第5章

混频器设计

混频器是射频微波电路系统中不可或缺的部件。无论是微波通信、雷达、遥控、遥感,还 是侦查与电子对抗,以及许多微波测量系统,都必须把微波信号用混频器降到中频来进行处 理。因为集成式混频器体积小,设计技术成熟,性能稳定可靠,而且结构灵活多样,可以适合 各种特殊应用,所以集成电路混频器是当前混频器市场中的主流。

5.1 混频器设计理论

5.1.1 主要设计指标

混频器的主要性能指标有:增益、噪声系数(noise factor,NF)、线性度、端口间隔离度等。(1)转换增益

混频器的增益为频率变换增益,简称变频增益,定义为输出的中频(IF)信号大小与输入 射频(RF)信号大小之比。电压增益 A_v和功率增益 G_P分别定义为

$$A_{\rm V} = \frac{V_{\rm IF}}{V_{\rm in}}$$
$$G_{\rm P} = \frac{P_{\rm IF}}{P_{\rm in}}$$

混频器的射频端口与低噪声放大器相连接时需要滤波器滤除无用的频率成分,那么射频端口的输入阻抗必须和滤波器的输出阻抗匹配一致,一般情况下为 50Ω。当中频输出端 口与射频输入端口阻抗不一致时,功率增益和电压增益的关系如下:

$$G_{\rm P} = \frac{P_{\rm IF}}{P_{\rm in}} = \frac{V_{\rm IF}^2 / R_{\rm L}}{V_{\rm RF}^2 / R_{\rm S}} = A_{\rm V}^2 \frac{R_{\rm S}}{R_{\rm L}}$$

(2) 噪声系数

噪声系数(NF)的定义为:输入端与输出端各自信噪比之比,如下式所示。

$$F = \frac{\mathrm{SNR}_{\mathrm{in}}}{\mathrm{SNR}_{\mathrm{out}}} = \frac{S_{\mathrm{in}} / N_{\mathrm{in}}}{S_{\mathrm{out}} / N_{\mathrm{out}}}$$

式中,SNR_{in}为输入端信噪比,即输入信号功率与输入噪声功率之比(S_{in}/N_{in}); SNR_{out}为输出端信噪比,即输出信号功率与输出噪声功率之比。在工程上,噪声系数通常用单位 dB

来表示,单位换算如下式所示。

$$\mathrm{NF} = 10 \mathrm{lg}F = 10 \mathrm{lg} \left(\frac{\mathrm{SNR}_{\mathrm{in}}}{\mathrm{SNR}_{\mathrm{out}}}\right) = 10 \mathrm{lg} \left(\frac{S_{\mathrm{in}} / N_{\mathrm{in}}}{S_{\mathrm{out}} / N_{\mathrm{out}}}\right)$$

根据混频器的射频信号与本振信号来源是否一致,可以将噪声系数划分为:单边带(SSB)、双边带(DSB)。在外差式太赫兹探测系统中,混频器会把太赫兹信号和噪声信号频 谱搬移至可以采样的低中频信号,由于外差式混频器的输入端频谱只有单边带,因此此时的 噪声系数也被称为单边带噪声系数;而对于自混频太赫兹探测系统,由于射频信号频率与 本振信号频率一致,并且自混频器不存在无用的镜像信号,所以此时的噪声系数被称为双边 带噪声系数。一般而言,二者关系如下式所示:

$$NF_{DSB} = NF_{SSB} - 3dB$$

(3) 线性度

混频器对输入射频小信号而言是线性网络,其输出中频信号与输入射频信号的幅度成 正比。但是当输入信号幅度逐渐增大时,与线性放大器一样,也存在着非线性失真问题。因 此,与放大器一样,也可以用下列质量指标来衡量它的线性性能。

1dB 压缩点

1dB 压缩点定义:在一定范围内,混频器的 输出功率与输入功率保持理想线性关系,但是随 着输入功率的不断增加,二者便不再保持此关 系,当实际输入功率比理想输入功率低1dBm时 所对应的点被称为1dB 压缩点,如图5-1所示。一 般情况下,当输入信号功率大于1dB 压缩点的功 率时,转换增益将快速达到一个临界饱和点并下降, 该饱和点值一般比1dB 压缩点大3~4dB。

② 三阶互调截点

设混频器输入两个射频信号 f_{RF1} 和 f_{RF2} ,它们的三阶互调分量 $2f_{RF1} - f_{RF2}$,(或 $2f_{RF2} - f_{RF1}$)与本振混频后也位于中频带宽内,就会对有用中频产生干扰。与放大器的三阶互调截点定义相同,使三阶互调产生的中频分量与有用中频分量相等的输入信号功率记为 IIP3(或对应的输出信号功率记为 OIP3)。

(4) 端口间隔离度

混频器各端口间的隔离度不太理想会产生以下几个方面的影响:本振(LO)端口向射频(RF)端口的泄漏会使 LO 大信号影响低噪声放大器的工作,甚至使其通过天线辐射; RF 端口向 LO 端口的串通会使 RF 中包含的强干扰信号影响本地振荡器的工作,产生频率牵引等现象,从而影响 LO 输出频率; LO 端口向中频端口的串通,LO 大信号会使以后的中频放大器各级过载; RF 信号如果隔离不好也会直通到中频输出口,但是一般来说,由于 RF 频率很高,因此会被中频滤波器滤除,不会影响输出中频。

(5) 阻抗匹配

对混频器的3个端口的阻抗要求主要有两点。第一是要求匹配,混频器 RF 及 RF 端口的匹配可以保证与各端口相接的滤波器正常工作,LO 端口的匹配可以有效地向本地振荡器汲取功率;第二个要求是每个端口对另外两个端口的信号力求短路。

5.1.2 设计方法

下面给出混频器的一般设计方法供读者参考。

(1) 混频器的结构选取

目前研究的混频器拓扑结构主要有4种,分别是单平衡无源混频器、双平衡无源混频器、单平衡有源混频器、双平衡有源混频器。

单平衡无源混频器具有结构简单和噪声较低的特点,因为它没有外部电源提供能量,所 以总对输入的射频信号造成损耗,转换增益小于1。但因为使用较少的无源器件,所以噪声 系数较低。其电路等效拓扑结构如图 5-2 所示。

结论:尽管其结构简单,且噪声系数低,但是因为 它不能提供转换增益且隔离度较差,所以只能应用于对 增益没有要求的场景,应用范围较小。

双平衡无源混频器具有共模抑制能力强、线性度较高的特点,因为由无源器件构成,所以它可以提供更高的线性度和更好的带宽性能。双平衡结构由两路单平衡构成,所以可以很好地抵消 LO 信号。其拓扑结构如图 5-3 所示。

结论: 双平衡无源混频器依旧只适用于不要求增益的场景,且需要高功率的 LO 信号 也限制了它的使用。但是如果对线性度和带宽这两个指标有要求,可以选取这种拓扑结构。

在射频系统中,应用最多的还是有源混频器。单平衡有源混频器可以为系统提供转换 增益,这也就稍稍放松了对前级电路的增益要求,而且典型的本振驱动功率仅仅只需 0dBm,远低于无源混频器。其电路拓扑结构如图 5-4 所示。

结论:单平衡有源混频器的结构相对简单,噪声较低,同时可以平衡 LO 波形,即使单端输入也能提供差分输出。缺点就是隔离度较差,会有 LO 信号泄漏到中频输出端口。

双平衡有源混频器可视为由两路单平衡有源混频器组成,LO 端口与中频端口的隔离 性能很好,因为双平衡结构中,输出电流是以两个差分对电流以相反的相位叠加,抵消了 LO 信号向中频的泄漏。双平衡有源混频器拓扑结构如图 5-5 所示。

结论:双平衡有源混频器是有源混频器中最为普遍的电路形式,它具有增益高、隔离度 好、线性范围大等优点,是在低频范围内的最好选择。但是,在频率较高时,因为寄生参数的 影响,其噪声系数会很大,所以并不适用于高频。

综上所述,读者应先根据自己的设计需求选择一个合适的混频器结构。然后,可按以下 步骤进行设计。

(2) 根据增益要求设计跨导级和负载。

(3) 设计开关级和电流注入的大小。

(4) 判断是否满足设计的线性度要求,满足则继续,不满足则重新设计跨导级和负载。

(5)判断是否满足设计的噪声要求,满足则继续,不满足则重新设计开关级和电流注入的大小。

5.2 ADS设计混频器实例

为了明确设计过程,使读者能尽快掌握一般混频器的设计方法,本案例以吉尔伯特单平 衡结构混频器的设计为例讲解使用 ADS 仿真的方法。

设计指标:

- (1) 本振信号频率 3.59GHz;
- (2) 射频信号频率 3.6GHz;
- (3) 变频损耗<19dB;
- (4) 噪声系数<30dB;
- (5)1dB压缩点功率>-15dBm;
- (6) 三阶交调点功率>-3dBm;
- (7) 在满足指标要求基础上,功耗尽可能低。

5.2.1 输出端口隔离度

本次设计一个吉尔伯特单平衡结构的混频器,新建一个如图 5-6 所示的端口电路图,并 保存,以便后面方便产生端口。

在原理图界面的元器件面板中调用 S 参数控件和网表控件,并加入仿真端口 Term,原 理图如图 5-7 所示。

图 5-7 修改之后电路图

单击 🖤 图标进行仿真,在数据显示窗口中,单击 🎛 图标,选择 S(2,1),如图 5-8 所示。

)	\bigotimes		1234 5678		
atasets and Equations			Т	races		
scanshu	•			Trace	Options	
Search		List	•]	dB(S(2,1))		
PortZ(2) PortZ(3) S S(1,1) S(1,2) S(1,2) S(1,2) S(2,1) S(2,2) S(2,3) S(3,1) S(3,2) S(3,3)		>>Ad	<pre>id >> Vs>> lete << info ge </pre>			

图 5-8 输出显示窗口

同样地再分别选择 S(2,3),S(1,3),便可以得出输出端口隔离度,如图 5-9 所示。

如图 5-9 所示,S(2,1)代表本振信号输入端口与射频信号输入端口之间的隔离度,在 3.5~

3.7GHz 频段内,S(2,1)最大值为-330dB,说明本振端口与射频端口之间的隔离度很高。 S(2,3)代表输入的射频信号泄漏到中频信号输出端口的程度,在 3.5~3.7GHz 频段内, S(2,3)最大值为-324dB,表明射频端口与中频端口的隔离度也很好。S(1,3)是本振信号 输入端口与中频信号输出端口之间的隔离度,这是衡量一个混频器性能好坏的重要指标,因 为单平衡结构会导致本振信号泄漏到中频,所以需要将 S(1,3)控制得尽可能小。在 3.5~ 3.7GHz 频段内,S(1,3)的值均小于-21dB,说明本振输入端口与中频输出端口之间的隔离 度较好。

5.2.2 本振功率对噪声系数的影响和转换增益的影响

回到 ADS 主界面,单击菜单 New Symbol,将图 5-6 所示的端口电路创建一个 symbol, 如图 5-10 所示。

在 Symbol Type 项选择 Quad,默认产生端口,如图 5-11 所示。

图 5-10 创建 symbol

图 5-11 产生的端口

保存原理图以及生成的端口,命名为 cell_2。再次新建一个原理图,命名为 test2。

在新建的原理图中,单击 f 图标,选择 Workspace Librariess 中的 cell_2 添加刚才产生的端口,如图 5-12 所示。

添加后的端口如图 5-13 所示。

放置完端口后,建立测试电路,如图 5-14 所示。其中 LO 偏置电压为 1.8V,电源电压 为 2.5V,端口 1 和 2 的输入功率分别为 lopower 和 rfpower,选用单位为 dBm,选用 LO 频 率为 LO_freq,射频端频率为 RF_freq。

图 5-14 测试电路

测试电路建立完毕后,添加 HB 仿真控件,参数设置如图 5-15 所示。一般情况下,LO 功率要大于 RF 功率,所以 Freq[1]中填写的是功率最大的 LO_freq。

噪声部分设置。需要设置 Noise(1),如图 5-16 所示。其中 10MHz 为我们所需的中频 频率,由 RF_freq-LO_freq 得到。

Haraonidbalance Instance Name Barronidbalance Instance Name Salect Barronidbalance Instance Name Salect Barronidbalance Instance Name Salect Barronidbalance Instance Name Barronidbalance Instance Name Barroni	III Harmonic Balance:30	Harmonic Balance:2
Breq Sreep Initial Guess Oscillator Noise Small-Sig P(4) Freq Sreep Initial Guess Oscillator Noise Small-Sig P(4) Fundmental Frequencies Filt Forgency Order Select Noise frequency Image of the solar Select Fund Frequency Order Image of the solar Noise frequency Image of the solar Select Find Frequency Order Image of the solar Image of the solar I Noffreq 3 Image of the solar Image of the solar Image of the solar Add Cut Faste Noise input port Image of the solar Image of the solar Input frequency Image of the solar Image of the solar Image of the solar Image of the solar OK Apply Cancel Halp OK Apply Cancel Halp	HarmonicBalance Instance Name	MarmonicBalance Instance Name HB1
Waisensatal Prequencies Fendmental Prequencies Ferguancy Order Salect Noise frequency Pad Frequency Order 1 10. freq 2 RF_freq Maximum mixing order 1 Levals Status leval 2 OK Apply Malp OK Apply Malp OK Apply Malp OK	Freq Sweep Initial Guess Oscillator Noise Small-Sig Petro	Freq Sweep Initial Guess Oscillator Noise Small-Sig Pe
	Fundamental Frequencies Feit Frequency Order ID_freq Kone 3 Salect Fund Frequency Order 1 LO_freq 3 2 Rf_freq 3 4 Cat Paste Maximum nixing order 4 Lavels Status lavel 2 Kapply Cancel Kalp	NoiseCons Select Noise(1):2 Steet Noise frequency Step 10 Noise Step 10 Noise Step 10 Noise Step 10 Noise input port Noise Noise <t< td=""></t<>

图 5-15 HB 仿真控件参数设置

图 5-16 Noise(1)设置

单击 இ 图标运行仿真,在数据显示窗口界面单击 图标,选择 nf(3),得到 nf(3)的噪声系数输出如图 5-19 所示。

在数据显示窗口界面单击 Ⅲ 图标,选择输出 vpx 节点输出频谱分量,如图 5-20 所示。

输出频谱分量,如图 5-21 所示。

再次单击 🗱 图标,从弹出对话框中选择双边带 噪声系数 NFdsb 和单边带噪声系数 NFssb,结果如 图 5-22 和图 5-23 所示。

回到原理图界面,双击谐波平衡仿真控件,单击 Sweep 选项,选择扫描参数为 lopower,扫描方式 选择 Linear,扫描范围为一10~20,步长为 1。如 图 5-24 所示。

运行仿真,查看本振功率对噪声系数的影响。当本振功率为 17dB 时,噪声系数为 19.586,如图 5-25 所示。

图 5-17 Noise(2)设置

图 5-18 完整的原理图

noisefreq	nf(3)
10.00 M Hz	26.472

图 5-19 nf(3)噪声系数

Plot Traces & Attr	ributes	23
Plot Type Plot	t Options Plot Title	_
Datasets and Equa	ations Traces	
Test2 Search port3.NC.noisefr port3.NC.type port3.NC.vnc SRC1.i SRC2.i te te(1) te(2) te(3) vpx.NC.index vpx.NC.name NC f Enter any Equati	With Harmonic Balance Simulation Data:32 You are adding data from a harmonic balance simulation to a plot that only supports scalar data. How would you like to handle this data? Spectrum in dB Spectrum in dBm Magnitude of spectrum Phase of spectrum Time domain signal OK Cancel Manage You are adding data from a harmonic balance simulation to a plot that only supports scalar data.	
[]	DK Cancel Help	

图 5-20 输出 vpx 频谱设置

.

图 5-21 中频输出频谱和谐波分量

			1234
Datasets and Equations			Traces
Test2	•		Trace Options
Search nf(1) nf(2) nf(3) NFdsb NFssb P_IF port3.NC.index port3.NC.noisefreq port3.NC.rfpower port3.NC.rfpower port3.NC.type	-	List	NFdsb NFssb
Port3.NC.vnc	•	manage >>> Add >>>	

图 5-22 选择 NFdsb 和 NFssb

noisefreq	NFdsb	NFssb
10.00 MHz	12.854	26.472

图 5-23 NFdsb 和 NFssb 的噪声系数

	nce:30			×
HarmonicBalance I HB1	nstance Name			
Freq Sweep	Initial Guess	Oscillator	Noise	Small-Sig Pe
	Parameter to s Parameter swe Sweep Type Start/ Start Stop Step-size Num. of pts.	weep lopower ep 2 Linear Stop © Center 20 1 21 Lan	r /Span None None	
		- <u> </u>		
OK	Abbīà	C:	ancel	Help

图 5-25 扫描噪声系数

在谐波平衡仿真元器件面板中选择 III 图标,并且添加到原理图中,编写变频增益的测试方程,如图 5-26 所示。

Meas MeasEqn	·		•	•	÷	÷			•
Meas1	·		•	•		÷		•	•
ConvGain=	db	m(r	nix	(vpx	;,{-1	,1})-rf	ром	/er
$(\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,$	·							•	
Meas Eqn MeasEqr	۱.		•••	·	÷	÷		۰.	
Meas2							÷		•
P_IF=dbi	m(r	nix(vpx	,{-1	, i})				•

图 5-26 测试方程

再设置 HB 仿真控件参数,如图 5-27 所示,扫描参数为 lopower,扫描方式选择 Linear, 扫描范围为-10~30,步长为 1。其他标签栏暂不作修改。

🔛 Harmonic Bal	ance:30				×
Harmoni cBalance	Instance Name				
HB1	_				
Freq Sweep	Initial Guess	Oscillator	Noise	Small-Sig	Pe
	Parameter to sw	eep lopower			
	-Parameter swee	2p			
	Sweep Type	Linea	• •]		
	Start/S	top 🔘 Center	/Span		
	Start	-10	None 🔻		
	Stop	30	None 🔻		
	Step-size	1	None 🔻		
	Num. of pts.	31			
		an [-		
	E oze zweeb br	an	Ŧ		
	Ånn] v		Incel	Help	
	Apply		and et	Leip	

图 5-27 扫描功率设置

修改之后,完整的电路图如图 5-28 所示。

运行仿真,打开数据显示窗口,单击 III 图标,将 ConvGain 添加到显示项中,如图 5-29 所示。

得到混频器变频损耗随本振功率变化情况,如图 5-30 所示。

图 5-28 完整电路图

			1234 5678
atasets and Equations			Traces
Fest2	•		Trace Options
Search		List 💌	ConvGain
Convision freq HB.rfpower HB_NOISE.noisefreq HB_NOISE.rfpower Mix Mix(1) Mix(2) nf nf(1) nf(2) nf(3)		>>Add >> >>Add Vs>> << Delete << Variable Info Manage	
Enter any Equation		\longrightarrow Add $>>$	

图 5-29 添加变频损耗(增益)

5.2.3 1dB 压缩点的仿真

执行菜单命令 File—Save as...将原理图另存为 Test_2,命名为 1dB,如图 5-31 所示。

单击 HB 仿真控件,其参数扫描设置如图 5-32 所示。注意此时的扫描参数对象为 rfpower。

library:	mixer_lib 🗸
Cell:	Test_2
/iew:	1 dB
ile path:	ADS\works2\mixer7_wrk\mixer_lib\%Test_2\1d%B
[уре:	Schematic
Dptions	
Save the	entire cell

图 5-31 原理图另存为 Test_2,命名为 1dB

HarmonicBalance	Instance Name				
Freq Sweep	Initial Guess	Oscillator	Noise	Small-Sig	Pe
	Parameter to sw Parameter swe Sweep Type Start/S Start Stop Step-size	teep rfpower p Lineau top © Center -30 10 1	✓ /Span None ▼ None ▼ None ▼		
	Num. of pts.	41			

图 5-32 功率扫描参数设置

仿真电路图如图 5-33 所示。

.

单击 🐼 图标运行仿真,在仿真结果窗口中单击 🔤 图标,输入 gain 和理想线性增益 line 的公式,采用 IF power 和 rf power 的关系图可以读出 1dB 压缩点,如图 5-34 所示。

图 5-34 IFpower 和 rfpower 的关系图

也可以写出公式 XDB=line-HB. P_IF,用数据列表的方式验证上面的结论,如图 5-35 所示。

读出 1dB 压缩点,即在射频输入功率为-14dBm 时。

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

图 5-35 1dB 压缩点

5.2.4 三阶交调点的仿真

定义一个新的变量 spacing 为 100kHz,将电路中 RF 输入端的源换成双频,如图 5-36 所示。

图 5-36 更换相应参数以及器件

设置 PORT2 的参数如图 5-37 所示。

设置 HB 仿真控件, Freq 选项的设置如图 5-38 所示, Sweep 选项的设置如图 5-39 所示, 注意, 此时是没有扫描变量的。

在电路中添加 IP3out 控件,设置参数如图 5-40 所示。

单击 👹 图标进行仿真,在仿真结果窗口单击 🚟 图标,将 lower_toi 和 upper_toi 添加到 显示项中,如图 5-41 所示。

得到三阶交调点处的输出功率如图 5-42 所示。

在原理图中添加一阶交调量和三阶交调量公式,如图 5-43 所示。

双击 HB 仿真控件,设置功率扫描参数,如图 5-44 所示。

完整的电路图如图 5-45 所示。

132	

	Harmonic Balance:33
	HarmonicBalance Instance Name
	Freq Sweep Initial Guess Oscillator Noise Small-Sig Pe
Edit Instance Parameters Library name: ads_sources Cell name: P_nTone View name: symbol Instance name: FORT2 Select Parameter Num=2 Z=50 Ohm Freq[1]=RF_freq+spacing/ PhaseNoise[2]= P[1]=dbmtow(rfpower) P[2]=db	Freq Sweep Initial Guess Uscillator Noise Small-Sig Fate Fundamental Frequencies Edit Frequency Order 1 D_freq 3 Select Fund Frequency Order 1 CO_freq 3 2 RF_freq+spacing/2 3 RF_freq-spacing/2 4 Um Paste Maximum mixing order 4 Levels Status level 2
OK Apply Cancel Help	IK Annly Cancel Help
	On Appar Concea Acay
Harmonic Balance:33 Mermonic Balance: Instance Name HBI Preq Sweep Initial Guess Oscillator Noise Small-Sig P() Parameter to sweep Sweep Type Start/Stop Center/Span Start - 40 Home Start/Stop Diment Start - 50 Bone - Num of pts: 51 Use sweep plan	图 5-30 间 成于例 任前 f Fred 延次以且
OK Apply Cancel Help	upper_toi=ip3_out(vpx,{-1,1,0},{-1,2,-1},50) lower_toi=ip3_out(vpx,{-1,0,1},(-1,-1,2),50)

图 5-39 谐波平衡控制器 Sweep 选项设置 图 5-40 IP3out 控件参数设置

		1234 5678
atasets and Equations	Tra	aces
3jie ·		Trace Options
Search	List 🔻 lo	wer_toi
e(2) e(3) one_1 one_3 pper_toi px.NC.index px.NC.noisefreq px.NC.ripower px.NC.ripower px.NC.ripower px.NC.ripower	Variable Info	sper_toi
Enter any Equation	Add >>	

.....

图 5-41 输出三阶交调点设置

lowe	er_toi	upper_toi
	-3.029	-2.832
图 5-42	三阶交训	周点处的输出功率

🔛 Harmonic Balance:33	×
HarmonicBalance Instance Name	
181	
Freq Sweep Initial Guess	Oscillator Noise Small-Sig Ped≪))▶
Farameter to s Parameter swe Sweep Type ® Start/ Start Stop Step-size Hum. of pts.	sweep rfpower eeep be Linear V /Stop Center/Span 40 None V 10 None V 1 None V
Use sweep p)	plan v
OK Apply	Cancel Help

图 5-44 功率扫描参数设置

.

图 5-45 完整的电路图

单击 響图标进行仿真,在仿真结果窗口单击 ∰图标,将 tone_1 和 tone_2 添加到显示 项中,如图 5-46 所示。

	\bigotimes		1234 5678	
atasets and Equations		Tra	ices	
_3jie	•		Trace Og	tions
Search	List	▼ to	ne_1	
te(1) te(2)		>Add >>	ne_3	
te(3)	1			
tone_1		IU YS//		
upper_toi)elete <<		
vрх				
vpx.NC.index	_			
vpx.NC.name vpx.NC.noisefreg	Variat	le Info		
vpx.NC.rfpower				
vpx.NC.type	Ma	nage		
N10				
Enter any Equation		Add >>		

得到一阶交调量和三阶交调量的曲线如图 5-47 所示。

延长一阶交调量和三阶交调量斜率为1:3的部分(近似为一条直线),交点处的

图 5-46 输出一阶交调量和三阶交调量设置

图 5-47 一阶交调量和三阶交调量的曲线

rfpower 即为输入三阶交调点,在-2dB 左右。

5.3 Cadence 仿真实例

本节使用一个 gpdk090 工艺的单平衡混频器作为设计实例,说明混频器的基本仿真设 计流程和 ADE 仿真方法。用于仿真的单平衡混频器电路原理图如图 5-48 所示。

图 5-48 单平衡混频器电路原理图

射频电路设计过程中为了模拟实际电路中的 50Ω 阻抗匹配和端口网络,在输入和输出 端接入"port",如图 5-48 中的射频输入 Prf、本振输入 Plo 和中频输出 Pif。在射频输入端 口、本振输入端口和中频输出端口加入隔置电容 C_{prf}、C_{plo1}、C_{plo2}、C_{pif1} 和 C_{pif2}。在射频输入 端口和本振输入端口通过电阻 R_{b1}、R_{b2} 和 R_{b3},连接直流偏置电压 V_{cm} 和 V_{bias}。电路元器 件相关参数如表 5-1 所示,电源与偏置电压如表 5-2 所示。

表 5-1 元器件相关参数

R1 ,R2	50 Ω
R_{b1} , R_{b2}	$500 \mathbf{\Omega}$

R _{b3}	500 Ω
C_{plo1} , C_{plo2}	5nF
C _{prf}	5nF
C_{pif1} C_{pif2}	5nF
M1	长:100nm;宽:8µm;指数:4
M2 , M3	长:100nm; 宽:10µm;指数:6
表 5-2 株	目关电压参数

VDD	1.2V
V_{cm}	900 m V
$\mathrm{V}_{\mathrm{bias}}$	$600\mathrm{mV}$

5.3.1 混频器电路 DC 仿真

在初步确定混频器电路结构和元器件相关参数后就可以在 Cadence 中建立电路原理图 并开始仿真,具体步骤如下。

(1) 新建原理图,命名为 mixer。

(2) 调入元器件并连线,电路原理图如图 5-49 所示,然后单击 check and save 对电路进行检查并保存。本振输入 port Plo 设置如图 5-50 所示、射频输入 port Prf 设置如图 5-51 所示、中频输出 port Pif 设置如图 5-52 所示。

- ◆ 使用 gpdk090 工艺库中的 nmos1v 器件,设置 NMOS 管 M1 的栅长为 l1,栅宽为 w1,栅指数为 f1,M2 和 M3 的栅长为 l2,栅宽为 w2,栅指数为 f2;
- ◆ 使用 analog 库中的电阻,负载电阻 R1 和 R2 的值为 50Ω,偏置电阻 Rb1 和 Rb2 的 值为 500Ω,偏置电阻 Rb3 的值为 500Ω;

续表

	Edit Object Properties	×		Edit Object Properties	×
Apply To Only cur Show Stow	rent 🔽 instance 🔽 em 🗹 user 🗹 CDF	Â	Apply To only curre Show system	ent 🔽 instance 🔽 n 🗹 user 🖉 CDF	
Browse	Reset Instance Labels Display		Browse	Reset Instance Labels Display	
Property	Value	Display	Property	Value	Display
Library Name	analogLib	off	Library Name	analogLib	off
Cell Name	port	off	Cell Name	port	off
View Name	symbol	off	View Name	symbol	off
Instance Name	PORTØ	off	Instance Name	PORT1	off
User Property Ivsignore	Add Delete Modify Master Value Local Value TRUE	Display off	User Property Ivsignore	Add Delete Modify Master Value Local Value TRUE	Display off
CDF Parameter	Value	Display	CDF Parameter	Value	Display
Port mode	Normal Q HarmonicPort	off	Port mode	Normal Q HarmonicPort	off
Resistance	100 Ohms	off	Resistance	50 Ohms	off
Reactance		off	Reactance		off
Port number		off 🔽	Port number		off
DCvoltage		off 🔽	DCvoltage		off
Source type	sine	off 🔽	Source type	sine	off
Frequency name 1	flo	off	Frequency name 1	frf	off
Frequency 1	3.6G Hz	off 🔽	Frequency 1	3.5G Hz	off
Amplitude 1 (Vpk)		off 🔽	Amplitude 1 (Vpk)		off
Amplitude 1 (dBm)	θ	off 🔽	Amplitude 1 (dBm)	-30	off
Phase for Sinusoid 1		off 🔽	Phase for Sinusoid 1		off
Sine DC level		off	Sine DC level		off
Delaytime		off	Delaytime		off
Display second sinusoid		off	Display second sinusoid		off 🔽
	ancel Apply Defaults Previous	Next <u>H</u> elp		cel <u>Apply</u> Defaults Previous	Next Help

图 5-50 本振 port 参数设置

图 5-51 射频 port 参数设置

◆ 使用 analog 库中的直流电压源 V0 作为 VDD,并设置变量 dc voltage 为 v1; 直流电压源 V1 作为 Vcm,并设置变量 dc voltage 为 v2; 直流电压源 V2 作为 Vbias,并设置变量 dc voltage 为 v3。

(3) 再次单击 check and save 对电路进行检查并保存,在原理图界面单击菜单 Launch—ADE L,打开仿真工具 ADE,在 ADE 界面中首先单击菜单 Setup—Model Libraries,确认仿真模型是否设置正确,如图 5-53 所示,应为 gpdk090.scs 文件,Section 为 NN。

(4) 单击菜单 Variables,选择 Copy from Cellview 项,将各变量复制到 ADE 的变量栏中,双击各变量,w1 设为 10u,w2 设为 8u,f1 设为 6,f2 设为 4,v1 设为 1.2,v2 设为 900m, v3 设为 600m。依次单击菜单 Analyses—Choose,选择 dc 分析,勾选 Save DC Operating Point,dc 设置如图 5-54 所示,单击 OK 保存。

(5) 最后得到的 ADE 界面如图 5-55 所示。然后单击右侧 netlist and run 绿色图标,运行仿真。

(6) 查看 DC 仿真结果,在 ADE 界面依次选择 Results、Print、DC Operating Points,然 后单击选中的 MOS 管就可以查看管子的工作状态和 MOS 管的阈值电压等参数,如图 5-56 与图 5-57 所示为开关级 MOS 管和跨导级 MOS 管的参数。再依次选择 Results、 Annotate、DC Operating Points 和 DC Node Voltages,查看各个节点的电压和 MOS 管的 Vds 和 Vgs 等,结果如图 5-58 所示。

Apply To Only curre	in mistance	
Show 📃 system	n 🗹 user 🗹 CDF	
Browse	Reset Instance Labels Display	
Property	Value	Display
Library Name	analogLib	off
Cell Name	port	off
View Name	symbol	off
Instance Name	PORT2	off
(Add Delete Modify)
User Property	Master Value Local Value	Display
lvslgnore	TRUE	off
CDF Parameter	Value	Display
Port mode	🖲 Normal 🔾 HarmonicPort	off
Resistance	100 Ohms	off
Reactance		off
Port number		off
DCvoltage		off
Source type	dc 🔻	off
Display small signal params		off
Display temperature params		off
Display noise parameters		off
Multiplier		off

.

spectre0: Model Library Setup		×
Model File	Section	_
🖻 Global Model Files		42
4.6/libs.oa22/gpdk090//./models/spectre/gpdk090.scs	NN	
Click here to add model file>		No.
		×
OK Cancel	Apply	Help

图 5-53 仿真模型设置正确验证结果

由图 5-56、图 5-57 与图 5-58 可知,开关级 MOS 管的阈值电压 Vth 约为 255mV,Vgs 约为 420mV,Vds 约为 560mV,满足 Vds>Vgs-Vth,所以开关级 MOS 管工作在饱和区, 此时开关级 MOS 管跨导 g_m 为 34. 8957mS。跨导级 MOS 管的阈值电压 Vth 约为 230mV,Vgs 约为 600mV,Vds 约为 480mV,满足 Vds>Vgs-Vth,所以跨导级 MOS 管也 工作在饱和区,此时跨导级 MOS 管跨导 g_m 为 26. 5794mS。综上所述,混频器的 MOS 管 都处于饱和区,满足电路的工作需求,可以初步实现电路的功能。

	Choosir	ng Analyse	s ADE L	(1) ×
Analysis	🔾 tran	🖲 dc	🔾 ac	🔾 noise
	🔾 xf	🔾 sens	🔾 dcmatch	 acmatch
	🔾 stb	🔾 pz	🔾 sp	🔾 envip
	🔾 pss	🔾 pac	🔾 pstb	🔾 pnoise
	🔾 pxf	🔾 psp	🔾 qpss	🔾 qpac
	🔾 qpnoise	🔾 qpxf	🔾 qpsp	🔾 hb
	🔾 hbac	🔾 hbnoise	🔾 hbsp	
		D C Analys	is	
Save DC Op	erating Point	⊻		
Hysteresis S	weep			
Sweep Var	iable			
Tempe	rature			
Design	Variable			
	nent Paramete	-r		
Model	Parameter			
Enabled 🧕	8			Options
	<u>о</u> к	Cancel	Defaults	Apply <u>H</u> elp
	图:	5-54 dc 1	仿真设置	

.....

				ADE	EL (1) - M	lixer mixe	er schem	natic			,	_	•	×
Laun	ch S <u>e</u> ssion	Setup	Analyses	Variables	<u>O</u> utputs	Simulation	<u>R</u> e sult s	Tools	Calibre	e <u>H</u> elp		cā	d e r	ıce
18	PI	27	K G	• 合 I		_	_			-	-			
Desigr	n Variables				Analyse	5 Enable	_	_	Argu	mente	_	?	Ð×	©AC ODC
a - f1	Name	6	Value	:	1 dc		t		Aigu	menus				ŶJ
1 11 2 f2		4												
3 v1		1.2												×
4 V2 5 V3		600	m m											
6 w1		10u	Ĺ		1		100					-		0
7 w2		8u			Output	s						?	Ð×	b _M
					Nar	ne/Signal/Ex	pr	Value	Plot	Save	Save O	ptions		10
>	11111				Plot after	simulation:	Auto	•	Plottin	g mode:	Replace		-	
	_	_	_	-		_	_	_	_	_	_	_	_	
2(3)	Load State					Stat	us: Ready	T=27	C Si	mulator:	spectre	State	: stat	e1 📗

图 5-55 ADE 设置界面

图 5-58 各个元器件电压电流相关参数图

5.3.2 端口隔离度仿真

(1) 在 ADE 界面单击菜单 Analyses—Choose,弹出对话框,选择 sp 进行 S 参数仿真, 查看端口之间的隔离度,在 Ports 栏单击 Select,然后依次在原理图中选择射频输入 Port Prf、本振输入 Port Plo 和中频输出 Port Pif。在 Sweep Variable 项选 Frequency,在 Sweep Range 项选 Start-Stop 后填入开始与截止频率,分别为 3.5GHz 和 3.8GHz。Sweep Type 项选择 Automatic,然后单击保存。sp 仿真设置如图 5-59 所示。

(2) 单击 Simulation-netlist and Run,开始仿真。仿真结束后,单击 Results—Direct Plot—Main Form,弹出 Direct Plot Form 对话框,依次单击 sp—Rectangular—dB20,界面 如图 5-60 所示。

Choosing Analy	ses ADE L (1) ×	
Analysis C tran C dc Xf Sens Stb Dz	ac	Direct Plot Form
⊖ pss ⊖ pac ⊖ pxf ⊖ psp	 pstb pnoise qpss qpac pho 	Plotting Mode Append
O hbac O hbno	se 🔾 hbsp	● sp
S-Parameter	Analysis	Function
Ports /PORT0 /PORT1 /PORT2	Select Clear	● SP ↓ ZP ↓ YP ↓ HP ↓ GD ↓ VSWR ↓ NFmin ↓ Gmin
Sweep Variable		⊖Rn ⊖rn ⊖NF ⊖Kf
Frequency		◯ B1f ◯ GT ◯ GA ◯ GP
O Design Variable		Gmax Gmsg Gumx ZM
○ Temperature		O NC O GAC O GPC O LSB
Component Parameter Model Parameter		⊖ SSB
Model Parameter None		Description: S-Parameter
		Plot Type
Sweep Range		Rectangular Z-Smith Y-Smith
Center-Span	G Stop 3.7G	O Polar
Sweep Type		Modifier
Automatic		Modifier
		Magnitude Phase Odb20
Add Specific Points		C Real C Imaginary
D o Noise		
🔲 yes		<u></u>
🗹 no		<u></u>
Moda		<u>\$31</u> <u>\$32</u> <u>\$33</u>
Single-Ended Mixed In/Out	Other	Add To Outputs
Enabled 💟	Options Defaults Apply Help	> To plot, press Sij-button on this form
图 5-50 。	。 估直设置	图 5-60 sp 仿直结里杏香
EI 0 0 0 8	2 10 六 以且	回 o no oh N 举出 v 百 但

(3) 最后,单击 S21,S13,S23 查看端口之间的隔离度,结果如图 5-61、图 5-62 和图 5-63 所示。

射频集成电路设计与案例分析 142

图 5-61 S21 结果图

图 5-62 S13 仿真结果图

1

图 5-63 S23 仿真结果图

如图 5-61 所示, S21 代表本振信号输入端口与射频信号输入端口之间的隔离度,在 3.4GHz~3.7GHz 频段内, S21 最大值为-230.612dB,最小值为-231.15dB,说明本振输 入端口与射频输入端口之间的隔离度很高。如图 5-62 所示, S13 是本振信号输入端口与中 频信号输出端口之间的隔离度,这是衡量一个混频器性能的重要指标,因为单平衡结构会导 致本振信号泄漏到中频,在 3.4GHz~3.7GHz 频段内, S13 的值均小于-33.33dB,说明本振 输入端口与中频输出端口之间的隔离度较好。如图 5-63 所示, S23 代表输入的射频信号泄漏 到中频信号输出端口的程度,在 3.4GHz~3.7GHz 频段内, S23 最大值为-267.78dB, S23 最 小值为-269.12dB,表明射频输入端口与中频输出端口的隔离度也满足要求。

5.3.3 混频器谐波仿真

(1) 在 ADE 界面单击菜单 Analyses—Choose,弹出对话框,选择 pss 进行仿真,在 Beat Frequency 栏输入 100M,并选择 Auto Calculate。100MHz 是中频信号的频率。在 Output harmonics 项的 Number of harmonics 栏输入仿真的谐波数为 36,这样 100MHz×36 = 3.6GHz,就覆盖了仿真观察的范围。仿真精度 Accuracy Defaults 项选择 moderate,如图 5-64 所示,单击 OK,完成设置。

(2) 单击 Simulation—netlist and Run,开始仿真。仿真结束后,单击 Results—Direct Plot—Main Form 命令,弹出 Direct Plot Form 对话框,分别单击 pss—Voltages—pectrum—peak—dB20 查看仿真结果,结果查看设置如图 5-65 所示。

	Choos	sing Analy	ses ADE L	(1)
nalysis	🔾 tran	🔾 dc	⊖ ac	O noise
	🔾 xf	sens	O dcmatch	acmatch
	⊖ stb	🔾 pz	🔾 sp	🔾 envlp
	ø pss	🔾 pac	pstb	O pnoise
	pxf	🔾 psp	Q qpss	Q qpac
	Q qpnoise	e 🔾 qpxf	🔾 db ab	O hb
	hbac	hbnois	e 🔾 hbsp	
ține	Perio Shoo	odic Steady St oting 🔾 Har	ate Analysis monic Balance	
Fundame	ntal Tones			
Name	Expr	Value	Signal	SrcId
f10	3.6G	3.6G	Large	PORTO
m	3.30	3.50	Large	PORT
flo	3.66	3.6G	Large 🔽	PORTO
Clearn	Add	ele	opuace Promiti	lierarcity
Geat F	Period	100M	Au	to Calculate 🗌
Beat F Butput han Number c	Period monics of harmonics	100M	Au	to Calculate 📃
Beat F Dutput han Number c Conse Fransient-4 Run trans Detect St	efaults (errpre ervative v m Aided Options sient? • Ye exeady State	199M 36 eset) noderate	liberal	atically
Beat F Dutput ham Number c Accuracy D Conse Fransient-A Run trans Detect St Save Initia	Period monics of harmonics efaults (errpre ervative $\[mathbb{w]\] nAided Optionssient? \[mathbb{w]\] Yeready Stateal Transient Ro$	199M 36 eset) noderate	liberal Decide autom pp Time (tstab) t) _ r	atically
Beat F Dutput han Number c Accuracy D Conse Fransient-F Run tran Detect St Save Initi Save Initi	Period monics of harmonics efaults (errpre ervative ♥ n kided Options sient? ● Ye ready State al Transient Ri arameter	199M 36 set) noderate s 0 No 0 Sto Sto	liberal Decide autom op Time (tstab) k) r	atically
Beat F Dutput han Number of Accuracy D Conse ransient-A Run trans Detect St Save Initi ynamic Pa Scillator	Period monics of harmonics efaults (empre ervative monics inded Options sient? % Ye ceady State al Transient Ru arameter	1984 36 rset) noderate es No Sto state	Au liberal Decide autom pp Time (tstab) R) _ r	atically
Beat F Dutput han Number o Number o Conset Conse Conse Conset Conset Conset Conset	erequency Period monics of harmonics efaults (errpre- eraults @ [m hided Options sient? @ Ye ready State al Transient R arameter	1984 36 sset) noderate sset States states states States	Au liberal Decide autom op Time (tstab) R) _ r	atically
Beat F Dutput harr Number c Accuracy D Conse Transient-A Run tran: Detect St Save Initia ynamic P Sweep lew Initial	erequercy veriod monics of harmonics efaults (errpre- eravative 🖉 n Nided Options sisent? • Ye erady State al Transient Ro arameter Value For Eact	1984 36 set) noderate so No Sto solutions Point (restar	Au liberal Decide autom op Time (tstab) k) r	atically o yes
Beat F Dutput harr Number of Accuracy D Conset Conset	erequency Period of harmonics of harmonics eraults (empre- erwative 🗹 n Nided Options sient? • Ye vecady State al Transient R arameter	1964 36 set) noderate so No Construction States Point (restar	Au liberal / Decide autorm op Time (tstab) k)r	atically o yes

(3)电路中有一个箭头显示,用箭头单击中频输出 port Pif,谐波仿真结果如图 5-66 所示。在仿真结果输出界面中,依次选择 Marker—Place—Trace Marker 或者按键 M 对输出的波形进行标注。

由图 5-66 可知,中频信号基波分量的功率为一36.36dBm,三次谐波的功率为-96.22dBm,五次谐波的功率为-97.18dBm,七次谐波的功率为-99.67dBm。根据仿真结果可知混频器的变频损耗为 6.36dB,由此可见,混频器的基本功能已经实现。

5.3.4 混频器噪声系数仿真

噪声系数是衡量混频器性能的一个重要参数,下面介绍混频器噪声系数如何仿真。

(1) 在混频器的电路图中,选择射频输入 port—Prf,然后在菜单栏中依次单击 Edit— Properties—Objects,或者选中 Port 直接按键 Q,弹出 Port 的属性对话框,将源类型 Source type 由 sine 改为 dc,如图 5-67 所示,单击 OK 按钮。

(2) 在 ADE 的界面窗口中,相关变量设置保持原来的数值不变。单击 Analyses— Choose,弹出对话框,选择 pss 进行仿真,在 Beat Frequency 栏输入 3.6G,并选中 Auto Calculate。在 Output harmonics 项的 Number of harmonics 栏输入仿真的谐波数为 0,这 样噪声分析只对本振信号产生响应。仿真精度 Accuracy Defaults 项选择 moderate,如图 5-68 所示,单击 OK,完成设置。

(3)在 ADE 界面单击 Analyses—pnoise 命令,在 Output Frequency Sweep Range 项的 Start和 Stop 栏分别输入扫描开始频率 1K 和扫描结束频率 4.5G。Sweep Type 项选择 Logarithmic 形式,同时选择 Points Per Decade,输入 10,代表每个频程扫描 10 个点。在 Maximum sideband 栏中输入仿真谐波数为 36。Output 项的 Positive Output Node 栏中,选择中频 port的正端,Negative Output Node 栏中选择 gnd!。同样的操作,在 Input Source 栏中选择射频 port 作为输入源。最后在 Reference Side-Band 栏中输入-1,这个代表进行下混频仿真,完成设置如图 5-69 所示。

				Choo	sing Analys	ses ADE l	. (1)
			Analysis	🔾 tran	⊖ dc	🔾 ac	🔾 noise
				🔾 xf	🔾 sens	🔾 dcmatch	acmatch
				🔾 stb	🔾 pz	🔾 sp	🔾 envlp
				ø pss	🔾 pac	🔾 pstb	O pnoise
				⊖ pxf	🔾 psp	Q qpss	🔾 qpac
				🔾 qpnois	e 🔾 qpxf	O qpsp	🔾 hb
				🔾 hbac	hbnoise	e 🔾 hbsp	
			Engine	Perio	odic Steady Sta	ate Analysis	
		7		6 3100	ung 🔾 Han	nomic balance	
	Edit Object Properties	×	Funda	mental Tones	Value	Ciara 1	Castd
To Only curren	nt 🔽 instance 🔽		* Nam	e Expr	Value	Signai	SICIU
📃 system	user 🗹 CDF		1 flo	3.6G	3.6G	Large	PORTØ
Browse	Reset Instance Labels Display						
Property	Value	Display	flo	3.6G	3.6G	Large	PORTØ
Library Name	analogLib	off	Cle	ar/Add Del	ete	Update From H	lierarchy
Cell Name	port	off	• Be	at Frequency	3.66	A	ito Calculate
View Name	symbol	off	O Be	at Period	5.00		
Instance Name	PORT1	off	Output	narmonics			
(Add Delete Modif	У	Numb	er of harmonics	•		
User Property	Master Value Local Value	e Display	<u> </u>				
oscirroperty			Accurac	· Defeulte (emer			
Ivsignore	TRUE	off		y Deraults (empre	eset)		
Ivsignore	TRUE	Diretau	🗆 c	nservative 🗹	eset) noderate 🗌	liberal	
CDF Parameter	TRUE	D isplay	🔲 co Transie	nservative	noderate	liberal	
Uvsignore CDF Parameter node	Value Normal O HarmonicPort	Display	Transie Run t	nservative Mr nt-Aided Options ansient? () Ye	eset) noderate	liberal Decide autorr	natically
CDF Parameter node	TRUE Value © Normal © HarmonicPort 50 Ohms	Off Display Off Display	Contransie Run t Detect	nservative ☑ r nt-Aided Options ransient? ● Ye t Steady State	eset) noderate	liberal Decide autor	natically
CDF Parameter mode tance	TRUE Value Normal O HarmonicPort 50 Ohms	off Display off Display off Display	Contransie Run t Detec	nservative $\[\] \[\] \] \] \] \] \] \] \] \] \] \] \] \] $	eset) noderate	liberal Decide autorr op Time (tstab)	natically
CDF Parameter mode tance tance tance	TRUE Value Normal O HarmonicPort 50 Ohms	Display off D off D off D off D	Transie Run t Detec Save	nservative $\[] \[] \[] \] \] \] \] \] \] \] \] \] \] \] \] \$	eset) noderate	liberal Decide autorr op Time (tstab) t)	natically
CDF Parameter CDF Parameter mode tance ance number stage	TRUE Value Value Normal O HarmonicPort 50 Ohms	Display off D off D off D off D off D	Carransie Run t Detec Save	nservative $\[mathbb{W}]$ nt-Aided Options ransient? (a) Ye t Steady State nitial Transient R c Parameter	eset) noderate	liberal Decide autom op Time (tstab) t)	natically
CDF Parameter CDF Parameter node tance ance humber Atage e type	TRUE Value Normal O HarmonicPort 50 Ohms dc	Display off D off D off D off D off D off D	Costlate	nservative v r nt-Aided Options ransient? • Ye t Steady State nitial Transient R	eset) noderate	liberal Decide auton op Time (tstab) t)	natically
CDF Parameter mode tance ance number altage te type ay small signal params	TRUE Value Normal O HarmonicPort 50 Ohms dc	Display off D off D off D off D off D off D off D	Contemporation Contem	nservative v r r r r v r v r r r r v r r r r r r	eset) noderate	liberal Decide autorr pp Time (tstab) t)	natically no yes
CDF Parameter mode tance tance sance stage te type ay small signal params ay temperature params	TRUE Value Normal HarmonicPort 50 Ohms dc	Display off D off D off D off D off D off D off D off D	Contractions of the second sec	v beraulus territe inservative v r int-Aided Options ansient? • Ye t Steady State nitial Transient R : Parameter	eset) noderate	liberal Decide autom p Time (tstab) t)	natically no yes
CDF Parameter mode tance tance ce type ay small signal params ay temperature params ay noise parameters	TRUE Value Normal HarmonicPort 50 Ohms dc	off Display off D off D off D off D off D off D off D off D	Contractions of the second sec	inservative v r inservative v r int-Aided Options ansient? • Ye t Steady State nitial Transient R Parameter	noderate noderate s No Stc Stc	liberal Decide autom pp Time (tstab) t)	natically

图 5-67 噪声系数仿真射频 port 设置参数图

(4) 在 ADE 界面依次单击 Stimulation—Netlist and Run,开始仿真。仿真完成后,依 次 Results—Direct Plot—Main Form,弹出 Direct Plot Form 对话框,在对话框中依次选择 pnoise—Noise Figure,如图 5-70 所示。单击 Plot,输出噪声系数波形如图 5-71 所示,按键 M 对波形进行标注。

混频器的噪声系数是衡量混频器性能的重要指标,如果性能达不到设计要求,则要重新 设计优化混频器的开关级与电流注入。中频信号包含有用的射频信号、射频噪声和镜像频 率噪声,如图 5-71 所示,在中频 100MHz 处输出时噪声系数为 17.85dB,满足设计要求。

5.3.5 混频器变频增益仿真

在对混频器的噪声系数仿真后,本节对其变频增益进行仿真。

Applusia	Choosing Analyses ADEL(I) X	
Andrysis	⊖ tran ⊖ dc ⊖ ac ⊖ noise	
	⊖ stb ⊖ pz ⊖ sp ⊖ envlp	
	⊖ pss ⊖ pac ⊖ pstb ● pnoise	
	🔾 pxf 🔍 psp 🔾 qpss 🔾 qpac	
	🔾 qpnoise 🔾 qpxf 🛛 qpsp 🔾 hb	
	🔾 hbac 🔾 hbnoise 🔾 hbsp	
	Periodic Noise Analysis	
SS Beat Frequ	uency (Hz) 3.6G	
Multiple pro	oise	
Sweeptype	default Sweep is currently absolute	
Start-Stop	equency Sweep Range (Hz)	
Sweep Typ	start 1K Stop 4.56	
Logarithmi	Points Per Decade Number of Steps	
Add Specific	Points	Direct Plot Form ×
Sidebands		Plotting Mode
Method	● default 〇 fullspectrum	Analysis
Maximum	sideband 30	⊖ pss ⊚ pnoise
When usin	g shooting engine, default value is 7.	Function
Noise Figure		Output Noise O Input Noise
Output		Noise Figure Noise Factor
voltage	Positive Output Node /net13 Select	VFdsb Fdsb
	Negative Output Node /gnd ! Select	Transfer Function
Input Sour	ce	
port	Input Port Source /PORT1 Select	Currently, only freq data is available
port	Side Pand	Currently, only freq data is available Integrated Over Bandwidth
Reference :	Input Port Source / PORT1 Select	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Plot Plot
Port Reference : Enter in field	Input Port Source / PORT1 Select Side-Band f(in) = f(out) + refsideband * fund d -1	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot Prot Prot
port Reference Enter in field	Input Port Source / PORTI Select Side-Band f(in) = f(out) + refsideband * fund d -1 OK Cancel Defaults Apply Help	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Pfot Pfot Pfot Cancel Help
port Reference : Enter in field	<pre>Input Port Source / PORT1 Select Side-Band f(in) = f(out) + refsideband * fund d -1 OK Cancel Defaults Apply Help 图 5-69 pnoise 仿真参数设置</pre>	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Pross plot button on this form OK Cance Help 图 5-70 pnoise 仿真结果查看设于
port Reference 2 Enter in field	Input Port Source / PORT1 Select Side-Band f(in) = f(out) + refsideband * fund d ♥ -1 OK Cancel Defaults Apply Help 图 5-69 pnoise 仿真参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot Prot Prot Prot Prot Structure OK Cancel Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field riodic Noise me noise figure	Input Port Source / PORTI Select Side-Band f(in) = f(out) + refsideband * fund -1 OK Cancel Defaults Apply OK Cancel Defaults Apply Heip 5-69 pnoise 仿真参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Pross plot button on this form OK Cancel Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field riodic Noise ne hoise figure	Input Port Source / PORTI Select Side-Band f(in) = f(out) + refsideband * fund d	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot Prot Prot Prot Prot ST Cance Help 图 5-70 pnoise 仿真结果查看设
port Reference : Enter in field criodic Noise me noise figure	Input Port Source / PORTI Select Side-Band [f(in)] = [f(out) + refsideband * fund] -1 OK Cancel Defaults Apply M 5-69 pnoise 仿真参数设置.	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Pross plot button on this form OK Cancel Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field triodic Noise me noise figure	Input Port Source / PORTI Select Side-Band [Kin] = [f(out) + refsideband * fund] a -1 OK Cancel Defaults Apply Heip 图 5-69 pnoise 仿真参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Press plot button on this form OK Cance Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field riodic Noise me me	Input Port Source / PORTI Select Side-Band [f(n)] = [f(out) + refsideband * fund] -1 OK Cancel Defaults Apply Heip B 5-69 pnoise ff 真参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Plot > Press plot button on this form OK Cance Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field riodic Noise me noise figure	Input Port Source / PORTI Select Side-Band f(in) = f(out) + refsideband * fund -1 OK Cancel Defaults Apply B 5-69 pnoise f) 有 分数 设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot Prot Prot Cancel Help 图 5-70 pnoise 仿真结果查看设计
port Reference : Enter in field riodic Noise ne noise figure	Input Port Source / PORTI Select Side-Band [f(n)] = [f(out) + refsideband * fund] -1 OK Cancel Defaults Apply Heip B 5-69 pnoise ff 真 参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Pross plot button on this form OK Cance Help 图 5-70 pnoise 仿真结果查看设
port Reference : Enter in field riodic Noise me noise figure	Input Port Source / PORTI Select Side-Band [fin)] = [f(out) + refsideband * fund] -1 OK Cancel Defaults Apply Heip B 5-69 pnoise ff 真 参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot > Press plot button on this form OK Cancel Help 图 5-70 pnoise 仿真结果查看设: M19: 100.0MHz 17.84994B
port Reference : Enter in field riodic Noise ne noise figure	Input Port Source / PORTI Select Side-Band [fin]] = [f(out) + refsideband * fund] -1 QK Cancel Defaults Apply Heip B 5-69 pnoise ff 真 参数设置	Currently, only freq data is available Integrated Over Bandwidth Add To Outputs Prot Press plot button on this form OK Cancel Help 图 5-70 pnoise 仿真结果查看设: M19: 100 0MHz 17.84994B

图 5-71 噪声系数仿真结果图

(1) 在混频器电路图中,选中射频 Port,按照 5.3.4 节中的(1)来设置射频 port 的相关 参数。

(2) 在 ADE 界面窗口中,相关变量设置保持不变。单击 Analyses—Choose,弹出对话框,选择 pss 进行仿真,在 Beat Frequency 栏输入 3.6G,并选中 Auto Calculate。在 Output harmonics 项的 Number of harmonics 栏输入仿真的谐波数为 0,这样变频增益只对本振信号产生响应。仿真精度 Accuracy Defaults 项选择 moderate,如图 5-68 所示,单击 OK,完成设置。

(3) 在 ADE 界面选择 Analyses—pxf 命令,在 Output Frequency Sweep Range 项的 start 栏输入开始扫描频率 1M,在 Stop 栏输入结束扫描频率 300M。在 Sweep Type 项中 选择 Linear 形式,并选择 Number of Steps,输入 300,表示线性地扫描 300 个点。在 Sidebands 项的 Maximum sideband 栏输入边带数为 3。在 Output 项的 Positive Output Node 栏中,单击 Select,用箭头选择中频 port 正端;同样的操作,Negative Output Node 栏 中选择 gnd!,完成设置如图 5-72 所示。

	Choosin	ig Analyse:	s ADE L	(1)	×
Analysis	 tran xf stb pss pxf qpnoise hbac 	 dc sens pz pac psp qpxf hbnoise 	 ac dcmatch sp pstb qpss qpsp hbsp 	 noise acmatch envlp pnoise qpac hb 	
PSS Beat Frequ	P ency (Hz)	eriodic XF An	alysis		
Sweeptype Output Freq Start-Stop Sweep Type Linear Add Spedific F	default uuency Sweep S S oints	 Sw Range (Hz) start 1M Step S Numb 	eep is current Sto ize er of Steps	tly absolute Ip 300M 300	
Sidebands Maximum si When using	deband 💌	3	alue is 7.		
Output voltage probe	Positive Negativ	Output Node e Output Noc	e /net13 le /gnd!	s Sek	ect ect
Specialized A	Analyses				
Enabled 🗹	ОК	Cancel	Defaults	Options Apply H	

图 5-72 pxf 仿真参数设置

(4) 在 ADE 界面依次单击 Stimulation—Netlist and Run,开始仿真。仿真完成后,依 次 Results—Direct Plot—Main Form,弹出 Direct Plot Form 对话框,在对话框中依次选择 pxf—Voltage Gain—sideband—dB20,最后在 input Sideband 项中选择要观测的频率范围, 如图 5-73 所示,用箭头选中射频 port 输出变频增益波形,输出噪声系数波形如图 5-74 所示, 按键 M 对波形进行标注。

.

	Direct Plot Form	×
Plotting Mode	Append	
🔾 pss 💿 pxf		
Function		
Voltage Gain	C Transimpedance	
Sweep		
⊖ spectrum ●	sideband	
Modifier		
🔾 Magnitude 🔇	Phase 💿 dB20	
Q Real) Imaginary	
Input Sideband		
-3 10.5G - -2 6.9G -	10.79	
-1 3.3G -	3.599	
1 3.601G -	3.9G	
Add To Outputs		
freqaxis = absin		
> Select Port or \	/oltage Source on schematic	
		Help

图 5-73 pxf 仿真结果查看设置图

图 5-74 变频增益仿真结果

由图 5-74 可知,在 3.5GHz 中频输出时候变频增益为-9.37dB,当频率超过 3.59GHz 时,变频增益会有一个陡然地降落,在接近 3.6GHz 时变频增益会跌至-9.8dB 以下,由图 可知,越远离本振信号频率,混频器的变频增益越高;反之,越接近则变频增益会越低。

5.3.6 1dB 压缩点仿真

(1) 在混频器电路中,选择射频 Port—Prf,然后在菜单栏中依次单击 Edit—
Properties—Objects,弹出属性对话框,将源类型 Source type 设置为 sine,并将 Amplitude1
(dBm)设置为 prf,如图 5-75 所示,单击 OK 保存设置。

Edit Object Properties					
ApplyTo only only only only only only only onl	current 🔽 instance 🔽				
Show 🗌 sy	stem 🗹 user 🗹 CDF				
Browse	Reset Instance Labels Display				
Property	Value	Display			
Library Name	analogLib	off			
Cell Name	port	off			
View Name	symbol	off			
Instance Name	PORT1	off			
	Add Delete Modify				
User Property	Master Value Local Value	Display			
Ivsignore	TRUE	off			
CDF Paramete	r Value	Display			
Port mode	🖲 Normal 🔾 HarmonicPort	off			
Resistance	50 Ohms	off			
Reactance		off			
Port number		off			
DCvoltage		off			
Source type	sine 🔪	off			
Frequency name 1	frf	off 💌			
Frequency 1	3.5G Hz	off 🔽			
Amplitude 1 (Vpk)		off 🔽			
Amplitude 1 (dBm)	prf	off			
Phase for Sinusoid 1		off			
Sine DC level		off			
Delaytime		off			
Display second sinusoid		off			
		off			

图 5-75 1dB 压缩点仿真射频 port 参数设置

(2) 在 ADE 界面选择菜单 Variables,选择 Copy from Cellview,将变量 prf 复制至 ADE 的变量栏中并设置为一30,在 ADE 界面单击 Analyses—Choose,弹出对话框,选择 pss 进行仿真,在 Beat Frequency 栏输入 50M,并选中 Auto Calculate。在 Output harmonics 项 的 Number of harmonics 栏输入仿真的谐波数为 2。仿真精度 Accuracy Defaults 项选择

moderate,pss 上半段设置如图 5-76 所示。在 pss 对话框中勾选 Sweep 选项,单击 Select Design Variable 按钮,在弹出对话框中选择 Prf 为变量,如图 5-76 所示。设置 Sweep Range 的开始与结束功率分别为一30dBm 和 10dBm。Sweep Type 设置为 Linear 形式,并选择 Number of Steps,输入 10,即线性扫描 10 个点,pss 设置下半部分完成。

	Choosing Analys	es ADE L (1)	×	Choosing Analyses ADE L (1) ×
Analysis	 tran → dc xf → sens stb → pz pss → pac pxf → psp qpnoise → qpxf hbac → hbnoise 	 ac noise dcmatch acmatch sp envlp pstb pnoise qpss qpsc qpsp hb hbsp 	ĥ	f1o 3.6G 3.6G Large PORTØ Clear/Add Delete Update From Hierarchy © Beat Frequency 3.6G Auto Calculate Output harmonics
Engine	Periodic Steady Sta	te Analysis nonic Balance		Accuracy Defaults (errpreset)
Fundame # Name 1 flo 2 frf	ntal Tones Expr Value 3.6G 3.6G 3.5G 3.5G	Signal SrcId Large PORT0 Large PORT1		Conservative Moderate liberal Transient-Aided Options Run transient? Yes No Decide automatically Detect Steady State Stop Time (tstab)
flo Clear/ Beat F Beat F	3.66 3.66 Add Delete frequency 50M	Large PORTO		Save Initial Pransient Results (savelinity) Ino yes Dynamic Parameter
Accuracy D	efaults (errpreset)	liheral		Sweep Range Start-Stop Start -30 Stop 10
Transient A Run trans Detect St Save Initi	kided Options sient? • Yes • No • eady State • Sto al Transient Results (saveinit	Decide automatically p Time (tstab)		Sweep Type Linear Logarithmic Number of Steps
Dynamic Pa Oscillator	arameter			New Initial Value For Each Point (restart) no yes
Sweep (1 V Frequence	ency Variable? In o	ves	Enabled Coptions

图 5-76 pss 上半段与下半段参数设置

(3) 在 ADE 界面依次单击 Stimulation—Netlist and Run,开始仿真。仿真完成后,依次单击 Results—Direct Plot—Main Form,弹出 Direct Plot Form 对话框,在对话框中依次选择 pss—Compression Point,在 Gain Compression 栏输入 1,代表是 1dB 压缩点仿真。在 Input Power Extrapolation Point(dBm)栏输入-25,表示输出波形从-25dBm 开始打印。最后,在 1st Order Harmonic 项中选择 2100M 表示中频输出,如图 5-77 所示,然后用箭头选择中频 port 输出 1dB 压缩点波形,输出噪声系数波形如图 5-78 所示。

第5章 混频器设计 151

Dire	ct Plot Form ×
Plotting Mode Appe	nd 🔽
Analysis	
e pss	
- Function	
🔾 Voltage	Current
O Power	🔘 Voltage Gain
Current Gain	O Power Gain
	Transimpedance
Compression Point	IPN Curves
Power Contours	Reflection Contours
O Harmonic Frequenc	y 🔾 Power Added Eff.
O Power Gain Vs Pout	🔾 Comp. Vs Pout
O Node Complex Imp.	⊖ THD
Compression Point/Curve Gain Compression (dB) "prf" ranges from Input Power Extrapolati	Input-referred
Input Referred 1dB Corr	pression
1st Order Harmonic	
0 0 1 50M 2 100M	
Loadpull Contours	
Add To Outputs	
> Select Port on schema	tic
	OK Cancel Halp

图 5-77 1dB 压缩点仿真结果查看设置

图 5-78 1dB 压缩点仿真结果

由图 5-78 可知,混频器的 1db 压缩点为一5.32dB,1dB 压缩点是混频器线性度的一个 重要指标,线性度决定混频器动态范围的上限。仿真结果显示,当输入信号的幅度变大时, 混频器的非线性失真程度比较小,符合混频器的设计要求指标。

5.3.7 三阶互调截点仿真

(1) 三阶互调截点仿真过程中射频 port 设置不变, pss 下半段更改设置,设置 Sweep Range 的开始与结束功率分别为-25dBm 和 5dBm。Sweep Type 项设置为 Linear 形式,并选择 Number of Steps,输入 5,即线性扫描 5 个点, pss 下半部分设置完成。

(2) 在 ADE 界面单击 Analyses—Choose,弹出对话框,选择 pac 进行仿真,在 PSS Beat Frequency 栏输入 50M。在 Input Frequency Sweep Range 项选择 Single-Point 并输入频率 3501M。在 Additional indices 栏输入-68 与-72,参数设置如图 5-79 所示。

	Choosing Analyses ADE L (1)						
Analysis	🔾 tran	🔾 dc	⊖ ac	🔾 noise			
	🔾 xf	🔾 sens	🔾 dcmatch	🔾 a cmatch			
	🔾 stb	🔾 pz	🔾 sp	🔾 envlp			
	🔾 pss	🖲 pac	🔾 pstb	🔾 pnoise			
	🔾 pxf	🔾 psp	🔾 qpss	🔾 qpac			
	🔾 qpnoise	🔾 qpxf	🔾 qpsp	🔾 hb			
	🔾 hbac	hbnoise	🔾 hbsp				
	F	eriodic AC Ar	alysis				
SS Beat Frequency (Hz) 50M							
	<i></i>	_					
Sweeptype default Sweep is currently absolute							
Input Freq	luency Sweep R	tange (Hz)					
Single-Pol		Freq 3501M	1				
Add Specifi	c Points						
Add Specifi	c Points						
Add Specifi Sidebands	c Points						
Add Specific Sidebands Array of in	c Points	i					
Add Specifi Sidebands Array of in	a Points	l 					
Add Specific Sidebands Array of in Currently a	dices view indices) 					
Add Specific Sidebands Array of in Currently a Additional i	c Points	68 -72					
Add Specific Sidebands Array of in Currently a Additional i	a Points	68 -72					
Add Specific Sidebands Array of in Currently a Additional i	c Points	68 -72					
Add Specific Sidebands Array of in Currently a Additional i	c Points	68 -72					
Add Specific Sidebands Array of in Currently a Additional i	c Points	68 -72					
Add Spedfir Sidebands Array of in Currently a Additional i	c Points	68 -72					
Add Spedfil Sidebands Array of in Currently a Additional i	dices dices dive indices d Analyses	68 -72					
Add Spedifi Sidebands Array of in Currently a Additional i Specializet	dices dices dive indices d Analyses	68 -72]				
Add Spedfil Sidebands Array of in Currently a Additional i Specializer None	c Points dices v dices v dive indices - d Analyses	68 -72]				
Add Spedfil Sidebands Array of in Currently a Additional i Specialized None	c Points	68 -72		Options			
Add Spedfil Sidebands (Array of in Currently at Additional i Specialized None Enabled	dices	68 -72		Options			
Add Spedfil Sidebands (Array of in Currently ar Additional i Specialized None Enabled	c Points idice s ctive indices d Analyses	68 -72	Defaults	Options. Apply			

(3) 在 ADE 界面依次单击 Stimulation—Netlist and Run,开始仿真。仿真完成后,依次 Results—Direct Plot—Main Form,弹出 Direct Plot Form 对话框,在对话框中依次选择 pac—IPN Curves,在 Input Power Extrapolation Point (dBm)栏中输入-15,最后在 3rd

Order Harmonic 和 1st Order Harmonic 项中分别选择 101M 和 99M,如图 5-80 所示。然 后用箭头选择中频 port 输出,三阶互调截点仿真结果如图 5-81 所示。

Direct Plot Form ×						
Plotting Mode	Append					
🔾 pss 💿 pac						
Function						
 ○ Voltage ○ Voltage Gain ○ Current ③ IPN Curves 						
Select Port (fixed R(port))						
Circuit Input Power Single Point Variable Sweep ("prf")						
"prf" ranges from -30 to 10 Input Power Extrapolation Point (dBm) -15						
Input Referred IP	3	Orde	er 3rd 💌			
3rd Order Harmo	nic	1st Order Ha	rmonic			
-72 99M -68 101M 0 3.501G		-72 99 -68 101 0 3.501G	M			
Add To Outputs						
freqaxis = absout						
> Select Port on schematic						
	<u>_</u>	K <u>C</u> ance	el <u>H</u> elp			

图 5-80 pac 仿真结果查看设置

由图 5-81 可知,仿真设置的射频信号功率扫描范围为-25~5dBm,混频器三阶互调截 点为 5.53dB,三阶互调截点也是评价混频器线性度的一个重要指标。综合 1dB 压缩点与三 阶互调截点结果,可看出混频器的线性度较好,反映了混频器的跨导级和负载设计正确。

