第5章	基于 IP 的设计
CHAPTER 5	

本章主要介绍 Quartus Prime 中可重复利用的参数化模块库(LPM)设计资源,讲述如何配置和实例引用参数化模块等 IP 资源。希望读者通过这一章的内容,能够利用 Quartus Prime 软件工具提供的参数化模块资源对常用电路进行高效快速的 HDL 设计。

5.1 IP 核

IP(Intellectual Property)原指知识产权、著作权等,在 IC 设计领域通常被理解为实现 某种功能的设计。IP 核则是完成某种常用但是比较复杂的算法或功能(如 FIR 滤波器、 SDRAM 控制器、PCI 接口等),并且参数可修改的电路模块,又称为 IP 模块。随着 CPLD/ FPGA 的规模越来越大,设计越来越复杂,越来越多的人开始认识到 IP 核以及 IP 复用技术 的优越性,并努力推动 IP 复用设计技术的发展。

根据实现的不同,IP核可以分为三类:完成行为域描述的软核(Soft Core),完成结构 域描述的固核(Firm Core)和基于物理域描述并经过工艺验证的硬核(Hard Core)。三种 IP核的特点比较见表 5-1。不同的用户可以根据自己的需要订购不同的 IP 产品。

	软(soft)IP 核	固(firm)IP 核	硬(hard)IP核
描述内容	模块功能	模块逻辑结构	物理结构
提供方式	UDI 子母	门电路级网表,对应具体工艺	电路物理结构掩模版图和全套工
	TDL 文伯	网表	艺文件
优点	灵活,可移植	众工西老之 问	后期开发时间短
缺点	后期开发时间长] 丌] 四有之回	灵活性差,不同工艺难移植

表 5-1 三种 IP 核的特点比较

(1) 软核:用硬件描述语言(HDL)的形式描述功能的 IP 核,与具体的实现技术无关。 软核是集成电路设计的高层描述,灵活性大。软核可以用于多种制作工艺,在新功能模块中 重新配置,以实现重定目标电路。此类 IP 核只通过了功能和时序验证,其他的实现内容及 相关测试等均需要使用者自己完成,因此软核 IP 用户的后继工作较大。

(2)硬核: IP 硬核是基于半导体工艺的物理设计,已有固定的拓扑布局和具体工艺,并 已经过工艺验证,具有可保证的性能。提供给用户的形式是电路物理结构掩膜版图和全套 工艺文件,允许设计者将 IP 快速集成在衍生产品中。因为与工艺相关,硬核 IP 的灵活性 较差。

(3)固核:在设计阶段介于软核和硬核之间的 IP 核。除了完成软核所有设计外,固核还完成了门级电路综合和时序仿真等环节,以 RTL 描述和可综合网表的形式提交。固核的用户使用灵活性介于软核和硬核之间。

图 5-1 LPM 种类选择界面

Intel 公司以及第三方 IP 合作伙伴给用户提供了很多可用的功能模块,它们基本可以分为两类:免费的 LPM 宏功能模块(Megafunctions/LPM)和需要授权使用的 IP 知识产权(MEGACORE)。这两者只是从实现的功能上区分,使用方法上则基本相同。

LPM 宏功能模块是一些复杂或高级的构建模块,可 以在 Quartus Prime 设计文件中和门、触发器等基本单元 一起使用,这些模块的功能一般都是通用的,例如 Counter、FIFO、RAM等。Altera 提供的可参数化 LPM 宏功能模块和 LPM 函数均为 Altera 器件结构做了优化, 而且必须使用宏功能模块才可以使用一些 Altera 特定器 件的功能,例如存储器、DSP 块、LVDS 驱动器、PLL 电路。

通过菜单 Tools→IP Catalog,并在 IP Catalog 中输入 LPM,会出现 Quartus Prime 软件已安装的 LPM 种类,如 图 5-1 所示。通过选择需要的 LPM,单击并进行修改。

5.2 触发器 IP 核的 VHDL 设计应用

触发器(Flip-Flop)是数字电路设计中的基本单元,尤其是 D 触发器,通常被用来做延时和缓存处理。第4章给出了利用多个 D 触发器构造移位寄存器和 m 序列发生器的示例。 将图 4-29 和图 4-30 给出的移位寄存器和 m 序列发生器结合在一起,可以形成串行输入初始状态的序列发生器,利用原理图方式进行设计,结果如图 5-2 所示。

图 5-2 利用触发器构造序列发生器

触发器的延迟功能与移位寄存器功能类似,Altera LPM 宏功能模块中将两种功能结合 在一起,用同一个模块实现。

如图 5-3 所示,在原理图输入模式下,可以在 Symbol 界面下,在 megafunctions → storage 下使用宏功能模块 LPM_DFF 完成功能更复杂的 D 触发器。

BDF(原理图)文件中插入 LPM_DFF 后,双击右上角参数列表或者选择右键菜单 Properties 后,可以进行 LPM_DFF 的端口和参数设置,如图 5-4 和图 5-5 所示。

	Name		Alias	Inversion	Status	Direction	Hide Ali
1	aclr		aclr	None	Used	INPUT	No
2	aconst		aconst	None	Used	INPUT	No
3	aset		aset	None	Used	INPUT	No
4	clock		clock	None	Used	INPUT	Yes
5	data[LPM_WIDT	H-10]	data[]	None	Used	INPUT	No
6	enable		enable	None	Used	INPUT	No
7	q[LPM_WIDTH-	10]	q[]	None	Used	OUTPUT	No
8	sclr		sclr	None	Used	INPUT	No
9	sconst		sconst	None	Used	INPUT	No
10	shiften		shiften	None	Used	INPUT	No
11	shiftin		shiftin	None	Used	INPUT	No
12	shiftout		shiftout	None	Used	OUTPUT	No
13	sset		sset	None	Used	INPUT	No

图 5-4 LPM_DFF 端口设置

Ger	eral Ports	Pa	ramete	Format
	Name	√alue	Туре	Description
1	LPM_WIDTH			Width of I/O, any integer > 0
2	LPM_AVA			Unsigned value associated with the aset
3	LPM_SVA			Unsigned value associated with the sset
4	<new></new>			

图 5-5 LPM_DFF 参数设置

利用图 5-4 所示页面,对端口的状态设置为使用或不使用,可以改变 LPM_DFF 的端口,从而使相应的功能有效或无效。图 5-5 所示的参数设置,可以确定 D 触发器的级数和初始值等。

通过 MegaWizard Plug-In Manager 同样可以进行 D 触发器设计。在 MegaWizard Plug-In Manager 中,没有 LPM_DFF,而是命名为 LPM_SHIFTREG。在 IP Catalog 栏中 输入 LPM_SHIFTREG,并单击,弹出 Save IP Variation 对话框,如图 5-6 所示;选择文件 类型为 VHDL,并命名为 LPM_SHIFTREG1,然后单击 OK,打开 MegaWizard Plug-In Manager 界面。

Save IP Variation	X
IP variation file name:	ОК
D:/quartus/quartus/LPM_SHIFTREG1	
IP variation file type	Cancel
VHDL	
⊘ Verilog	
	,

图 5-6 触发器应用设计——LPM_SHIFTREG

在图 5-7 和图 5-8 所示参数设置页面,可以对 LPM_SHIFTREG 进行各种属性设置,这 里设置了并行输出 q 的宽度为 5bit,表示内部有 5 级 D 触发器,形成 5 位的移位寄存器。另外 还有输出端口的选择和输入端口的配置,如并行输入、输出端口以及同步、异步端口设置等。

比较 LPM_DFF 和 LPM_SHIFTREG 可以看到,二者实现的功能相同,对比分析可以 更好地理解各个端口的功能和使用方法。LPM_SHIFTREG 的其他设置可采取默认值,最 终可以实现定制的 LPM_SHIFTREG 功能。

编写例 5.1 所示 VHDL 代码,对产生的 5 位 LPM_SHIFTREG 进行调用,可以产生第 4 章 m 序列产生器设计的相同功能。

【例 5.1】 调用 LPM_SHIFTREG 模块形成 m 序列。

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
```

ENTITY myShift5Reg IS
 port(clk : in std_logic;

🔨 MegaWizard Plug-In Manager	[page 1 of 4]	-		?	x
LPM_SHIFT	REG			<u>A</u> bout <u>D</u> ocumen	tation
1 Parameter 2 EDA 3 Sun Settings	nmary				
General Optional Inputs	>				
I PM SHIFTREG1	Cu	rrently selected de	vice family:	Cyclone V	-
$\begin{array}{c} & \overset{\text{left shift}}{\longleftrightarrow} \\ & \overset{\text{clock}}{\leftarrow} \\ & \overset{\text{shiftout}}{shiftin} \\ & & q[40] \\ \end{array} \end{array}$				Match project/defa	ult
	How wide should the 'q' output bus b	e? 5 🔻	bits		
	Which direction do you want the regist	ers to shift?			
	Ieft				
	🔘 Right				
	Which outputs do you want (select at l	east one)?			
	🗷 Data output				
	Serial shift data output				
	Do you want any optional inputs?				
	Clock Enable input				
	🔽 Serial shift data input				
	Parallel data input (load)				
Resource Usage					
5 lut		Cance	< <u>B</u> a	k <u>N</u> ext > <u>F</u> ir	nish

图 5-7 LPM_SHIFTREG 参数设置(1)

🔌 MegaWizard Plug-In Manager	[page 2 of 4]	? ×
LPM_SHIFT	REG	About Documentation
1 Parameter 2 EDA 3 Sun Settings 2 Optional Inputs	>	
LPM_SHIFTREG1	Do you want any optional inputs?	
clock shiftout	Synchronous inputs	Asynchronous inputs
	Clear	Clear
	Load	Load
	Set	Set
	Set to all 1s	Set to all 1s
	Set to 0	Set to 0
Resource Usage		
5 lut		Cancel < Back Next > Finish

图 5-8 LPM_SHIFTREG 参数设置(2)

```
qout : buffer STD LOGIC VECTOR(0 to 4);
      dout: out std logic );
END myShift5Req;
ARCHITECTURE rtl OF myShift5Reg IS
COMPONENT LPM SHIFTREG1 IS
    PORT
    (
        clock
                   : IN STD LOGIC ;
        shiftin
                    : IN STD LOGIC ;
                    : OUT STD_LOGIC_VECTOR (0 to 4);
        q
        shiftout
                   : OUT STD LOGIC
    );
END COMPONENT;
begin
mySReg_inst : LPM_SHIFTREG1 PORT MAP (
        clock
                     => clk,
        shiftin
                    = > not (qout(0) xor qout(2)),
                    = > gout,
        q
        shiftout
                     => dout
    );
end rtl;
```

5.3 存储器 IP 核的 VHDL 设计应用

存储器是 FPGA 设计中常用的模块之一,包括 RAM、ROM 等。可以通过模板 (Template)很快给出完整代码,如例 5.2 给出的最基本单口 RAM 代码就是通过菜单 Edit→Insert Template 获得的。

【例 5.2】 单口 RAM 模板。

```
library ieee;
use ieee.std_logic_1164.all;
entity single_port_ram is
    generic
        DATA_WIDTH : natural := 8;
    (
        ADDR WIDTH : natural := 6
    );
    port
                      : in std_logic;
      clk
    (
                      : in natural range 0 to 2 ** ADDR_WIDTH - 1;
        addr
        data
                      : in std logic vector((DATA WIDTH - 1) downto 0);
        we
                      : in std logic := '1';
                      : out std_logic_vector((DATA_WIDTH - 1) downto 0)
        q
    );
end entity;
architecture rtl of single port ram is
    -- Build a 2 - D array type for the RAM
    subtype word_t is std_logic_vector((DATA_WIDTH - 1) downto 0);
```

```
type memory t is array(2 ** ADDR WIDTH - 1 downto 0) of word t;
    -- Declare the RAM signal.
    signal ram : memory t;
     -- Register to hold the address
    signal addr_reg : natural range 0 to 2 ** ADDR_WIDTH - 1;
begin
    process(clk)
    begin
    if(rising_edge(clk)) then
         if(we = '1') then
             ram(addr) <= data;</pre>
         end if;
         -- Register the address for reading
         addr reg < = addr;</pre>
    end if;
    end process;
    q <= ram(addr_reg);</pre>
end rtl;
```

下面利用 DES 数据加密算法中的 S 盒设计,给出通过 MegaWizard Plug-In Manager 进行单口 RAM 设计的过程。

通过菜单 Tools→IPCatalog,在 IPCatalog 栏中输入 RAM,然后会列出相关的 IP 核,在 这里选择 RAM:1-PORT,并双击进入如图 5-6 所示的界面。设计语言选择 VHDL,输入输 出文件名,然后单击 OK 按钮,依次进入图 5-9 到图 5-11 所示的参数设置界面。

🔌 MegaWizard Plug-In Manager [page 1 of	6] ? ×
a RAM: 1-PORT	
1 Parameter 2 EDA 3 Summary Settings	
Widths/Blk Type/Clks Regs/Clken/Byte Ena	ble/Adrs $>$ Read During Write Option $>$ Mem Init $>$
cingle port rem1	Currently selected device family: Cyclone V +
data[30]	Match project/default
address[50]	How wide should the 'a' output bus be? 4 \checkmark bits
	How many 4-bit words of memory?
clock	Note: You could enter arbitrary values for width and depth
Block type: AUTO	What should the memory block type be?
	Auto O MLAB O M10K
	O M-RAM Options
	Set the maximum block depth to Auto 🔹 words
	What clocking method would you like to use?
	Single dock
	\bigcirc Dual dock: use separate 'input' and 'output' docks
Resource Usage	
1 M10K	Cancel < Back Next > Finish
	a de la construcción de la constru

图 5-9 单端口 RAM 模块的参数设置(1)

🔌 MegaWizard Plug-In Manager [pag	e 2 of 6]	? X
RAM: 1-PORT	About	Documentation
Parameter 2 EDA 3 Summary Settings Widths/Blk Type/Clks Regs/Clken/B	/te Enable/Actrs > Read During Write Option > Mem Init >	
single_port_ram1 data[3.0] wren address[5.0] rden clock Block type: AUTO	Which ports should be registered? I data' and 'wren' input ports 'address' input port I' 'g' output port Oreate one dock enable signal for each dock signal. Note: All registered ports are controlled by the enable signal(s) Create byte enable for port A What is the width of a byte for byte enables? 8 bits Create a 'add' asynchronous clear for the registered ports I' Create a 'rden' read enable signal	More Options
Resource Usage 1 M10K	Cancel <back next<="" th=""><th>> <u>Fi</u>nish</th></back>	> <u>Fi</u> nish

图 5-10 单端口 RAM 模块的参数设置(2)

因为 DES 算法的 S 盒是 6 进 4 出即包含 64 个 4bit 数据,因此,在图 5-9 页面中设置存储容量 64words、数据宽度 4bit,输入输出使用相同时钟;图 5-10 页面中设置字节使能、寄存器存储、独立读使能等相关属性;在图 5-11 中可以指定 RAM 的初始内容,这里使用的是内存初始化文件 sbox. mif,该初始化文件的生成过程参照图 5-12 和图 5-13 所示。

🔌 MegaWizard Plug-In Manager [pa	ge 4 of 6]	? X
RAM: 1-PORT	About Doc	cumentation
1 Parameter 2 EDA 3 Summar Settings		
Widths/Bik Type/Clks Regs/Clken/I	Initialize memory Mem Init OL Do you want to specify the initial content of the memory? OL Ng, leave it blank Initialize memory content data to XXX on power-up in simulation Initialize memory content data to XXX on power-up in simulation Initialize memory content data (You can use a Hexadecimal (Intel-format) File [.hex] or a Memory Initialization File [.mf]) Initial memory Initial memory </td <td>rowse</td>	rowse
Resource Usage 1 M10K		Finish

图 5-11 单端口 RAM 模块的参数设置(3)

首先选择文件菜单下的新建文件,选择 Memory Initialization File,在如图 5-12 所示弹 出对话框中设置存储字数和字大小,单击 OK 按钮后,可以生成如图 5-13 所示 mif 文件编 辑界面,将 DES 的 S 盒数据输入,然后保存即可。

P Number of Words & Word Size	X
Number of words:	64
Word size:	4
OK Cancel	Help

图 5-12 内存初始化文件容量设置

٨ddr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
0	15	1	8	14	6	11	3	4	
8	9	7	2	13	12	0	5	10	
16	3	13	4	7	15	2	8	14	
24	12	0	1	10	6	9	11	5	
32	0	14	7	11	10	4	13	1	
40	5	8	12	6	9	3	2	15	
48	13	8	10	1	3	15	4	2	
56	11	6	7	12	0	5	14	9	

图 5-13 内存初始化文件内容编辑

下面是定制的 RAM 模块实现代码,可以看到,RamTest_SBox 是通过例化 Altera 内部 模块 altsyncram,然后进行端口配置实现的。

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera mf;
USE altera_mf.all;
ENTITY RamTest SBox IS
    PORT
    (
                    : IN STD LOGIC VECTOR (5 DOWNTO 0);
        address
        clock
                    : IN STD LOGIC := '1';
        data
                     : IN STD LOGIC VECTOR (3 DOWNTO 0);
        rden
                     : IN STD LOGIC := '1';
                     : IN STD_LOGIC ;
        wren
                     : OUT STD LOGIC VECTOR (3 DOWNTO 0)
        q
    );
END RamTest_SBox;
```

ARCHITECTURE SYN OF ramtest_sbox IS

```
: NATURAL;
        numwords a
                                       : STRING;
        operation mode
                                      : STRING;
        outdata aclr a
        outdata reg a
                                       : STRING;
        power up uninitialized
                                      : STRING;
        read during write mode port a : STRING;
        widthad a
                                       : NATURAL;
        width_a
                                       : NATURAL;
        width byteena a
                                       : NATURAL
    );
    PORT (
             address_a: IN STD_LOGIC_VECTOR (5 DOWNTO 0);
             clock0: IN STD_LOGIC ;
             data_a: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
             wren a: IN STD LOGIC ;
             q_a: OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
             rden a: IN STD LOGIC
    );
    END COMPONENT;
BEGIN
    q <= sub_wire0(3 DOWNTO 0);</pre>
    altsyncram_component : altsyncram
    GENERIC MAP (
        clock_enable_input_a => "BYPASS",
        clock_enable_output_a => "BYPASS",
        init file => "sbox.mif",
        intended device family => "Cyclone IV GX",
        lpm_hint => "ENABLE_RUNTIME_MOD = NO",
        lpm_type => "altsyncram",
        numwords a = > 64,
        operation mode => "SINGLE PORT",
        outdata_aclr_a => "NONE",
        outdata_reg_a => "CLOCK0",
        power up uninitialized = > "FALSE",
        read_during_write_mode_port_a => "NEW_DATA_NO_NBE_READ",
        widthad_a => 6,
        width_a => 4,
        width byteena a = > 1
    )
    PORT MAP (
       address_a = > address,
        clock0 => clock,
        data_a => data,
        wren_a => wren,
        rden_a => rden,
        q_a => sub_wire0
    );
```

END SYN;

对生成程序进行综合,然后编写测试用例进行仿真,例 5.3 给出的测试用例向测试对象 提供时钟激励,读信号 rden 始终有效,并且在该时钟上升沿顺序给出地址数据,从而完成 S 盒内容读取的仿真。

【例 5.3】 基于存储器 IP 的 DES 算法 S 盒实现的仿真测试用例。

```
LIBRARY ieee:
USE ieee.std logic 1164.all;
USE ieee.std logic unsigned.all;
ENTITY RamTest_SBox_vhd_tst IS
END RamTest SBox vhd tst;
ARCHITECTURE RamTest SBox arch OF RamTest SBox vhd tst IS
SIGNAL address : STD LOGIC VECTOR(5 DOWNTO 0) := "000000";
SIGNAL clock : STD LOGIC := '0';
SIGNAL data : STD LOGIC VECTOR(3 DOWNTO 0);
SIGNAL q : STD LOGIC VECTOR(3 DOWNTO 0);
                                    -- 读信号始终有效
SIGNAL rden : STD LOGIC := '1';
                                    -- 不允许写
SIGNAL wren : STD LOGIC := '0';
COMPONENT RamTest SBox
    PORT (
    address : IN STD LOGIC VECTOR(5 DOWNTO 0);
    clock : IN STD LOGIC;
    data : IN STD LOGIC VECTOR(3 DOWNTO 0);
    q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
    rden : IN STD LOGIC;
    wren : IN STD LOGIC
    );
END COMPONENT;
BEGIN
   i1 : RamTest SBox
    PORT MAP (
    address = > address,
    clock => clock,
    data => data.
    q => q,
    rden => rden,
    wren => wren
    );
always : PROCESS (clock)
                                      -- 时钟下降沿给出地址激励信号
BEGIN
    if falling edge(clock) then
     if (address = "11111") then address <= "00000";
        else address <= address + "00001";</pre>
        end if;
    end if;
END PROCESS always;
CLOCK Pro : PROCESS
                                       -- 提供时钟激励信号, 周期 20ns
BEGIN
    wait for 10 ns; clock <= not clock;</pre>
END PROCESS CLOCK Pro;
END RamTest_SBox_arch;
```

基于上述测试用例,通过 ModelSim 进行仿真,得到图 5-14 所示仿真波形,如图中所示,地址输入在时钟下降沿发生变化,读信号始终有效,在时钟上升沿数据正常输出。图中 data 始终显示红色,是因为测试用例中没有给出该信号的具体值。该信号是向 RAM 写入 的数据,由于写信号 wren 始终为 0,因此没有真正写入 RAM 中。

图 5-14 基于 RAM 存储器 IP 的 DES 算法 S 盒的仿真波形

密码算法的 S 盒变换通常是固定数据的,读者可以将上述设计修改为 ROM 实现,也可 以通过 wren 和 data 端口对 S 盒内容进行更改,从而可以用在不同的算法中。

5.4 锁相环 IP 核的 VHDL 设计应用

Intel 在很多型号的 FPGA 芯片中都提供有专用锁相环电路,用来实现设计所需多种时 钟频率。通过 Quartus II 或者 Quartus Prime 软件的参数化模块库中的 PLL 模块可以很 好地利用 FPGA 芯片中的锁相环资源。下面利用 ALTPLL 模块的参数配置和实例化对锁 相环电路 IP 核的 VHDL 设计进行简单介绍。

在 IPCatalog 栏中输入 PLL 或者 ALTPLL,然后在 Library 中单击 ALTPLL,在弹出 的如图 5-15 所示的 Save IP Variation 界面,选择 VHDL 作为创建的设计文件语言,将输出 文件命名为 mypll。单击 OK 按钮后进入图 5-16 所示的对话框,在这里对输入时钟 inclk0 的频率和 PLL 的工作模式进行设置,假设输入频率为 100MHz,工作模式采用 normal 模式。输入频率用于输出频率设置的参考,不与实际工作频率相关。Altera 器件共有四种工 作模式: normal 模式,PLL 的输入引脚与 I/O 单元的输入时钟寄存器相关联; zero delay buffer 模式,PLL 的输入引脚和 PLL 的输出引脚的延时相关联,通过 PLL 的调整,到达两 者"零"延时; External feedback 模式,PLL 的输入引脚和 PLL 的反馈引脚延时相关联; no compensation 模式,不对 PLL 的输入引脚进行延时补偿。

🕤 Save IP Variation	x
IP variation file name:	OK
D:/quartus/quartus/project/mypll/mypll IP variation file type IP variation file type VHDL VHDL Verilog	Cancel

参数化模块 ALTPLL 可以设置 9 个输出时钟,这里仅使用两个输出时钟: c0 和 c1,分 别设置为 300MHz 和 75MHz,如图 5-17 和图 5-18 所示。这里的时钟输出频率都是以设定 乘因子和除因子的方式给出,也可以直接输入预期时钟频率(Requested Setting)。

MegaWizard Plug-In Manager [page 6 of 12 ALTPLL 1 Parameter Settings Clock] [4 EDA [5 Summary] > dk c4 >	About Documentation
mypli	c0 - Core/External Output Cloc Able to implement the requested PLL	:k
incik0 areset Operation Mode: Normal Cik Ratio Ph (dg) DC (%) of 3/1 0.00 50.00 of 3/4 0.00 50.00 Cyclone IV E	V Use this dock Clock Tap Settings Clock Tap Settings Enter output dock frequency: (a) Enter output dock parameters: Clock multiplication factor Clock division factor Clock phase shift	Requested Settings Actual Settings 300.0000000 MHz 300.000000 3 - 3 1 - - 0.00 - deg 0.00
	Clock duty cycle (%)	50.00 50.00 Description Val. ^
	Note: The displayed internal settings of the PLL is recommended for use by advanced users only	Modulus for Mounter
		c0 c1 c2 c3 c4
		Cancel < Back Next > Finish

图 5-17 参数化模块 ALTPLL 的参数设置-c0

MegaWizard Plug-In Manager [page 7 of 12]		About Documentation
Parameter ZPLL 3 Output 4ED/ Settings dk c1 dk c2 dk c3 dk c4 mypli mypli 1 1 1	Summary Summary C1 - Core/External Output Cloce Able to implement the requested PLL	:k
Incik0 frequency: 100.000 MHz c0, Operation Mode: Normal Ct Incik0 Ct Cik Ratio Ph. (dg) DC (%) Incik0 Incik0 Cik <	 Use this clock Clock Tap Settings Enter output clock frequency: Enter output clock parameters: Clock multiplication factor Clock division factor Clock phase shift 	Requested Settings Actual Settings 75.0000000 MHz v 75.000000 3 v 3 4 v 4 0.00 v 0.00
	Clock duty cycle (%) Note: The displayed internal settings of the PLL is recommended for use by advanced users only	50.00 50.00 Description Val Primary clock VCO frequency (MHz) 6 Modulus for M counter 6 * *
		Per Clock Feasibility Indicators c0 c1 c2 c3 c4 Cancel < Back Next > Finish

图 5-18 参数化模块 ALTPLL 的参数设置-c1

时钟模块的其他设置均采用默认设置。通过给定输入时钟频率进行仿真,可以得到如 图 5-19 所示的仿真图。

图 5-19 锁相环 PLL 的仿真结果

分析图 5-19 所示仿真波形,其中 inclk0 是输入时钟信号,时钟周期为 10000ps,时钟频 率为 100MHz; c0 和 c1 是输出信号,三个时钟信号都是占空比 1:1 的时钟信号。如图所 示,inclk0 经过 1 个时钟周期后,c0 恰好经过了 3 个时钟周期,即 c0 的频率是 inclk0 的 3 倍,即 300MHz。再分析 c1 和 c0 的周期特性,可以发现,c1 的频率是 c0 的 1/4,即 75MHz。所以,通过仿真波形可知,仿真结果与 ALTPLL 的设置一致,PLL 设计正确。

5.5 运算电路 IP 核的 VHDL 设计应用

Quartus Prime 软件的参数化模块库对运算单元的 IP 模块有很好的支持,常用的数学运算都可以在这里完成。下面利用 LPM_ADD_SUB 模块设计一个简单的 8 位加法器,对

运算电路 IP 核的 VHDL 设计进行简单介绍。

在 IP Catalog 栏中输入 LPM_ADD_SUB,在 Library 中选择 LPM_ADD_SUB 并双击, 弹出 Save IP Variation 界面,如图 5-20 所示,选择 VHDL 作为创建的设计文件语言,将输 出文件命名为 adder。单击 OK 按钮后进入如图 5-21 所示的对话框,指定输入数据的位宽 为 8bit,只选择加法功能;单击 Next 按钮,进入图 5-22 所示对话框确认输入数据的类型,按 默认值设置两个操作数均为可变无符号数。再次单击 Next 按钮,在图 5-23 所示对话框,指 定加入进位输入端和进位输出端。然后,在图 5-24 页面下,设置流水线设计参数,其他内容 可按默认设置使用。

Save IP Variation	×
IP variation file name: D:/quartus/quartus/project/adder/adder	ок
IP variation file type	Cancel
VHDL	

图 5-20 创建新的参数化模块——运算电路 LPM_ADD_SUB

🔦 MegaWizard Plug-In Manager [p	age 1 of 6]	? x
LPM_ADD_SU	В	About Documentation
1 Parameter 2 EDA 3 Summa Settings General > Ports	ry Pipelining	
adder dataa[70] datab[70] B	Currently selected device family: How wide should the 'dataa' and 'datab' input buses be?	Cydone V Match project/default bits
	Which operating mode do you want for the adder/sub Addition only Subtraction only Create an 'add_sub' input port to allow me to do b	ractor? oth (1 adds; 0 subtracts)

图 5-21 参数化模块 LPM_ADD_SUB 的参数设置(1)

通过向导定制完加法器后,可以创建相应的 VHDL 文件,然后编写如例 5.4 所示的测试用例,利用 ModelSim 进行仿真,可以得到如图 5-25 所示的仿真结果。

【例 5.4】 加法器测试用例。

LIBRARY ieee; USE ieee.std_logic_1164.all;

ENTITY adder_vhd_tst IS

K MegaWizard Plug-In Manager [page 2 of 6]								
👌 LPM_ADD_SU	About Documentation							
I Parameter Settings I EDA I Summa General General I Ports	ry Pipelining >							
adder dataa[70] datab[70] B	Is the 'dataa' or 'datab' input bus value a constant? No, both values vary Yes, dataa = 0 Dec Yes, datab = 0 Dec	•						
	Which type of addition/subtraction do you want? — ① Unsigned ⑦ Signed							

图 5-22 参数化模块 LPM_ADD_SUB 的参数设置(1)

NegaWizard Plug-In Manager [page 3 of 6]								
👌 LPM_ADD_SU	IB	About Documentation						
I Parameter Settings 2 EDA 3 Summa General General 2 Ports	ary							
dataa[70] dataa[70] datab[70] B cout	Do you want any optional inputs or outputs? Input:							

🔨 MegaWizard Plug-In Manager [page 4 of 6]								
LPM_ADD_SU	<u>A</u> bout	Documentation						
1 Parameter 2 EDA 3 Summa Settings General General 2	ry Pipelining							
dataa[70] dataa[70] datab[70] datab[70] datab[70]	Do you want to pipeline the function? No Yes, I want an output latency of Create an asynchronous Clear input Create a Clock Enable input		dock cycles					

图 5-24 参数化模块 LPM_ADD_SUB 的参数设置(3)

```
END adder_vhd_tst;
ARCHITECTURE adder arch OF adder vhd tst IS
SIGNAL cin : STD LOGIC;
SIGNAL cout : STD LOGIC;
SIGNAL dataa : STD LOGIC VECTOR(7 DOWNTO 0);
SIGNAL datab : STD LOGIC VECTOR(7 DOWNTO 0);
SIGNAL result : STD LOGIC VECTOR(7 DOWNTO 0);
COMPONENT adder
    PORT (
    cin : IN STD LOGIC;
    cout : OUT STD LOGIC;
    dataa : IN STD LOGIC VECTOR(7 DOWNTO 0);
    datab : IN STD LOGIC VECTOR(7 DOWNTO 0);
    result : OUT STD LOGIC VECTOR(7 DOWNTO 0)
    );
END COMPONENT;
BEGIN
    i1 : adder
    PORT MAP (
-- list connections between master ports and signals
    cin = > cin,
    cout => cout,
    dataa => dataa,
    datab => datab,
    result = > result
    );
init : PROCESS
-- variable declarations
BEGIN
         -- code that executes only once
    wait for 1 ns; cin <= '0'; dataa <= x"3f"; datab <= x"57"; -- 等待 1ns 后数据有效
    wait for 1 ns; cin <= '1'; dataa <= x"7f"; datab <= x"57";</pre>
    wait for 1 ns; cin <= '0'; dataa <= x"9a"; datab <= x"85";</pre>
    wait for 1 ns; cin <= '1'; dataa <= x"97"; datab <= x"68";</pre>
    WAIT;
END PROCESS init;
END adder_arch;
```

图 5-25 给出了上述测试用例仿真后波形,图中数据开始的红色部分是由于测试用例中 首先等待了 1ns 后才给出有效数据,这一段时间输入没有初始值,所以数据均为 X。这里给 出的运算电路是一个带进位的 8 位全加器,数据显示均为十六进制。从图中可以看出,在 1000ps 处,输入数据为:进位位 0,加数 dataa 和 datab 分别是 0x3F 和 0x57,结果 result 为 0x86,进位输出 0,之后在 2000ps、3000ps、4000ps 处,随着输入数据的变化,输出结果做出 相应变化,分析可知,输出符合设计要求,设计结果正确。

\$ 1-		Msgs		Ţ									
- 🔶	/adder_vhd_tst/cin	1											-
•	/adder_vhd_tst/dataa	97	ΧХ	3F		7F		9A		97			
<u>-</u>	/adder_vhd_tst/datab	68	XX	57				85		68			
- 🔶	/adder_vhd_tst/cout	1		i									
<u>+</u> -	/adder_vhd_tst/result	00		96		D7		1F		00			
													-
<u>~</u> ≣⊙	Now)00 ps	100	0 ps	200	0 ps	300) ps	400	0 ps	500) ps	
ê 1 0	Cursor 1	0 ps											

图 5-25 加法器仿真结果