approximate solution of many types of large-scale problems, including
linear systems arising from discretization of partial differential and inte-
gral equations. The connection of the approximate DP context of policy
evaluation based on projected equations with Galerkin methods was first
discussed by Yu and Bertsekas [YuB10], and Bertsekas [Ber11b]. However,
the Monte Carlo simulation ideas that are central in approximate DP dif-
ferentiate the projected equation methods of the present chapter from the
Galerkin methodology. On the other hand, Galerkin methods apply to a
wide range of problems, far beyond DP, and the simulation-based ideas of
approximate DP can consequently be extended to apply more broadly (see
the papers by Bertsekas and Yu [BeY09], Wang and Bertsekas [WaB13a],
[WaB13b], and the author’s textbook [Ber12], Section 7.3, which discuss
the application of TD methods to the solution of general linear systems of
equations).

Temporal difference ideas were introduced in the works of Samuel
[Sam59], [Sam67] on a checkers-playing program. The work by Sutton
[Sut88], following earlier work by Barto, Sutton, and Anderson [BSA83],
formalized the use of temporal differences and proposed the TD(λ) method.
This was a major development, and motivated a lot of research in RL
and simulation-based DP, particularly following an impressive early success
with the backgammon playing program of Tesauro [Tes92], [Tes94]. The
relation of TD(λ) and the solution of projected equations was clarified
in the works of Tsitsiklis and Van Roy [TsV97], [TsV99b], and was also
described in the neuro-dynamic programming book [BeT96].

The three methods TD(λ), LSTD(λ), and LSPE(λ) are discussed in
detail in the journal and textbook RL literature. For a discussion that
extends our presentation of Section 5.5, see Chapters 6 and 7 of the book
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[Ber12].
The convergence of TD(λ) was proved by Tsitsiklis and Van Roy

[TsV97], with extensions in [TsV99a] and [TsV99b]. The author’s papers
[Ber16c], [Ber18d] describe the connection of TD and proximal algorithms,
a central methodology in convex optimization. In particular, in these works,
TD(λ) is shown to be a stochastic version of the proximal algorithm for
solving linear systems of equations, and extensions of TD(λ) for solving
nonlinear systems of equations are described (the parameter λ is related to
the penalty parameter of the proximal algorithm).

The LSTD(λ) algorithm was first proposed by Bradtke and Barto
[BrB96] for λ = 0, and was extended for λ > 0 later by Boyan [Boy02].
Convergence analyses of LSTD(λ) under assumptions of increasing gener-
ality were given by Nedić, Bertsekas, and Yu [NeB03], [BeY09], [Yu12].

The LSPE(λ) algorithm was first proposed by Bertsekas and Ioffe
[BeI96] under the name λ-policy iteration, and it was used to train a tetris
playing program using the feature-based linear architecture described in
Example 3.1.3. The motivation was to provide a better alternative to
TD(λ)-based PI, which failed within the tetris context. LSPE(λ) was also
given in the book [BeT96], Section 2.3.1, with subsequent contributions,
including versions that use diagonal scaling to avoid matrix inversion, by
Nedić, Borkar, Yu, Scherrer, and the author [NeB03], [BBN04], [YuB07],
[BeY09], [YuB09a], [Ber11a], [Ber11b], [Yu12], [Sch13], [Ber18a].

In our discussion here, we did not go much into the sampling im-
plementation details of TD(λ), LSTD(λ), and LSPE(λ); see the approxi-
mate DP/RL textbooks cited earlier, and the paper by Bertsekas and Yu
[BeY09], which extends the TD simulation-based methodology to the solu-
tion of large systems of general linear equations.

Section 5.6: The linear programming approach for exact infinite horizon
DP was proposed by D’Epenoux [D’Ep60]. Approximation methods using
basis functions and linear programming were suggested with little analy-
sis by Schweitzer and Seidman [ScS85], and have been further developed
by de Farias and Van Roy [DFV03], [DFV04], [DeF04]. For a challenging
application to pricing of network services, see Paschalidis and Tsitsiklis
[PaT00]. For more recent work based on variants of the linear program-
ming formulation, see Cogill et al. [CRV06], Desai, Farias, and Moallemi
[DFM12], [DFM13], Wang, O’Donoghue, and Boyd [WOB15], and Beuchat,
Warrington, and Lygeros [BWL19], and the references quoted there. Ap-
proximation based on linear programming, while not discussed at length in
this book, is a promising approach that deserves further attention.

Section 5.7: Our coverage of approximation in policy space, policy gradi-
ent, and random search methods has been limited, and aimed to provide an
entry point into the field. For a detailed discussion and references on pol-
icy gradient methods, we refer to the book by Sutton and Barto [SuB18],
the monographs by Deisenroth, Neumann, and Peters [DNP11], and the
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surveys by Peters and Schaal [PeS08], and Grondman et al. [GBL12]. An
influential paper in this context is the one by Williams [Wil92], who pro-
posed among others the likelihood-ratio policy gradient method given here.
The methods of [Wil92] are commonly referred to as REINFORCE in the
literature (see e.g., [SuB18], Ch. 13).

There are several related early works on search along randomly chosen
directions (Rastrigin [Ras63], Matyas [Mat65], Aleksandrov, Sysoyev, and
Shemeneva [ASS68], Rubinstein [Rub69]); see also Spall [Spa92], [Spa03],
Duchi, Jordan, Wainwright, and Wibisono [DJW12], [DJW15], and Nes-
terov and Spokoiny [NeS17], for more modern related works. For early
works on simulation-based policy gradient schemes for various DP prob-
lems, see Glynn [Gly87], [Gly90], L’Ecuyer [L’Ec91], Fu and Hu [FuH94],
Jaakkola, Singh, and Jordan [JSJ95], Cao and Chen [CaC97], Cao and Wan
[CaW98].

The challenge in the successful implementation of policy gradient
methods is twofold: the difficulties with slow convergence and local min-
ima that are inherent in gradient optimization, and the detrimental ef-
fects of simulation noise. Much work has been directed towards varia-
tions that address these difficulties, including the use of a baseline and
variance reduction methods (Greensmith, Bartlett, and Baxter [GBB04],
Greensmith [Gre05]), and scaling based on the so-called natural gradient

(Kakade [Kak02]) or second order information (see Wang and Paschalidis
[WaP17], and the references quoted there). For an interesting discussion of
the connections between PID control, model-free approximation in policy
space, and policy gradient methods, we refer to the paper and blog of B.
Recht [Rec18a], [Rec18b].

We have not covered actor-critic methods within the policy gradient
context. Such methods were introduced in the paper by Barto, Sutton, and
Anderson [BSA83]. The more recent works of Baxter and Bartlett [BaB01],
Konda and Tsitsiklis [KoT99], [KoT03], Marbach and Tsitsiklis [MaT01],
[MaT03], and Sutton et al. [SMS99] have been influential. Actor-critic
algorithms that are suitable for POMDP and involve gradient estimation
have been given by Yu [Yu05], and Estanjini, Li, and Paschalidis [ELP12].

The cross-entropy method was initially developed in the context of
rare event simulation and was later adapted for use in optimization. For
textbook accounts, see Rubinstein and Kroese [RuK04], [RuK13], [RuK16],
and Busoniu et al. [BBD10], and for surveys see de Boer et al. [BKM05],
and Kroese et al. [KRC13]. The method was proposed for policy search in
an approximate DP context by Mannor, Rubinstein, and Gat [MRG03]. It
was applied with success to the game of tetris by Szita and Lorinz [SzL06],
and Thiery and Scherrer [ThS09]. For recent analysis, see Joseph and
Bhatnagar [JoB16], [JoB18].

The expert training methods of Section 5.7.2 are similar to the com-
parison training method discussed in Section 2.4.3, which was proposed by
Tesauro [Tes89a], [Tes89b], [Tes01]. Methods that use learning from data
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generated by an expert are often referred in the literature by the names
imitation learning and apprenticeship learning; see e.g., Abbeel and Ng
[AbN04], Neu and Szepesvari [NeS12], and Schaal [Sch99].

Training using a human expert has generated considerable interest
in robotics (where it is often referred to as learning from demonstration);
see Argall et al. [ACV09], and for some recent work, see Ben Amor et al.
[BVE13] and Lee [Lee17]. For a recent analysis of related possibilities, see
Hanawal et al. [HLZ18].

The actor-only PI/rollout methods of Section 5.7.3, depending on
their implementation, are similar to several methods proposed in the litera-
ture, first by Lagoudakis and Parr [LaP03], and then by other authors (see
e.g., Dimitrakakis and Lagoudakis [DiL08], Lazaric, Ghavamzadeh, and
Munos [LGM10], Gabillon et al. [GLG11], Liu and Wei [LiW14], Farah-
mand et al. [FPB15], and the references quoted there). The paper by Yan,
Diaconis, Rusmevichientong, and Van Roy [YDR04] developed a different
type of PI/rollout method based on recursive application of rollout policies
for a version of solitaire.

Our discussion of the application to POMDP is new in the form given
here. Generally POMDP are quite challenging for the current RL method-
ology, both theoretically and practically, because of the continuous nature
of the belief space as well as the excessive accumulation of potentially useful
information over time.

The main strength of the actor-only PI/rollout methods is that they
rely on the reliability and robustness of the rollout approach, which has
been demonstrated by many practical studies, combined with the use of
mature and well-developed classification algorithms. Note also that the
generation of samples of the rollout policies, while computationally inten-
sive, can benefit greatly from the availability of parallel computation.

We have noted in Section 5.7.3 the application of PI with approxima-
tion in policy space for adaptive control in problems with a linear-quadratic
structure and perfect state information. An alternative simulation-based
PI method based on approximation in value space has been proposed by
Bradtke, Ydstie, and Barto [BYB94]. In its idealized form (i.e., with perfect
state information, and an infinite number of simulation samples), it obtains
the optimal policy without knowledge of the linear system equation parame-
ters. Related methods for adaptive control of discrete and continuous-time
systems have been discussed in the books by Vrabie, Vamvoudakis, and
Lewis [VVL13], Jiang and Jiang [JiJ17], and Liu et al. [LWW17].

5.9 APPENDIX: MATHEMATICAL ANALYSIS

In this appendix we provide proofs of the mathematical results stated in
this chapter. We also prove some supplementary results that are described
in the chapter without formal statement.
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We will use extensively the triangle inequality ‖J+J ′‖ ≤ ‖J‖+‖J ′‖,
which holds for every norm ‖ · ‖. We will also use the Bellman operators
T and Tµ for the discounted problem:

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ(j)
)

, i = 1, . . . , n.

A key property for our analysis is that these operators are contractions,
i.e., for all J , J ′, and µ, we have

‖TJ − TJ ′‖ ≤ α‖J − J ′‖, ‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖,

where ‖J‖ is the maximum norm ‖J‖ = maxi=1,...,n

∣

∣J(i)
∣

∣, cf. Prop. 4.3.5.
Another key property is the monotonicity of these operators, i.e.,

TJ ≥ TJ ′, TµJ ≥ TµJ ′, for all J and J ′ with J ≥ J ′.

Moreover, we have the “constant shift” property, which states that if the
functions J is increased uniformly by a constant c, then the functions TJ
and TµJ are also increased uniformly by the constant αc.

5.9.1 Performance Bounds for Multistep Lookahead

We first prove the basic performance bounds for ℓ-step lookahead schemes
and discounted problems.

Proposition 5.1.1: (Limited Lookahead Performance Bounds)

(a) Let µ̃ be the ℓ-step lookahead policy corresponding to J̃ . Then

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖J̃ − J*‖, (5.84)

where ‖ · ‖ denotes the maximum norm ‖J‖ = maxi=1,...,n

∣

∣J(i)
∣

∣.

(b) Define

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n,

(5.85)
where U(i) ⊂ U(i) for all i = 1, . . . , n, and let µ̃ be the one-step
lookahead policy obtained by minimization in the right side of
this equation. Then we have
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Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n, (5.86)

where
c = max

i=1,...,n

(

Ĵ(i)− J̃(i)
)

. (5.87)

Proof: (a) The line of proof of this part is to show Eq. (5.84) for the case
of one-step lookahead (ℓ = 1), and then generalize the argument to the
case ℓ > 1 by replacing J̃ with T ℓ−1J̃ . In the course of the proof, we will
use the contraction property of T and Tµ (cf. Prop. 4.3.5).

We first prove a preliminary relation. Using the fact

‖Tm
µ̃ J* − Tm−1

µ̃ J*‖ = ‖Tm−1
µ̃ (Tµ̃J*)− Tm−1

µ̃ J*‖ ≤ αm−1‖Tµ̃J* − J*‖,

and the triangle inequality, we have for every k,

‖T k
µ̃J

* − J*‖ ≤

k
∑

m=1

‖Tm
µ̃ J* − Tm−1

µ̃ J*‖ ≤

k
∑

m=1

αm−1‖Tµ̃J* − J*‖.

By taking the limit as k → ∞ and using the fact T k
µ̃J

* → Jµ̃, we obtain

‖Jµ̃ − J*‖ ≤
1

1− α
‖Tµ̃J* − J*‖. (5.88)

Denote now J̄ = T ℓ−1J̃ . By using the triangle inequality and the
definition of µ̃, which implies that Tµ̃J̄ = T J̄ , the rightmost expression of
Eq. (5.88) is estimated as follows:

‖Tµ̃J* − J*‖ ≤ ‖Tµ̃J* − Tµ̃J̄‖+ ‖Tµ̃J̄ − T J̄‖+ ‖T J̄ − J*‖

= ‖Tµ̃J* − Tµ̃J̄‖+ ‖T J̄ − TJ*‖

≤ 2α‖J̄ − J*‖

= 2α‖T ℓ−1J̃ − T ℓ−1J*‖

≤ 2αℓ‖J̃ − J*‖.

By combining the preceding two relations, we obtain Eq. (5.84).

(b) Let us denote by e the unit vector whose components are all equal to
1. Then by the definition (5.87) of c, we have

Tµ̃J̃ = Ĵ ≤ J̃ + ce.

Applying Tµ̃ to both sides of this relation, and using the monotonicity and
constant shift property of Tµ̃, we obtain

T 2
µ̃ J̃ ≤ Tµ̃J̃ + αce.
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Continuing similarly, we have

T k+1
µ̃ J̃ ≤ T k

µ̃ J̃ + αkce, k = 0, 1, . . . .

Adding the first k + 1 of these relations, we obtain

T k+1
µ̃ J̃ ≤ J̃ + (1 + α+ · · ·+ αk)ce, k = 0, 1, . . . .

Taking the limit as k → ∞, and using the fact T k+1
µ̃ J̃ → Jµ̃, we obtain the

desired inequality (5.86). Q.E.D.

5.9.2 Performance Bounds for Rollout

We next show the basic cost improvement property of rollout.

Proposition 5.1.2: (Cost Improvement by Rollout) Let µ̃ be
the rollout policy obtained by the one-step lookahead minimization

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

,

where µ is a base policy [cf. Eq. (5.85) with J̃ = Jµ] and we assume
that µ(i) ∈ U(i) ⊂ U(i) for all i = 1, . . . , n. Then Jµ̃ ≤ Jµ.

Proof: Let us denote

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

.

We have for all i = 1, . . . , n,

Ĵ(i) ≤
n
∑

j=1

pij(u)
(

g
(

i, µ(i), j
)

+ αJµ(j)
)

= Jµ(i),

where the equality on the right holds by Bellman’s equation. Thus we
have c = maxi=1,...,n

(

Ĵ(i)− Jµ(i)
)

≤ 0, and the result follows from Prop.

5.1.1(b) with J̃ = Jµ [cf. Eq. (5.86)]. Q.E.D.

We finally show the following performance bound for the truncated
rollout algorithm with cost function approximation.
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Proposition 5.1.3: (Performance Bound of Truncated Rollout
with Terminal Cost Function Approximation) Let ℓ and m be
positive integers, let µ be a policy, and let J̃ be a function of the state.
Consider a truncated rollout scheme consisting of ℓ-step lookahead,
followed by rollout with a policy µ for m steps, and a terminal cost
function approximation J̃ at the end of the m steps. Let µ̃ be the
policy generated by this scheme.

(a) We have

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖Tm

µ J̃ − J*‖,

where Tµ is the Bellman operator of Eq. (5.4), and ‖ · ‖ denotes
the maximum norm ‖J‖ = maxi=1,...,n

∣

∣J(i)
∣

∣.

(b) We have

Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n, (5.89)

where
c = max

i=1,...,n

(

(TµJ̃)(i)− J̃(i)
)

.

(c) We have

Jµ̃(i) ≤ Jµ(i) +
2

1− α
‖J̃ − Jµ‖, i = 1, . . . , n. (5.90)

Proof: (a) This is simply Prop. 5.1.1(a) adapted to the truncated rollout
scheme [J̃ is replaced in Eq. (5.84) by Tm

µ J̃ ].

(b) We first assume that c = 0 and prove the result for this case. If c = 0, by
the definition of c, we have J̃ ≥ TµJ̃ , which together with the monotonicity
of T and Tµ, implies that

J̃ ≥ Tm
µ J̃ ≥ Tm+1

µ J̃ ≥ TTm
µ J̃ ≥ T ℓ−1Tm

µ J̃ ≥ T ℓTm
µ J̃ = Tµ̃T ℓ−1Tm

µ J̃ .
(5.91)

By writing this inequality for just the first, fifth, and last expressions above,
we have

J̃ ≥ T ℓ−1Tm
µ J̃ ≥ Tµ̃T ℓ−1Tm

µ J̃ .

The right side of the preceding relation and the monotonicity of Tµ̃, imply
that the sequence {T k

µ̃T
ℓ−1Tm

µ J̃} is monotonically nonincreasing as k in-

creases, while the left side shows that the sequence is bounded above by J̃ .
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Since by the convergence property of VI, this sequence converges to Jµ̃ as
k → ∞, we obtain J̃ ≥ Jµ̃. Thus the result follows for the case c = 0.

To prove the result for general c, we introduce the function J ′ given
by

J ′ = J̃ +
c

1− α
e,

where e is the unit vector whose components are all equal to 1. Applying
Tµ to this equation, we have

TµJ ′ = TµJ̃ +
αc

1− α
e,

while from the definition of c, it follows that

TµJ̃ ≤ J̃ + ce.

Combining the preceding two relations, we obtain

TµJ ′ ≤ J̃ + ce+
αc

1− α
e = J̃ +

c

1− α
e = J ′,

or TµJ ′ ≤ J ′. The rollout policy µ̃ does not change if we replace J̃ with J ′,
since these two functions differ by a constant. Thus by using the version
of the result already proved for c = 0 and the fact TµJ ′ ≤ J ′, we have
Jµ̃ ≤ J ′, which is equivalent to the desired Eq. (5.89).

(c) Let c = ‖J̃−Jµ‖, so that Jµ ≤ J̃+ce and TµJ̃ ≤ TµJµ+αce = Jµ+αce.
Using these relations, it follows that

TµJ̃ ≤ Jµ + αce ≤ J̃ + ce + αce.

By using part (b) and the fact J̃ ≤ Jµ+ce (which follows from the definition
of c), we obtain

Jµ̃ ≤ J̃ +
c+ αc

1− α
e ≤ Jµ + ce+

c+ αc

1− α
e = Jµ +

2c

1− α
e.

Q.E.D.

A version of part (b) for the case where m = 0 is that if T J̃ = Tµ̃J̃ ≤
J̃ + ce, then Jµ̃ ≤ J̃ + c

1−α
e. This follows by using induction to show that

for all k we have

T k
µ̃ J̃ ≤ J̃ + (1 + α+ · · ·+ αk−1)ce,

and by taking the limit as k → ∞.
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5.9.3 Performance Bounds for Approximate Policy Iteration

To prove the performance bound of Prop. 5.1.4, we focus on the discounted
problem, and we make use of the contraction property of Tµ. We want to
prove the following performance bound.

Proposition 5.1.4: (Performance Bound for Approximate PI)
Consider the discounted problem, and let {µk} be the sequence gener-
ated by the approximate PI algorithm defined by the approximate pol-
icy evaluation (5.11) and the approximate policy improvement (5.12).
Then we have

lim sup
k→∞

‖Jµk − J*‖ ≤
ǫ+ 2αδ

(1− α)2
.

The essence of the proof is contained in the following lemma, which
quantifies the amount of approximate policy improvement at each iteration.
Note that this lemma relates to rollout, i.e., a single policy iteration that
produces a rollout policy µ̃ starting from a base policy µ.

Lemma 5.9.1: (Error Bound for Rollout with Approxima-
tions) Consider the discounted problem, and let J , µ̃, and µ satisfy

‖J − Jµ‖ ≤ δ, ‖Tµ̃J − TJ‖ ≤ ǫ, (5.92)

where δ and ǫ are some scalars. Then we have

‖Jµ̃ − J*‖ ≤ α‖Jµ − J*‖+
ǫ+ 2αδ

1− α
. (5.93)

Proof: The contraction property of T and Tµ̃ implies that

‖Tµ̃Jµ − Tµ̃J‖ ≤ αδ, ‖TJ − TJµ‖ ≤ αδ,

and hence
Tµ̃Jµ ≤ Tµ̃J + αδe, TJ ≤ TJµ + αδe,

where e is the unit vector whose components are all equal to 1. Using also
Eq. (5.92), we have

Tµ̃Jµ ≤ Tµ̃J + αδ e ≤ TJ + (ǫ+ αδ)e ≤ TJµ + (ǫ+ 2αδ)e. (5.94)

Combining this inequality with TJµ ≤ TµJµ = Jµ, we obtain

Tµ̃Jµ ≤ Jµ + (ǫ+ 2αδ)e. (5.95)



Sec. 5.9 Appendix: Mathematical Analysis 305

We will show that this relation implies that

Jµ̃ ≤ Jµ +
ǫ+ 2αδ

1− α
e. (5.96)

Indeed, by applying Tµ̃ to both sides of Eq. (5.95), it follows that

T 2
µ̃Jµ ≤ Tµ̃Jµ + α(ǫ + 2αδ)e ≤ Jµ + (1 + α)(ǫ + 2αδ)e.

Applying Tµ̃ again to both sides of this relation, and continuing similarly,
we have for all k,

T k
µ̃Jµ ≤ Jµ + (1 + α+ · · ·+ αk−1)(ǫ+ 2αδ)e.

By taking the limit as k → ∞, and by using the VI convergence property
T k
µ̃Jµ → Jµ̃, we obtain Eq. (5.96).

By applying Tµ̃ to Eq. (5.96), it follows that

Tµ̃Jµ̃ ≤ Tµ̃Jµ +
α(ǫ + 2αδ)

1− α
e,

so using the fact Jµ̃ = Tµ̃Jµ̃, we have

Jµ̃ ≤ Tµ̃Jµ +
α(ǫ + 2αδ)

1− α
e.

Subtracting J* from both sides, we obtain

Jµ̃ − J* ≤ Tµ̃Jµ − J* +
α(ǫ + 2αδ)

1− α
e. (5.97)

Also from the contraction property of T ,

TJµ − J* = TJµ − TJ* ≤ α‖Jµ − J*‖e

which, in conjunction with Eq. (5.94), yields

Tµ̃Jµ − J* ≤ TJµ − J* + (ǫ+ 2αδ)e ≤ α‖Jµ − J*‖ e+ (ǫ+ 2αδ)e.

Combining this relation with Eq. (5.97), we obtain

Jµ̃−J* ≤ α‖Jµ−J*‖ e+
α(ǫ+ 2αδ)

1− α
e+(ǫ+2αδ)e = α‖Jµ−J*‖ e+

ǫ+ 2αδ

1− α
e,

which is equivalent to the desired relation (5.93), since Jµ̃ ≥ J*. Q.E.D.
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Proof of Prop. 5.1.4: Applying Lemma 5.9.1, we have

‖Jµk+1 − J*‖ ≤ α‖Jµk − J*‖+
ǫ+ 2αδ

1− α
,

which by taking the lim sup of both sides as k → ∞ yields the desired result.
Q.E.D.

We next prove the performance bound for approximate PI, assuming
that the generated policy sequence is convergent.

Proposition 5.1.5: (Performance Bound for Approximate PI
when Policies Converge) Let µ̃ be a policy generated by the ap-
proximate PI algorithm under conditions (5.11), (5.12), and (5.13).
Then we have

‖J* − Jµ̃‖ ≤
ǫ+ 2αδ

1− α
.

Proof: Let J̄ be the cost vector obtained by approximate policy evaluation
of µ̃. Then in view of Eqs. (5.11), (5.12), we have

‖J̄ − Jµ̃‖ ≤ δ, ‖Tµ̃J̄ − T J̄‖ ≤ ǫ.

From this relation, the fact Jµ̃ = Tµ̃Jµ̃, and the triangle inequality, we have

‖TJµ̃ − Jµ̃‖ ≤ ‖TJµ̃ − T J̄‖+ ‖T J̄ − Tµ̃J̄‖+ ‖Tµ̃J̄ − Jµ̃‖

= ‖TJµ̃ − T J̄‖+ ‖T J̄ − Tµ̃J̄‖+ ‖Tµ̃J̄ − Tµ̃Jµ̃‖

≤ α‖Jµ̃ − J̄‖+ ǫ+ α‖J̄ − Jµ̃‖

≤ ǫ+ 2αδ.

(5.98)

For every k, by using repeatedly the triangle inequality and the con-
traction property of T , we have

‖T kJµ̃ − Jµ̃‖ ≤

k
∑

ℓ=1

‖T ℓJµ̃ − T ℓ−1Jµ̃‖ ≤

k
∑

ℓ=1

αℓ−1‖TJµ̃ − Jµ̃‖,

and by taking the limit as k → ∞,

‖J* − Jµ̃‖ ≤
1

1− α
‖TJµ̃ − Jµ̃‖.

Combining this relation with Eq. (5.98), we obtain the desired performance
bound. Q.E.D.




