µÚ3Õ²ÉÑù·½·¨ ÉÏÒ»Õ½éÉÜÁ˲ÉÑùµÄ¸ÅÄî¡£ÀýÈ磬ÏëÖªµÀÒ»Ëù´óѧÀïËùÓÐÄÐÉúµÄƽ¾ùÉí¸ß¡£µ«ÊÇÒòΪѧУÀïµÄÄÐÉú¿ÉÄÜÓÐÉÏÍòÈËÖ®¶à£¬ËùÒÔΪÿ¸öÈ˶¼²âÁ¿Ò»ÏÂÉí¸ß´æÔںܴóÀ§ÄÑ£¬ÓÚÊÇ´Óÿ¸öÑ§ÔºËæ»úÌôÑ¡³ö100ÃûÄÐÉúÀ´×÷ΪÑù±¾£¬Õâ¸ö¹ý³Ì¾ÍÊDzÉÑù¡£È»¶ø£¬±¾Õ½«ÒªÌÖÂ۵IJÉÑùÔòÓÐÁíÍâÒ»²ãº¬Òå¡£ÏÖʵÖеĺܶàÎÊÌâ¿ÉÄÜÇó½âÆðÀ´ÊÇÏ൱À§Äѵġ£Õâʱ¾Í¿ÉÄÜ»áÏëµ½ÀûÓüÆËã»úÄ£ÄâµÄ·½·¨À´°ïÖúÇó½â¡£ÔÚʹÓüÆËã»ú½øÐÐÄ£Äâʱ£¬Ëù˵µÄ²ÉÑù£¬ÊÇÖ¸´ÓÒ»¸ö¸ÅÂÊ·Ö²¼ÖÐÉú³É¹Û²ìÖµµÄ·½·¨¡£¶øÕâ¸ö·Ö²¼Í¨³£ÊÇÓÉÆä¸ÅÂÊÃܶȺ¯ÊýÀ´±íʾµÄ¡£µ«¼´Ê¹ÔÚÒÑÖª¸ÅÂÊÃܶȺ¯ÊýµÄÇé¿öÏ£¬ÈüÆËã»ú×Ô¶¯Éú³É¹Û²âÖµÒ²²»ÊÇÒ»¼þÈÝÒ×µÄÊÂÇé¡£ 3.1ÃÉÌØ¿¨Âå·¨Ç󶨻ý·Ö ÃÉÌØ¿¨Âå(Monte Carlo)·¨ÊÇÒ»ÀàËæ»úËã·¨µÄͳ³Æ¡£ËüÊÇ20ÊÀ¼Í40Äê´úÖÐÆÚÓÉÓÚ¿ÆÑ§¼¼ÊõµÄ·¢Õ¹£¬ÓÈÆäÊǵç×Ó¼ÆËã»úµÄ·¢Ã÷£¬¶ø±»Ìá³ö²¢·¢Ñï¹â´óµÄÒ»ÖÖÒÔ¸ÅÂÊͳ¼ÆÀíÂÛΪ»ù´¡µÄÊýÖµ¼ÆËã·½·¨¡£ËüµÄºËÐÄ˼Ïë¾ÍÊÇʹÓÃËæ»úÊý(»ò¸ü׼ȷµØËµÊÇÎ±Ëæ»úÊý)À´½â¾öһЩ¸´ÔӵļÆËãÎÊÌâ¡£ÏÖ½ñ£¬ÃÉÌØ¿¨Âå·¨ÒѾ­ÔÚÖî¶àÁìÓòÕ¹ÏÖ³öÁ˳¬Ç¿µÄÄÜÁ¦¡£±¾½Ú£¬ÎÒÃǽ«Í¨¹ýÃÉÌØ¿¨Âå·¨×îΪ³£¼ûµÄÒ»ÖÖÓ¦Ó᪡ªÇó½â¶¨»ý·Ö£¬À´ÑÝʾÕâÀàËã·¨µÄºËÐÄ˼Ïë¡£ 3.1.1ÎÞÒâʶͳ¼ÆÑ§¼Ò·¨Ôò ×÷Ϊһ¸öÔ¤±¸ÖªÊ¶£¬ÏÈÀ´½éÉÜÒ»ÏÂÎÞÒâʶͳ¼ÆÑ§¼Ò·¨Ôò(Law of the Unconscious Statistician£¬LOTUS)¡£ÔÚ¸ÅÂÊÂÛÓëͳ¼ÆÑ§ÖУ¬Èç¹ûÖªµÀËæ»ú±äÁ¿XµÄ¸ÅÂÊ·Ö²¼£¬µ«ÊDz¢²»ÏÔʽµØÖªµÀº¯Êýg(X)µÄ·Ö²¼£¬ÄÇôLOTUS¾ÍÊÇÒ»¸ö¿ÉÒÔÓÃÀ´¼ÆËã¹ØÓÚËæ»ú±äÁ¿XµÄº¯Êýg(X)Ö®ÆÚÍûµÄ¶¨Àí¡£¸Ã·¨ÔòµÄ¾ßÌåÐÎʽÒÀÀµÓÚËæ»ú±äÁ¿XÖ®¸ÅÂÊ·Ö²¼µÄÃèÊöÐÎʽ¡£ Èç¹ûËæ»ú±äÁ¿XµÄ·Ö²¼ÊÇÀëÉ¢µÄ£¬¶øÇÒÎÒÃÇÖªµÀËüµÄPMFÊÇfX£¬µ«²»ÖªµÀfg(X)£¬ÄÇôg(X)µÄÆÚÍûÊÇ E£Ûg(X)£Ý=¡Æxg(x)fX(x) ÆäÖкÍʽÊÇÔÚÈ¡±éXµÄËùÓпÉÄÜÖ®ÖµxºóÇóµÃ¡£ Èç¹ûËæ»ú±äÁ¿XµÄ·Ö²¼ÊÇÁ¬ÐøµÄ£¬¶øÇÒÎÒÃÇÖªµÀËüµÄPDFÊÇfX£¬µ«²»ÖªµÀfg(X)£¬ÄÇôg(X)µÄÆÚÍûÊÇ E£Ûg(X)£Ý=¡Ò¡Þ-¡Þg(x)fX(x) ¼ò¶øÑÔÖ®£¬ÒÑÖªËæ»ú±äÁ¿XµÄ¸ÅÂÊ·Ö²¼£¬µ«²»ÖªµÀg(X)µÄ·Ö²¼£¬´ËʱÓÃLOTUS¹«Ê½ÄܼÆËã³öº¯Êýg(X)µÄÊýѧÆÚÍû¡£Æäʵ¾ÍÊÇÔÚ¼ÆËãÆÚÍûʱ£¬ÓÃÒÑÖªµÄXµÄPDF(»òPMF)´úÌæÎ´ÖªµÄg(X)µÄPDF(»òPMF)¡£ 3.1.2Ͷµã·¨ ͼ3ª²1Ͷµã·¨Ç󶨻ý·Ö Ͷµã·¨Êǽ²½âÃÉÌØ¿¨Âå·¨»ù±¾Ë¼ÏëµÄÒ»¸ö×î»ù´¡Ò²×îÖ±¹ÛµÄʵÀý¡£Õâ¸ö·½·¨Ò²³£³£±»ÓÃÀ´ÇóÔ²ÖÜÂʦС£ÏÖÔÚÎÒÃÇÓÃËüÀ´Çóº¯ÊýµÄ¶¨»ý·Ö¡£Èçͼ3ª²1Ëùʾ£¬ÓÐÒ»¸öº¯Êýf(x)£¬ÈôÒªÇóËü´Óaµ½bµÄ¶¨»ý·Ö£¬Æäʵ¾ÍÊÇÇóÇúÏßÏ·½µÄÃæ»ý¡£ ¿ÉÒÔÓÃÒ»¸ö±È½ÏÈÝÒ×ËãµÃÃæ»ýµÄ¾ØÐÍÕÖÔÚº¯ÊýµÄ»ý·ÖÇø¼äÉÏ(¼ÙÉèÆäÃæ»ýΪArea)¡£È»ºóËæ»úµØÏòÕâ¸ö¾ØÐοòÀïÃæÍ¶µã£¬ÆäÖÐÂäÔÚº¯Êýf(x)Ï·½µÄµãΪÁâÐΣ¬ÆäËûµãΪÈý½ÇÐΡ£È»ºóͳ¼ÆÁâÐεãµÄÊýÁ¿Õ¼ËùÓеã(ÁâÐÎ+Èý½ÇÐÎ)ÊýÁ¿µÄ±ÈÀýΪr£¬ÄÇô¾Í¿ÉÒԾݴ˹ÀËã³öº¯Êýf(x)´Óaµ½bµÄ¶¨»ý·ÖΪArea¡Ár¡£ ×¢ÒâÓÉÃÉÌØ¿¨Âå·¨µÃ³öµÄÖµ²¢²»ÊÇÒ»¸ö¾«È·Öµ£¬¶øÊÇÒ»¸ö½üËÆÖµ¡£¶øÇÒµ±Í¶µãµÄÊýÁ¿Ô½À´Ô½´óʱ£¬Õâ¸ö½üËÆÖµÒ²Ô½½Ó½üÕæÊµÖµ¡£ 3.1.3ÆÚÍû·¨ ÏÂÃæÀ´Öصã½éÉÜÀûÓÃÃÉÌØ¿¨Âå·¨Ç󶨻ý·ÖµÄµÚ¶þÖÖ·½·¨¡ª¡ªÆÚÍû·¨£¬ÓÐʱҲ³ÆÎªÆ½¾ùÖµ·¨¡£ ÈÎȡһ×éÏ໥¶ÀÁ¢¡¢Í¬·Ö²¼µÄËæ»ú±äÁ¿{Xi}£¬XiÔÚ£Ûa£¬b£ÝÉÏ·þ´Ó·Ö²¼ÂÉfX£¬Ò²¾ÍÊÇ˵fXÊÇËæ»ú±äÁ¿XµÄPDF(»òPMF)¡£Áîg*(x)=g(x)fX(x)£¬Ôòg*(Xi)Ò²ÊÇÒ»×é¶ÀÁ¢Í¬·Ö²¼µÄËæ»ú±äÁ¿£¬¶øÇÒÒòΪg*(x)ÊǹØÓÚxµÄº¯Êý£¬ËùÒÔ¸ù¾ÝLOTUS¿ÉµÃ E£Ûg*(Xi)£Ý=¡Òbag*(x)fX(x)dx=¡Òbag(x)dx=I ÓÉÇ¿´óÊý¶¨Àí PrlimN¡ú¡Þ1N¡ÆNi=1g*(Xi)=I=1 ÈôÑ¡ =1N¡ÆNi=1g*(Xi) ÔòÒÀ¸ÅÂÊ1ÊÕÁ²µ½I¡£Æ½¾ùÖµ·¨¾ÍÓÃ×÷ΪIµÄ½üËÆÖµ¡£ ¼ÙÉèÒª¼ÆËãµÄ»ý·ÖÓÐÈçÏÂÐÎʽ I=¡Òbag(x)dx ÆäÖУ¬±»»ýº¯Êýg(x)ÔÚÇø¼ä£Ûa£¬b£ÝÉϿɻý¡£ÈÎÒâÑ¡ÔñÒ»¸öÓмò±ã°ì·¨¿ÉÒÔ½øÐгéÑùµÄ¸ÅÂÊÃܶȺ¯ÊýfX(x)£¬Ê¹ÆäÂú×ãÏÂÁÐÌõ¼þ£º (1) µ±g(x)¡Ù0ʱ£¬fX(x)¡Ù0£¬a¡Üx¡Üb£» (2) ¡ÒbafX(x)dx=1¡£ Èç¹û¼Ç g*(x)=g(x)fX(x) £¬fX(x)¡Ù0 0£¬fX(x)=0 ÄÇôԭ»ý·Öʽ¿ÉÒÔд³É I=¡Òbag*(x)fX(x)dx Òò¶øÇó»ý·ÖµÄ²½ÖèÊÇ£º (1) ²úÉú·þ´Ó·Ö²¼ÂÉfXµÄËæ»ú±äÁ¿Xi£¬i=1£¬2£¬¡­£¬N£» (2) ¼ÆËã¾ùÖµ =1N¡ÆNi=1g*(Xi) ²¢ÓÃËü×÷ΪIµÄ½üËÆÖµ£¬¼´I¡Ö¡£ Èç¹ûa£¬bΪÓÐÏÞÖµ£¬ÄÇôfX¿ÉÈ¡×÷Ϊ¾ùÔÈ·Ö²¼ fX(x)=1b-a£¬a¡Üx¡Üb 0£¬ÆäËû ´ËʱԭÀ´µÄ»ý·Öʽ±äΪ I=(b-a)¡Òbag(x)1b-adx Òò¶øÇó»ý·ÖµÄ²½ÖèÊÇ£º (1) ²úÉú£Ûa£¬b£ÝÉϵľùÔÈ·Ö²¼Ëæ»ú±äÁ¿Xi£¬i=1£¬2£¬¡­£¬N£» (2) ¼ÆËã¾ùÖµ =b-aN ¡ÆNi=1g(Xi) ²¢ÓÃËü×÷ΪIµÄ½üËÆÖµ£¬¼´I¡Ö¡£ ×îºóÀ´¿´Ò»ÏÂÆ½¾ùÖµ·¨µÄÖ±¹Û½âÊÍ¡£×¢Òâ»ý·ÖµÄ¼¸ºÎÒâÒå¾ÍÊÇ£Ûa£¬b£ÝÇø¼äÇúÏßÏ·½µÄÃæ»ý£¬Èçͼ3ª²2Ëùʾ¡£ µ±ÔÚ£Ûa£¬b£ÝËæ»úȡһµãxʱ£¬Ëü¶ÔÓ¦µÄº¯ÊýÖµ¾ÍÊÇf(x)£¬È»ºó±ã¿ÉÒÔÓÃf(x)¡¤(b-a)À´´ÖÂÔ¹À¼ÆÇúÏßÏ·½µÄÃæ»ý(Ò²¾ÍÊÇ»ý·Ö)£¬Èçͼ3ª²3Ëùʾ£¬µ±È»ÕâÖÖ¹À¼Æ(»ò½üËÆ)ÊǷdz£´ÖÂԵġ£ ͼ3ª²2»ý·ÖµÄ¼¸ºÎÒâÒå ͼ3ª²3¶Ô»ý·ÖÖµ½øÐдÖÂÔ¹À¼Æ ÓÚÊÇÎÒÃÇÏëµ½ÔÚ£Ûa£¬b£ÝËæ»úȡһϵÁеãxiʱ(xiÂú×ã¾ùÔÈ·Ö²¼)£¬È»ºó°Ñ¹ÀËã³öÀ´µÄÃæ»ýȡƽ¾ùÀ´×÷Ϊ»ý·Ö¹À¼ÆµÄÒ»¸ö¸üºÃµÄ½üËÆÖµ£¬Èçͼ3ª²4Ëùʾ¡£¿ÉÒÔÏëÏó£¬Èç¹ûÕâÑùµÄ²ÉÑùµãÔ½À´Ô½¶à£¬ÄÇô¶ÔÓÚÕâ¸ö»ý·ÖµÄ¹À¼ÆÒ²¾ÍÔ½À´Ô½½Ó½ü¡£ ͼ3ª²4¶Ô»ý·ÖÖµ½øÐйÀ¼Æ °´ÕÕÉÏÃæÕâ¸ö˼·£¬µÃµ½»ý·Ö¹«Ê½Îª =(b-a)1N ¡ÆN-1i=0f(Xi)=1N ¡ÆN-1i=0f(Xi)1b-a ÆäÖУ¬1b-a ¾ÍÊǾùÔÈ·Ö²¼µÄPMF¡£Õâ¸úÖ®Ç°ÍÆµ¼³öÀ´µÄÃÉÌØ¿¨Âå»ý·Ö¹«Ê½ÊÇÒ»Öµġ£ 3.2ÃÉÌØ¿¨Âå²ÉÑù ÔÚ3.1½ÚÖУ¬Í¨¹ýÇó½â¶¨»ý·ÖÕâ¸ö¾ßÌåµÄÀý×ÓÀ´ÑÝʾÁËÃÉÌØ¿¨Âå·½·¨µÄ»ù±¾Ë¼Ï룬¶øÆäÖеĺËÐľÍÊÇʹÓÃËæ»úÊý¡£µ±ËùÇó½âÎÊÌâ¿ÉÒÔת»¯ÎªÄ³ÖÖËæ»ú·Ö²¼µÄÌØÕ÷Êý(ÈçËæ»úʼþ³öÏֵĸÅÂÊ£¬»òÕßËæ»ú±äÁ¿µÄÆÚÍûÖµµÈ)ʱ£¬ÍùÍù¾Í¿ÉÒÔ¿¼ÂÇʹÓÃÃÉÌØ¿¨Âå·½·¨¡£Í¨¹ýËæ»ú³éÑùµÄ·½·¨£¬ÒÔËæ»úʼþ³öÏֵįµÂʹÀ¼ÆÆä¸ÅÂÊ£¬»òÕßÒÔ³éÑùµÄÊý×ÖÌØÕ÷¹ÀËãËæ»ú±äÁ¿µÄÊý×ÖÌØÕ÷£¬²¢½«Æä×÷ΪÎÊÌâµÄ½â¡£ÕâÖÖ·½·¨¶àÓÃÓÚÇó½â¸´Ôӵĸßά»ý·ÖÎÊÌâ¡£ ʵ¼ÊÓ¦ÓÃÖУ¬ËùÒªÃæ¶ÔµÄµÚÒ»¸öÎÊÌâ¾ÍÊÇÈçºÎ³éÑù£¿×¢Ò⣬ÔÚ¼ÆËã»úÄ£Äâʱ£¬ÕâÀïËù˵µÄ³éÑùÆäʵÊÇÖ¸´ÓÒ»¸ö¸ÅÂÊ·Ö²¼ÖÐÉú³É¹Û²ìÖµ(observations)µÄ·½·¨¡£¶øÕâ¸ö·Ö²¼Í¨³£ÊÇÓÉÆä¸ÅÂÊÃܶȺ¯ÊýÀ´±íʾµÄ¡£Ç°ÃæÔø¾­Ìá¹ý£¬¼´Ê¹ÔÚÒÑÖªPDFµÄÇé¿öÏ£¬ÈüÆËã»ú×Ô¶¯Éú³É¹Û²âÖµÒ²²»ÊÇÒ»¼þÈÝÒ×µÄÊÂÇé¡£´Ó±¾ÖÊÉÏÀ´Ëµ£¬¼ÆËã»úÖ»ÄÜʵÏÖ¶Ô¾ùÔÈ·Ö²¼µÄ²ÉÑù¡£ÐÒÔ˵ÄÊÇ£¬ÈÔÈ»¿ÉÒÔÔÚ´Ë»ù´¡É϶ԸüΪ¸´Ôӵķֲ¼½øÐвÉÑù¡£ 3.2.1Äæ²ÉÑù ±È½Ï¼òµ¥µÄÒ»ÖÖÇé¿öÊÇ£¬¿ÉÒÔͨ¹ýPDFÓëCDFÖ®¼äµÄ¹ØÏµ£¬Çó³öÏàÓ¦µÄCDF¡£»òÕ߸ù±¾¾Í²»ÖªµÀPDF£¬µ«ÊÇÖªµÀCDF¡£´Ëʱ¾Í¿ÉÒÔʹÓÃCDF·´º¯Êý(¼°·ÖλÊýº¯Êý)µÄ·½·¨À´½øÐвÉÑù¡£ÕâÖÖ·½·¨ÓÖ³ÆÎªÄæ±ä»»²ÉÑù(Inverse Transform Sampling)¡£ ¼ÙÉèÒѾ­µÃµ½ÁËCDFµÄ·´º¯ÊýF-1(u)£¬Èç¹ûÏëµÃµ½m¸ö¹Û²ìÖµ£¬ÔòÖØ¸´ÏÂÃæµÄ²½Öèm´Î£º (1) ´ÓU(0£¬1)ÖÐËæ»úÉú³ÉÒ»¸öÖµ(¼ÆËã»ú¿ÉÒÔʵÏÖ´Ó¾ùÔÈ·Ö²¼ÖвÉÑù)£¬ÓÃu±íʾ£» (2) ¼ÆËãF-1(u)µÄÖµx£¬Ôòx¾ÍÊÇ´ÓÄ¿±ê·Ö²¼f(x)ÖеóöµÄÒ»¸ö²ÉÑùµã¡£ Ãæ¶ÔÒ»¸ö¾ßÓи´ÔÓ±í´ïʽµÄº¯Êý£¬Äæ±ä»»²ÉÑù·¨ÕæÓÐЧÂð£¿À´¿´Ò»¸öÀý×Ó£¬¼ÙÉèÏÖÔÚÏ£Íû´Ó¾ßÓÐÏÂÃæÕâ¸öPDFµÄ·Ö²¼ÖвÉÑù f(x)=8x£¬0¡Üx<0.25 83-8x3£¬0.25¡Üx¡Ü1 0£¬ÆäËû ¿ÉÒÔËãµÃÏàÓ¦µÄCDFΪ F(x)=0£¬x<0 4x2£¬0¡Üx<0.25 8x3-4x23-13£¬0.25¡Üx¡Ü1 1£¬x>1 ¶ÔÓÚu¡Ê£Û0£¬1£Ý£¬ÉÏÊöCDFµÄ·´º¯ÊýΪ F-1(u)=u2£¬0¡Üx<0.25 1-3(1-u)2£¬0.25¡Üx¡Ü1 ÏÂÃæÔÚRÖÐÀûÓÃÉÏÃæµÄ·½·¨²ÉÑù10000¸öµã£¬²¢ÒÔ´ËÀ´ÑÝʾ³éÑùµÄЧ¹û¡£ m <- 10000 u <- runif(m£¬ 0£¬ 1) invcdf.func <- function(u) { + if (u >= 0 && u < 0.25) +sqrt(u)/2 +else if (u >= 0.25 && u <= 1) +1 - sqrt(3 * (1 - u))/2 + } x <- unlist(lapply(u£¬ invcdf.func)) curve(8*x£¬ from = 0£¬ to = 0.25£¬ xlim=c(0£¬1)£¬ ylim=c(0£¬2)£¬ + col = "red"£¬xlab = ""£¬ ylab="") par(new=TRUE) curve((8/3)-(8/3)*x£¬ from = 0.25£¬ to = 1£¬ xlim=c(0£¬1)£¬ ylim=c(0£¬2)£¬ + col = "red"£¬xlab = ""£¬ ylab="") par(new=TRUE) plot(density(x)£¬ xlim=c(0£¬1)£¬ ylim=c(0£¬2)£¬ + col = "blue"£¬ xlab = "x"£¬ ylab="density") ͼ3ª²5Äæ±ä»»²ÉÑù¾ÙÀý ½«ËùµÃ½á¹ûÓëÕæÊµµÄPDFº¯ÊýͼÐνøÐжÔÕÕ£¬Èçͼ3ª²5Ëùʾ¡£¿É¼ûÓÉÄæ±ä»»²ÉÑù·¨µÃµ½µÄµãËù³ÊÏÖ´¦ÀíµÄ·Ö²¼ÓëÄ¿±ê·Ö²¼·Ç³£ÎǺϡ£ ÏÂÃæÔÙ¾ÙÒ»¸öÉÔ΢¸´ÔÓÒ»µãµÄÀý×Ó£¬ÒÑÖª·Ö²¼µÄPDFÈçÏ h(x)=2m2(1-m2)x3 £¬x¡Ê£Ûm£¬1£Ý ¿ÉÒÔËãµÃÏàÓ¦µÄCDFΪ H(x)=¡Òx-¡Þh(t)dt0£¬x1 ¶ÔÓÚu¡Ê£Û0£¬1£Ý£¬ËüµÄ·´º¯ÊýΪ H-1(u)=m21-(1-m2)u ͬÑù£¬¸ø³öRÖеÄʾÀý´úÂëÈçÏ¡£ invcdf <- function(u£¬ m) { return(sqrt(m^2/(1 - (1 - m^2) * u))) } sample1 <- sapply(runif(1000)£¬ invcdf£¬ m = .5) ÏÂÃæÕâ¶Î´úÂëÀûÓÃRÖÐÌṩµÄһЩÄÚÖú¯ÊýʵÏÖÁËÒÑÖªPDFʱ»ùÓÚÄæ±ä»»·½·¨µÄ²ÉÑù£¬½«Ð¶¨ÒåµÄº¯ÊýÃüÃûΪsamplepdf()¡£µ±È»£¬¶ÔÓÚÄÇЩ¹ýÓÚ¸´ÔÓµÄPDFº¯Êý(ÀýÈçºÜÄÑ»ý·ÖµÄ)£¬samplepdf()ȷʵÓÐÁ¦Ëù²»¼°µÄÇé¿ö¡£µ«ÊǶÔÓÚ±ê×¼µÄ³£¹æPDF£¬¸Ãº¯ÊýµÄЧ¹û»¹ÊDz»´íµÄ¡£ endsign <- function(f£¬ sign = 1) { b <- sign while (sign * f(b) < 0) b <- 10 * b return(b) } samplepdf <- function(n£¬ pdf£¬ ...£¬ spdf.lower = -Inf£¬ spdf.upper = Inf) { vpdf <- function(v) sapply(v£¬ pdf£¬ ...) # vectorize cdf <- function(x) integrate(vpdf£¬ spdf.lower£¬ x)$value invcdf <- function(u) { subcdf <- function(t) cdf(t) - u if (spdf.lower == -Inf) spdf.lower <- endsign(subcdf£¬ -1) if (spdf.upper == Inf) spdf.upper <- endsign(subcdf) return(uniroot(subcdf£¬ c(spdf.lower£¬ spdf.upper))$root) } sapply(runif(n)£¬ invcdf) } ÏÂÃæ¾ÍÓÃsamplepdf()º¯ÊýÀ´¶ÔÉÏÃæ¸ø¶¨µÄh(x)½øÐвÉÑù£¬È»ºóÔÙ¸ú֮ǰËùµÃ½á¹û½øÐжԱȡ£ h <- function(t£¬ m) { if (t >= m & t <= 1) return(2 * m^2/(1 - m^2)/t^3) return(0) } sample2 <- samplepdf(1000£¬ h£¬ m = .5) plot(density(sample1)£¬ xlim=c(0.4£¬ 1.1)£¬ ylim=c(0£¬ 4)£¬ + col = "red"£¬ xlab = ""£¬ ylab=""£¬ main="") par(new=TRUE) plot(density(sample2)£¬ xlim=c(0.4£¬ 1.1)£¬ ylim=c(0£¬ 4)£¬ + col ="blue"£¬ xlab = "x£¬ N=1000"£¬ ylab="density"£¬ main="") text.legend = c("my_invcdf"£¬"samplepdf") legend("topright"£¬ legend = text.legend£¬ lty = c(1£¬1)£¬ col = c( "red"£¬ "blue")) ´úÂëÖ´Ðнá¹ûÈçͼ3ª²6Ëùʾ¡£ ͼ3ª²6Äæ²ÉÑù´úÂëÖ´Ðнá¹û 3.2.2²©¿Ë˹ª²ÄÂÀձ任 ²©¿Ë˹ª²ÄÂÀձ任(Boxª²Muller Transform)×î³õÓÉÇÇÖΡ¤²©¿Ë˹(George Box)ÓëĬÎÄ¡¤ÄÂÀÕ(Mervin Muller)ÔÚ1958Ä깲ͬÌá³ö¡£²©¿Ë˹ÊÇͳ¼ÆÑ§µÄÒ»´ú´óʦ£¬Í³¼ÆÑ§ÖеĺܶàÃû´ÊÊõÓï¶¼ÒÔÆäÃû×ÖÃüÃû¡£²©¿Ë˹Óëͳ¼ÆÑ§µÄ¼ÒѧԨԴÏ൱Éîºñ£¬ËûµÄµ¼Ê¦ÊÇͳ¼ÆÑ§¿ªÉ½±Ç×æÆ¤¶ûÑ·µÄ¶ù×Ó£¬Ó¢¹úͳ¼ÆÑ§¼Ò°£¹±¡¤Æ¤¶ûÑ·(Egon Pearson)£¬²©¿Ë˹»¹ÊÇͳ¼ÆÑ§µÄÁíÍâһλ¾Þ뢼¶µì»ùÈË·ÑÏ£¶ûµÄÅ®Ðö¡£Í³¼ÆÑ§ÖеÄÃûÑÔ¡°ËùÓÐÄ£ÐͶ¼ÊÇ´íµÄ£¬µ«ÆäÖÐһЩÊÇÓÐÓõġ±Ò²³ö×Ô²©¿Ë˹֮¿Ú¡£ ±¾ÖÊÉÏÀ´Ëµ£¬¼ÆËã»úÖ»ÄÜÉú²ú·ûºÏ¾ùÔÈ·Ö²¼µÄ²ÉÑù¡£Èç¹ûÒªÉú³ÉÆäËû·Ö²¼µÄ²ÉÑù£¬¾ÍÐèÒª½èÖúһЩ¼¼ÇÉÐԵķ½·¨¡£¶øÔÚÖÚ¶àµÄ¡°ÆäËû·Ö²¼¡±ÖУ¬Õý̬·Ö²¼ÎÞÒÉÕ¼¾Ý×ÅÏàµ±ÖØÒªµÄµØÎ»¡£ÏÂÃæÕâ¸ö¶¨Àí£¬¾ÍΪÉú³É·ûºÏÕý̬·Ö²¼µÄ²ÉÑù(Ëæ»úÊý)ÌṩÁËÒ»ÖÖ·½·¨£¬¶øÇÒÕâÒ²ÊǺܶàÈí¼þ»òÕß±à³ÌÓïÑԵĿ⺯ÊýÖÐÉú³ÉÕý̬·Ö²¼Ëæ»úÊýʱËù²ÉÑùµÄ·½·¨¡£ ¶¨Àí(Boxª²Muller±ä»»)£º Èç¹ûËæ»ú±äÁ¿U1ºÍU2ÊǶÀÁ¢Í¬·Ö²¼µÄ£¬ÇÒU1£¬U2~U£Û0£¬1£Ý£¬Ôò Z0=-2lnU1cos(2¦ÐU2) Z1=-2lnU1sin(2¦ÐU2) ÆäÖУ¬Z0ºÍZ1¶ÀÁ¢ÇÒ·þ´Ó±ê×¼Õý̬·Ö²¼¡£ ÈçºÎÀ´Ö¤Ã÷Õâ¸ö¶¨ÀíÄØ£¿ÕâÐèÒªÓõ½Ò»Ð©Î¢»ý·ÖÖеÄ֪ʶ£¬Ê×ÏÈ»ØÒäһ϶þÖØ»ý·Ö»¯Îª¼«×ø±êÏÂÀ۴λý·ÖµÄ·½·¨ ¬ëDf(x£¬y)dxdy=¡Ò¦Â¦Ád¦È¡Ò¦Ñ2(¦È)¦Ñ1(¦È)f(¦Ñcos¦È£¬¦Ñsin¦È)¦Ñd¦Ñ ¼ÙÉèÏÖÔÚÓÐÁ½¸ö¶ÀÁ¢µÄ±ê×¼Õý̬·Ö²¼X~N(0£¬1)ºÍY~N(0£¬1)£¬ÓÉÓÚÁ½ÕßÏ໥¶ÀÁ¢£¬ÔòÁªºÏ¸ÅÂÊÃܶȺ¯ÊýΪ p(x£¬y)=p(x)¡¤p(y)=12¦Ð e-x22 ¡¤12¦Ð e-y22 =12¦Ð e-x2+y22 ×ö¼«×ø±ê±ä»»£¬Ôòx=Rcos¦È£¬y=Rsin¦È£¬ÔòÓÐ 12¦Ðe-x2+y22=12¦Ðe-R22 Õâ¸ö½á¹û¿ÉÒÔ¿´³ÉÊÇÁ½¸ö¸ÅÂÊ·Ö²¼µÄÃܶȺ¯ÊýµÄ³Ë»ý£¬ÆäÖÐÒ»¸ö¿ÉÒÔ¿´³ÉÊÇ£Û0£¬2¦Ð£ÝÉϾùÔÈ·Ö²¼£¬½«Æäת»»Îª±ê×¼¾ùÔÈ·Ö²¼ÔòÓЦÈ~U(0£¬2¦Ð)=2¦ÐU2¡£ ÁíÍâÒ»¸öµÄÃܶȺ¯ÊýΪ P(R)=e-R22 ÔòÆäÀۼƷֲ¼º¯ÊýCDFΪ P(R¡Ür)=¡Òr0e-¦Ñ22¦Ñd¦Ñ=-e-¦Ñ22r0=-e-r22+1 Õâ¸öCDFº¯ÊýµÄ·´º¯Êý¿ÉÒÔд³É F-1(u)=-2log(1-u) ¸ù¾ÝÄæ±ä»»²ÉÑùµÄÔ­Àí£¬Èç¹ûÓиöPDFΪP(R)µÄ·Ö²¼£¬ÄÇô¶ÔÆëCDFµÄ·´º¯Êý½øÐоùÔȲÉÑùËùµÃµÄÑù±¾·Ö²¼½«·ûºÏP(R)µÄ·Ö²¼£¬¶øÈç¹ûuÊǾùÔÈ·Ö²¼µÄ£¬ÄÇôU1=1-uÒ²½«ÊǾùÔÈ·Ö²¼µÄ£¬ÓÚÊÇÓÃU1Ìæ»»1-u£¬×îºó¿ÉµÃ X=R¡¤cos¦È=-2logU1¡¤cos(2¦ÐU2) Y=R¡¤sin¦È=-2logU1¡¤sin(2¦ÐU2) ½áÂÛµÃÖ¤¡£×îºóÀ´×ܽáÒ»ÏÂÀûÓÃBoxª²Muller±ä»»Éú³É·ûºÏ¸ß˹·Ö²¼µÄËæ»úÊýµÄ·½·¨£º (1) ²úÉúÁ½¸öËæ»úÊýU1£¬U2~U£Û0£¬1£Ý£» (2) ÓÃËüÃÇÀ´´´Ôì°ë¾¶R=-2log(U1)ºÍºÍ¼Ð½Ç¦È=2¦ÐU2£» (3) ½«(R£¬¦È)´Ó¼«×ø±êת»»µ½µÑ¿¨¶ù×ø±ê£º (Rcos¦È£¬Rsin¦È)¡£ 3.2.3¾Ü¾ø²ÉÑùÓë×ÔÊÊÓ¦¾Ü¾ø²ÉÑù ¶ÁÕßÒѾ­¿´µ½Äæ±ä»»²ÉÑùµÄ·½·¨È·ÊµÓÐЧ¡£µ«ÆäʵËüµÄȱµãÒ²ÊǺÜÃ÷ÏԵģ¬ÄǾÍÊÇÓÐЩ·Ö²¼µÄCDF¿ÉÄܺÜÄÑͨ¹ý¶ÔPDFµÄ»ý·ÖµÃµ½£¬ÔÙ»òÕßCDFµÄ·´º¯ÊýÒ²ºÜ²»ÈÝÒ×Çó¡£Õâʱ¿ÉÄÜÐèÒªÓõ½ÁíÍâÒ»ÖÖ²ÉÑù·½·¨£¬Õâ¾ÍÊÇÏÂÃæ¼´½«Òª½éÉܵľܾø²ÉÑù(Reject Sampling)¡£ ͼ3ª²7¾Ü¾ø²ÉÑùµÄÔ­Àí ͼ3ª²7²ûÊÍÁ˾ܾø²ÉÑùµÄ»ù±¾Ë¼Ïë¡£¼ÙÉè¶ÔPDFΪp(x)µÄº¯Êý½øÐвÉÑù£¬µ«ÊÇÓÉÓÚÖÖÖÖÔ­Òò(ÀýÈçÕâ¸öº¯ÊýºÜ¸´ÔÓ)£¬¶ÔÆä½øÐвÉÑùÊÇÏà¶ÔÀ§Äѵġ£µ«ÊÇÁíÍâÒ»¸öPDFΪq(x)µÄº¯ÊýÔòÏà¶ÔÈÝÒײÉÑù£¬ÀýÈç²ÉÓÃÄæ±ä»»·½·¨¿ÉÒÔºÜÈÝÒ×¶Ô¶ÔËü½øÐвÉÑù£¬ÉõÖÁq(x)¾ÍÊÇÒ»¸ö¾ùÔÈ·Ö²¼(±ðÍüÁ˼ÆËã»ú¿ÉÒÔÖ±½Ó½øÐвÉÑùµÄ·Ö²¼¾ÍÖ»ÓоùÔÈ·Ö²¼)¡£ÄÇô£¬µ±ÎÒÃǽ«q(x)ÓëÒ»¸ö³£ÊýMÏà³ËÖ®ºó£¬¿ÉÒÔʵÏÖÈçͼ3ª²7Ëùʾ¹ØÏµ£¬¼´M¡¤q(x)½«p(x)ÍêÈ«¡°ÕÖס¡±¡£ È»ºóÖØ¸´Èçϲ½Ö裬ֱµ½»ñµÃm¸ö±»½ÓÊܵIJÉÑùµã£º (1) ´Óq(x)ÖлñµÃÒ»¸öËæ»ú²ÉÑùµãxi£» (2) ¶ÔÓÚxi¼ÆËã½ÓÊܸÅÂÊ(acceptanceprobability) ¦Á=p(xi)Mq(xi) (3) ´ÓU(0£¬1)ÖÐËæ»úÉú³ÉÒ»¸öÖµ£¬ÓÃu±íʾ£» (4) Èç¹û¦Á¡Ýu£¬Ôò½ÓÊÜxi×÷Ϊһ¸öÀ´×Ôp(x)µÄ²ÉÑùÖµ£¬·ñÔò¾Í¾Ü¾øxi²¢»Øµ½µÚÒ»²½¡£ µ±È»¿ÉÒÔ²ÉÓÃÑÏÃܵÄÊýÑ§ÍÆµ¼À´Ö¤Ã÷¾Ü¾ø²ÉÑùµÄ¿ÉÐÐÐÔ¡£µ«ËüµÄÔ­Àí´ÓÖ±¹ÛÉÏÀ´½âÊÍÒ²ÊÇÏ൱ÈÝÒ×Àí½âµÄ¡£¿ÉÒÔÏëÏóÒ»ÏÂÔÚͼ2ª²7µÄÀý×ÓÖУ¬´ÓÄÄЩλÖóé³öµÄµã»á±È½ÏÈÝÒ× Í¼3ª²8¾Ü¾ø²ÉÑùʾÀý ±»½ÓÊÜ¡£ÏÔÈ»£¬ºìÉ«ÇúÏß(λÓÚÉÏ·½)ºÍÂÌÉ«ÇúÏß(λÓÚÏ·½)Ëùʾ֮º¯Êý¸ü¼Ó½Ó½üµÄµØ·½½ÓÊܸÅÂʽϸߣ¬¼´ÊǸüÈÝÒ×±»½ÓÊÜ£¬ËùÒÔÔÚÕâÑùµÄµØ·½²Éµ½µÄµã¾Í»á±È½Ï¶à£¬¶øÔÚ½ÓÊܸÅÂʽϵÍ(¼´Á½¸öº¯Êý²î¾à½Ï´ó)µÄµØ·½²Éµ½µÄµã»á±È½ÏÉÙ£¬ÕâÒ²¾Í±£Ö¤ÁËÕâ¸ö·½·¨µÄÓÐЧÐÔ¡£ »¹ÊÇÒÔ±¾ÕÂÇ°Ãæ¸ø³öµÄÄǸö·Ö¶Îº¯Êýf(x)ΪÀýÀ´ÑÝʾ¾Ü¾ø²ÉÑù·½·¨¡£Èçͼ3ª²8Ëùʾ£¬ËùÑ¡ÔñµÄ²Î¿¼·Ö²¼ÊǾùÔÈ·Ö²¼(µ±È»Ò²¿ÉÒÔÑ¡ÔñÆäËûµÄ·Ö²¼£¬µ«²ÉÓþùÔÈ·Ö²¼ÏÔÈ»ÊÇ´Ë´¦×î¼òµ¥µÄÒ»ÖÖ´¦Àí·½Ê½)¡£¶øÇÒÁî³£ÊýM=3¡£ ÏÂÃæ¸ø³öRÖеÄʾÀý´úÂ룬Ò×¼û´Ë´¦²ÉÑùµãÊýĿΪ10000¡£ f.x <- function(x) { + if (x >= 0 && x < 0.25) + 8 * x + else if (x >= 0.25 && x <= 1) + 8/3 - 8 * x/3 + else 0 + } g.x <- function(x) { + if (x >= 0 && x <= 1) + 1 + else 0 + } M <- 3 m <- 10000 n.draws <- 0 draws <- c() x.grid <- seq(0£¬ 1£¬ by = 0.01) while (n.draws < m) { + x.c <- runif(1£¬ 0£¬ 1) + accept.prob <- f.x(x.c)/(M * g.x(x.c)) + u <- runif(1£¬ 0£¬ 1) + if (accept.prob >= u) { +draws <- c(draws£¬ x.c) +n.draws <- n.draws + 1 +} + } ÉÏÊö´úÂëµÄÖ´Ðнá¹ûÈçͼ3ª²9Ëùʾ£¬¿É¼û²ÉÑù½á¹ûÊǷdz£ÀíÏëµÄ¡£ ÏÂÃæµÄÀý×ÓÑÝʾÁ˶Ô(±í´ïʽ·Ç³£¸´ÔÓµÄ)beta(3£¬6)·Ö²¼½øÐоܾø²ÉÑùµÄЧ¹û¡£ÕâÀï²ÉÓþùÔÈ·Ö²¼×÷Ϊ²Î¿¼·Ö²¼¡£¶øÇÒÕâÀïµÄMq(x)Ëùȡֵ֮¾ÍÊÇbeta(3£¬6)·Ö²¼µÄ¼«´óÖµ£¬ËüµÄº¯ÊýͼÐÎÓ¦¸ÃÊÇÓëbeta(3£¬6)µÄ¼«ÖµµãÏàÇеÄÒ»ÌõˮƽֱÏß¡£ sampled <- data.frame(proposal = runif(50000£¬0£¬1)) sampled$targetDensity <- dbeta(sampled$proposal£¬ 3£¬6) maxDens = max(sampled$targetDensity£¬ na.rm = T) sampled$accepted = ifelse(runif(50000£¬0£¬1) + < sampled$targetDensity / maxDens£¬ TRUE£¬ FALSE) hist(sampled$proposal£Ûsampled$accepted£Ý£¬ freq = F£¬ + col = "grey"£¬ breaks = 100£¬ main="") curve(dbeta(x£¬ 3£¬6)£¬0£¬1£¬ add =T£¬ col = "red"£¬ main="") ͼ3ª²10¸ø³öÁ˲ÉÑù50000¸öµãºóµÄÃܶȷֲ¼Çé¿ö£¬¿É¼û²ÉÑù·Ö²¼ÓëÄ¿±ê·Ö²¼beta(3£¬6)·Ç³£ÎǺϡ£ ͼ3ª²9³ÌÐòÖ´Ðнá¹û ͼ3ª²10¾Ü¾ø²ÉÑù¾ÙÀý ¾Ü¾ø²ÉÑùµÄ·½·¨È·Êµ¿ÉÒÔ½â¾öÎÒÃǵÄÎÊÌâ¡£µ«ÊÇËüµÄÒ»¸ö²»×ãÉæ¼°Æä²ÉÑùЧÂʵÄÎÊÌâ¡£Õë¶ÔÉÏÃæ¸ø³öµÄÀý×Ó¶øÑÔ£¬ÎÒÃÇÑ¡ÔñÁËÀëÄ¿±êº¯Êý×î½üµÄ²Î¿¼º¯Êý£¬¾Í¾ùÔÈ·Ö²¼¶øÑÔ£¬ÒѾ­²»ÄÜÓиü½øÒ»²½µÄ·½·¨ÁË¡£µ«¼´Ê¹ÕâÖÖ£¬ÔÚÕâ¸öÀàËÆÖÓÐεÄͼÐÎÁ½²àÆäʵÈÔÈ»»á¾Ü¾øµôºÜ¶àºÜ¶à²ÉÑùµã£¬ÕâÖÖ¿ªÏúÏ൱ÀË·Ñ¡£×îÀíÏëµÄÇé¿öÏ£¬²Î¿¼·Ö²¼Ó¦¸Ã¸úÄ¿±ê·Ö²¼Ô½½Ó½üÔ½ºÃ£¬´ÓͼÐÎÉÏÀ´¿´¾ÍÊǰü¹üµÄÔ½½ôʵԽºÃ¡£µ«ÊÇÕâÖÖÇé¿öµÄ²Î¿¼·Ö²¼ÍùÍùÓÖ²»ÄÇôÈÝÒ׵õ½¡£ÔÚÂú×ãijЩÌõ¼þµÄʱºòҲȷʵ¿ÉÒÔ²ÉÓÃËùνµÄ¸Ä½ø·½·¨£¬¼´×ÔÊÊÓ¦µÄ¾Ü¾ø²ÉÑù(Adaptive Rejection Sampling)¡£ ¾Ü¾ø²ÉÑùµÄÈõµãÔÚÓÚµ±±»¾Ü¾øµÄµãºÜ¶àʱ£¬²ÉÑùµÄЧÂÊ»á·Ç³£²»ÀíÏ롣ͬʱÎÒÃÇÒ²ÖªµÀ£¬Èç¹ûÄܹ»ÕÒµ½Ò»¸ö¸úÄ¿±ê·Ö²¼º¯Êý·Ç³£½Ó½üµÄ²Î¿¼º¯Êý£¬ÄÇô¾Í¿ÉÒÔ±£Ö¤±»½ÓÊܵĵãÕ¼´ó¶àÊý(±»¾Ü¾øµÄµãºÜÉÙ)¡£ÕâÑùÒ»À´±ã¿Ë·þÁ˾ܾø²ÉÑùЧÂʲ»¸ßµÄÈõµã¡£Èç¹ûº¯ÊýÊÇlogª²concaveµÄ»°£¬ÄÇô¾Í¿ÉÒÔ²ÉÓÃ×ÔÊÊÓ¦µÄ¾Ü¾ø²ÉÑù·½·¨¡£Ê²Ã´ÊÇlogª²concaveÄØ£¿»¹Êǻص½Ö®Ç°½éÉܹýµÄ±´Ëþ·Ö²¼£¬ÓÃÏÂÃæµÄ´úÂëÀ´»æÖÆbeta(2£¬3)µÄ¸ÅÂÊÃܶȺ¯ÊýͼÏñ£¬ÒÔ¼°½«beta(2£¬3)µÄº¯ÊýÈ¡¶ÔÊýÖ®ºóµÄͼÐΡ£ > integrand <- function(x) {(x^1)*((1-x)^2)} > integrate(integrand£¬ lower = 0£¬ upper = 1) 0.08333333 with absolute error < 9.3e-16 > f<-function(x£¬a£¬b){log(1/0.08333)+(a-1)*log(x)+(b-1)*log(1-x)} > curve(f(x£¬ 2£¬ 3)) > curve(dbeta(x£¬ 2£¬ 3)) ÉÏÊö´úÂëµÄÖ´Ðнá¹ûÈçͼ3ª²11Ëùʾ£¬ÆäÖÐ(a)ÊÇbeta(2£¬3)µÄ¸ÅÂÊÃܶȺ¯ÊýͼÐΣ¬(b)Êǽ«beta(2£¬3)µÄº¯ÊýÈ¡¶ÔÊýÖ®ºóµÄͼÐΣ¬Äã¿ÉÒÔ·¢ÏÖ½á¹ûÊÇÒ»¸ö°¼º¯Êý(concave)¡£ÄÇôbeta(2£¬3)¾ÍÂú×ãlogª²concaveµÄÒªÇó¡£ Í¼3ª²11±´Ëþº¯ÊýÓëÆäÈ¡¶ÔÊýºóµÄº¯ÊýͼÐÎ È»ºóÔÚ¶ÔÊýͼÏñÉÏÕÒһЩµã×öͼÏñµÄÇÐÏߣ¬Èçͼ3ª²12Ëùʾ¡£ÒòΪȡ¶ÔÊýºóµÄº¯ÊýÊǰ¼º¯Êý£¬ËùÒÔÿ¸öÇÐÏß¶¼Ï൱ÓÚÒ»¸ö³¬Æ½Ã棬¶øÇÒ¶ÔÊýͼÏñÖ»»áλÓÚ³¬Æ½ÃæµÄÒ»²à¡£ ͬʱ¸ø³öÓÃÒÔ»æÖÆÍ¼3ª²12µÄ´úÂ룬Ҫ֪µÀRÓïÑÔµÄÒ»¸öÇ¿Ïî¾ÍÊÇ»æÍ¼¡£ log_f <- function(x£¬a£¬b){log(1/0.08333)+(a-1)*log(x)+(b-1)*log(1-x)} g <- function(x£¬a£¬b){(a-1)/x-(b-1)/(1-x)} log_f_y1 <- log_f(0.18£¬ 2£¬ 3) log_f_y2 <- log_f(0.40£¬ 2£¬ 3) log_f_y3 <- log_f(0.65£¬ 2£¬ 3) log_f_y4 <- log_f(0.95£¬ 2£¬ 3) g1 <- g(0.18£¬ 2£¬ 3) b1 <- log_f_y1 - g1*0.18 y1 <- function(x) {g1*x+b1} g2 <- g(0.40£¬ 2£¬ 3) b2 <- log_f_y2 - g2*0.40 y2 <- function(x) {g2*x+b2} g3 <- g(0.65£¬ 2£¬ 3) b3 <- log_f_y3 - g3*0.65 y3 <- function(x) {g3*x+b3} g4 <- g(0.95£¬ 2£¬ 3) b4 <- log_f_y4 - g4*0.95 y4 <- function(x) {g4*x+b4} curve(log_f(x£¬ 2£¬ 3)£¬ col = "blue"£¬ xlim = c(0£¬1)£¬ ylim = c(-7£¬ 1)) curve(y1£¬ add = T£¬ lty = 2£¬ col = "red"£¬ to = 0.38) curve(y2£¬ add = T£¬ lty = 2£¬ col = "red"£¬ from = 0.15£¬ to=0.78) curve(y3£¬ add = T£¬ lty = 2£¬ col = "red"£¬ from = 0.42) curve(y4£¬ add = T£¬ lty = 2£¬ col = "red"£¬ from = 0.86) par(new=TRUE) xs = c(0.18£¬ 0.40£¬ 0.65£¬ 0.95) ys = c(log_f_y1£¬ log_f_y2£¬ log_f_y3£¬ log_f_y4) plot(xs£¬ ys£¬ col="green"£¬ xlim=c(0£¬1)£¬ ylim=c(-7£¬ 1)£¬ xlab=""£¬ ylab="") ÔÙ°ÑÕâЩÇÐÏßת»»»ØÔ­Ê¼µÄbeta(2£¬3)ͼÏñÖУ¬ÏÔȻԭÀ´µÄÏßÐÔº¯Êý»á±ä³ÉÖ¸Êýº¯Êý£¬ËüÃǽ«¶ÔӦͼ3ª²13ÖеÄһЩÇúÏߣ¬ÕâЩÇúÏ߻ᱻԭº¯ÊýµÄͼÐνô½ô°ü¹üס¡£ÌرðÊǵ±ÕâЩµÄÖ¸Êýº¯Êý±äµÃºÜ¶àºÜ³íÃÜʱ£¬ÒԱ˴˵Ľ»µã×÷Ϊ·Ö½çÏߣ¬ÆäʵÏ൱Óڵõ½ÁËÒ»¸ö·Ö¶Îº¯Êý¡£Õâ¸ö·Ö¶Îº¯ÊýÊÇÔ­º¯ÊýµÄÒ»¸ö±Æ½ü¡£ÓÃÕâ¸ö·Ö¶Îº¯ÊýÀ´×÷Ϊ²Î¿¼º¯ÊýÔÙÖ´Ðоܾø²ÉÑù£¬×ÔÈ»¾ÍÍêÃÀµØ½â¾öÁË֮ǰµÄÎÊÌâ¡£ ͼ3ª²12×öÈ¡¶ÔÊýºóµÄͼÐεÄÇÐÏß Í¼3ª²13ÇÐÏßȡָÊýº¯ÊýºóµÄ±ä»»½á¹û ÏÂÃæÊÇÓÃÀ´»­³öͼ3ª²13µÄRÓïÑÔ´úÂë¡£ e_y1 <- function(x) {exp(g1*x+b1)} e_y2 <- function(x) {exp(g2*x+b2)} e_y3 <- function(x) {exp(g3*x+b3)} e_y4 <- function(x) {exp(g4*x+b4)} curve(dbeta(x£¬ 2£¬ 3)£¬ col="blue"£¬ ylim=c(0£¬ 2.0)) curve(e_y1(x)£¬ add=T£¬ lty=3£¬ col = "red") curve(e_y2(x)£¬ add=T£¬ lty=3£¬ col = "red"£¬ from = 0.2£¬ to = 0.75) curve(e_y3(x)£¬ add=T£¬ lty=3£¬ col = "red"£¬ from=0.48) curve(e_y4(x)£¬ add=T£¬ lty=3£¬ col = "red"£¬ from=0.86) ÕâÎÞÒÉÊÇÒ»ÖÖ¾øÃîµÄÏë·¨¡£¶øÇÒÕâÖÖÏë·¨£¬ÔÚÇ°ÃæÆäʵÒѾ­°µÊ¾¹ý¡£ÔÚÉÏÒ»²¿·Ö×îºóÒ»¸öÀý×ÓÖУ¬ÎÒÃÇÆäʵ¾ÍÊÇÑ¡ÔñÁËÒ»¸öÓëÔ­º¯ÊýÏàÇеľùÔÈ·Ö²¼º¯ÊýÀ´×÷Ϊ²Î¿¼º¯Êý¡£ÎÒÃǵ±È»»áÏëȥѡÔñ¸ü¶àÓëÔ­º¯ÊýÏàÇеĺ¯Êý£¬È»ºóÓÃÕâ¸öº¯ÊýµÄ¼¯ºÏÀ´×÷ΪеIJο¼º¯Êý¡£Ö»ÊÇÓÉÓÚÔ­º¯ÊýµÄ°¼Í¹ÐÔÎÞ·¨±£Ö¤£¬ËùÒÔÖ±Ïß²¢²»ÊÇÒ»ÖֺõÄÑ¡Ôñ¡£¶ø×ÔÊÊÓ¦¾Ü¾ø²ÉÑù(Adaptive Rejection Sampling£¬ARS)Ëù²ÉÓõIJßÂÔÔò·Ç³£ÇÉÃîµØ½â¾öÁËÎÒÃǵÄÎÊÌâ¡£µ±È»º¯ÊýÊÇlogª²concaveµÄÌõ¼þ±ØÐëÂú×㣬·ñÔò¾Í²»ÄÜʹÓÃARS¡£ ÏÂÃæ¸ø³öÒ»¸öÔÚRÖнøÐÐ×ÔÊÊÓ¦¾Ü¾ø²ÉÑùµÄÀý×Ó¡£ÏÔÈ»£¬¸ÃÀý×ÓÒª±È֮ǰµÄ´úÂë¼òµ¥Ðí¶à¡£ÒòΪRÖÐars°üÒѾ­ÌṩÁËÒ»¸öÏֳɵÄÓÃÓÚÖ´ÐÐ×ÔÊÊÓ¦¾Ü¾ø²ÉÑùµÄº¯Êý£¬¼´ars()¡£¹ØÓÚÕâ¸öº¯ÊýÔÚÓ÷¨ÉϵÄһЩϸ½Ú£¬¶ÁÕß»¹¿ÉÒÔ½øÒ»²½²ÎÔÄRµÄ°ïÖúÎĵµ£¬ÕâÀï²»ÔÙ׸ÑÔ¡£´Ë´ÎÎÒÃÇÐèÒªÖ¸³ö£º ars()º¯ÊýÖÐÁ½¸öÖØÒª²ÎÊý£¬Ò»¸öÊǶÔÔ­·Ö²¼µÄPDFÈ¡¶ÔÊý£¬ÁíÍâÒ»¸öÔòÊǶÔPDFµÄ¶ÔÊýÐÎʽÔÙ½øÐÐÇóµ¼(ÔÚÇóµ¼Ê±ÎÒÃǺöÂÔÁËÇ°ÃæµÄϵÊýÏî)£¬ÆäʵҲ¾ÍÊÇΪÁËÈ·¶¨ÇÐÏß¡£ f<-function(x£¬a£¬b){(a-1)*log(x)+(b-1)*log(1-x)} fprima<-function(x£¬a£¬b){(a-1)/x-(b-1)/(1-x)} mysample<-ars(20000£¬ f£¬ fprima£¬ x=c(0.3£¬0.6)£¬ m=2£¬ lb=TRUE£¬ xlb=0£¬ + ub=TRUE£¬ xub=1£¬ a=1.3£¬ b=2.7) hist(mysample£¬ freq=F) curve(dbeta(x£¬1.3£¬2.7)£¬ add=T£¬ col="red") ÉÏÊö´úÂëµÄÖ´Ðнá¹ûÈçͼ3ª²14Ëùʾ¡£ ͼ3ª²14×ÔÊÊÓ¦²ÉÑù´úÂëÖ´Ðнá¹û 3.3¾ØÕóµÄ¼«ÏÞÓëÂí¶û¿Æ·òÁ´ ÏÈÀ´¿´Ò»¸öÀý×Ó¡£Éç»áѧ¼Ò¾­³£°ÑÈ˰´Æä¾­¼Ã×´¿ö·Ö³É3Àࣺ ϲã(lowerª²class)¡¢Öвã(middleª²class)¡¢Éϲã(upperª²class)£¬ÓÃ1¡¢2¡¢3·Ö±ð´ú±íÕâÈý¸ö½×²ã¡£Éç»áѧ¼ÒÃÇ·¢ÏÖ¾ö¶¨Ò»¸öÈ˵ÄÊÕÈë½×²ãµÄ×îÖØÒªµÄÒòËØ¾ÍÊÇÆä¸¸Ä¸µÄÊÕÈë½×²ã¡£Èç¹ûÒ»¸öÈ˵ÄÊÕÈëÊôÓÚϲãÀà±ð£¬ÄÇôËûµÄº¢×ÓÊôÓÚϲãÊÕÈëµÄ¸ÅÂÊÊÇ0.65£¬ÊôÓÚÖвãÊÕÈëµÄ¸ÅÂÊÊÇ0.28£¬ÊôÓÚÉϲãÊÕÈëµÄ¸ÅÂÊÊÇ0.07¡£´Ó¸¸´úµ½×Ó´ú£¬ÊÕÈë½×²ãµÄ±ä»¯µÄ×ªÒÆ¸ÅÂÊÈçͼ3ª²15Ëùʾ¡£ ͼ3ª²15½×²ã±ä»¯µÄ×ªÒÆ¸ÅÂÊ Ê¹ÓþØÕóµÄ±íʾ·½Ê½£¬×ªÒƸÅÂʾØÕó¼ÇΪ P=0.650.280.07 0.150.670.18 0.120.360.52 ¼ÙÉ赱ǰÕâÒ»´úÈË´¦ÔÚÏ¡¢ÖС¢ÉϲãµÄÈ˵ıÈÀýÊǸÅÂÊ·Ö²¼ÏòÁ¿¦Ð0=£Û¦Ð0(1)£¬¦Ð0(2)£¬¦Ð0(3)£Ý£¬ÄÇôËûÃǵÄ×ÓÅ®µÄ·Ö²¼±ÈÀý½«ÊǦÐ1=¦Ð0P£¬Ëï×Ó´úµÄ·Ö²¼±ÈÀý½«ÊǦÐ2=¦Ð1P=¦Ð1P2=¡­£¬µÚn´ú×ÓËïµÄÊÕÈë·Ö²¼±ÈÀý½«ÊǦÐn=¦Ðn-1P=¡­=¦Ð0Pn¡£¼ÙÉè³õʼ¸ÅÂÊ·Ö²¼Îª¦Ð0=£Û0.21£¬0.68£¬0.11£Ý£¬Ôò¿ÉÒÔ¼ÆËãǰn´úÈ˵ķֲ¼×´¿öÈçÏ£º µÚn´úÈËϲãÖвãÉϲã 00.2100.6800.110 10.2520.5540.194 20.2700.5120.218 30.2780.4970.225 40.2820.4900.226 50.2850.4890.225 60.2860.4890.225 70.2860.4890.225 80.2890.4880.225 90.2860.4890.225 100.2860.4890.225 ¡­¡­¡­¡­ ·¢ÏÖ´ÓµÚ7´úÈË¿ªÊ¼£¬Õâ¸ö·Ö²¼¾ÍÎȶ¨²»±äÁË£¬Õâ¸öÊÇżȻµÄÂð£¿ÎÒÃÇ»»Ò»¸ö³õʼ¸ÅÂÊ·Ö²¼¦Ð0=£Û0.75£¬0.15£¬0.1£ÝÊÔÊÔ¿´£¬¼ÌÐø¼ÆËãǰn´úÈ˵ķֲ¼×´¿öÈçÏ µÚn´úÈËϲãÖвãÉϲã 00.750.150.1 10.5220.3470.132 20.4070.4260.167 30.3490.4590.192 40.3180.4750.207 50.3030.4820.215 60.2950.4850.220 70.2910.4870.222 80.2890.4880.225 90.2860.4890.225 100.2860.4890.225 ¡­¡­¡­¡­ ½á¹û£¬µ½µÚ9´úÈ˵Äʱºò£¬·Ö²¼ÓÖÊÕÁ²ÁË¡£×îÎªÆæÌØµÄÊÇ£¬Á½´Î¸ø¶¨²»Í¬µÄ³õʼ¸ÅÂÊ·Ö²¼£¬×îÖÕ¶¼ÊÕÁ²µ½¸ÅÂÊ·Ö²¼¦Ð=£Û0.286£¬0.489£¬0.225£Ý£¬Ò²¾ÍÊÇ˵ÊÕÁ²µÄÐÐΪºÍ³õʼ¸ÅÂÊ·Ö²¼¦Ð0Î޹ء£Õâ˵Ã÷Õâ¸öÊÕÁ²ÐÐΪÖ÷ÒªÊÇÓɸÅÂÊ×ªÒÆ¾ØÕóP¾ö¶¨µÄ¡£¼ÆËãÒ»ÏÂPn£¬ P20=P21=¡­=P100=¡­=0.2860.4890.225 0.2860.4890.225 0.2860.4890.225 ÎÒÃÇ·¢ÏÖ£¬µ±n×ã¹»´óµÄʱºò£¬Õâ¸öPn¾ØÕóµÄÿһÐж¼ÊÇÎȶ¨µØÊÕÁ²µ½¦Ð=£Û0.286£¬0.489£¬0.225£ÝÕâ¸ö¸ÅÂÊ·Ö²¼¡£×ÔÈ»µØ£¬Õâ¸öÊÕÁ²ÏÖÏó²¢·ÇÊÇÕâ¸öÀý×ÓËù¶ÀÓУ¬¶øÊǾø´ó¶àÊý¡°Âí¶û¿Æ·òÁ´¡±µÄ¹²Í¬ÐÐΪ¡£ ΪÁËÇóµÃÒ»¸öÀíÂÛÉϵĽá¹û£¬ÔÙÀ´¿´Ò»¸ö¸üС¹æÄ£µÄÀý×Ó(Õ⽫·½±ãºóÐøµÄ¼ÆËãÑÝʾ)£¬¼ÙÉèÔÚÒ»¸öÇøÓòÄÚ£¬ÈËÃÇҪôÊÇסÔÚ³ÇÊУ¬ÒªÃ´ÊÇסÔÚÏç´å¡£ÏÂÃæµÄ¾ØÕó±íʾÈË¿ÚÇ¨ÒÆµÄһЩ¹æÂÉ(»òÇãÏò)¡£ÀýÈ磬µÚ1ÐеÚ1Áоͱíʾ£¬µ±Ç°×¡ÔÚ³ÇÊеÄÈ˿ڣ¬Ã÷Ä꽫»áÓÐ90%µÄÈËÑ¡Ôñ¼ÌÐø×¡ÔÚ³ÇÊС£ µ±Ç°×¡ÔÚ ³ÇÊÐ µ±Ç°×¡ÔÚ Ïç´å ÏÂÒ»ÄêסÔÚ³ÇÊÐ ÏÂÒ»ÄêסÔÚÏç´å0.900.02 0.100.98=A ͼ3ª²16Á½ÄêºóÈ˿ڵÄ×ªÒÆ ×÷Ϊһ¸ö¼òµ¥µÄ¿ªÊ¼£¬À´¼ÆËãÒ»ÏÂÏÖ½ñסÔÚ³ÇÊеÄÈËÖÐ2Äêºó»áסÔÚÏç´åµÄ¸ÅÂÊÓжà´ó¡£·ÖÎö¿ÉÖª£¬µ±Ç°×¡ÔÚ³ÇÊеÄÈË£¬1Äêºó£¬»áÓÐ90%¼ÌÐøÑ¡ÔñסÔÚ³ÇÊУ¬ÁíÍâ10%µÄÈËÔò»áÑ¡Ôñ°áÈ¥Ïç´å¾Óס¡£È»ºóÓÖ¹ýÁË1Ä꣬ÉÏÒ»ÄêÖÐÑ¡ÔñÁôÔÚ³ÇÊеÄÈËÖÐÓÖ»áÓÐ10%µÄÈ˰áÈ¥Ïç´å¡£¶øÉÏÒ»ÄêÖаᵽÏç´åµÄÈËÖн«»áÓÐ98%µÄÑ¡ÔñÁôÔÚÏç´å¡£Õâ¸ö·ÖÎö¹ý³ÌÈçͼ3ª²16Ëùʾ£¬×îÖÕ¿ÉÒÔËã³öÏÖ½ñסÔÚ³ÇÊеÄÈËÖÐ2Äêºó»áסÔÚÏç´åµÄ¸ÅÂÊ=0.90¡Á0.10+0.10¡Á0.98¡£ ÆäʵÉÏÊö¼ÆËã¹ý³Ì¾ÍÊÇÔÚ×ö¾ØÕóµÄƽ·½¡£ÔÚÏÂÃæ¸ø³öµÄ¾ØÕó³Ë·¨ÖУ¬Äã»á·¢ÏÖ½á¹û¾ØÕóÖеÚ2ÐеÚ1ÁеļÆËã¾ÍÊÇÔÚÖ´ÐÐÉÏÃæµÄ²Ù×÷¡£ÔÚ´Ë»ù´¡£¬ÎÒÃÇ»¹¿ÉÒÔ¼ÌÐø¼ÆËãnÄêºóµÄÇé¿ö£¬Ò²¾ÍÊǼÆËã¾ØÕóA×Ô³Ën´ÎºóµÄ½á¹û¡£ A2=0.900.02 0.100.980.900.02 0.100.98=(A2)11(A2)12 (A2)21(A2)22 Èç¹û¼ÙÉè×ʼµÄʱºò£¬³ÇÏçÈ˿ڵıÈÀýΪ7¡Ã3£¬¿ÉÒÔÓÃÒ»¸öÁÐÏòÁ¿À´±íʾËü£¬¼´P=£Û0.7£¬0.3£ÝT£¬ÏëÖªµÀ×îÖÕ³ÇÏçÈ˿ڵıÈÀýΪºÎ£¬Ôò¾ÍÊÇÒª¼ÆËã¡£Èç¹û×î³õ³ÇÏçÈ˿ڵıÈÀýΪ9¡Ã1£¬½á¹ûÓÖÈçºÎÄØ£¿ÕâЩ¶¼Òª½èÖú¾ØÕóµÄ¼«ÏÞ£¬¶Ô½Ç»¯²Ù×÷ÒÔ¼°Âí¶û¿Æ·òÁ´µÈ¸ÅÄîÀ´¸¨Öú¼ÆËã¡£ À´±æÎöÈý¸ö¸ÅÄ Ëæ»ú¹ý³Ì¡¢Âí¶û¿Æ·ò¹ý³Ì¡¢Âí¶û¿Æ·òÁ´¡£ÕâÈý¸ö¸ÅÄîÖУ¬¶¼Éæ¼°¶ÔÏóºÍËüÃǶÔÓ¦µÄ״̬ÕâÁ½¸öÒªËØ¡£ÔÚ¸Õ¸Õ¸ø³öµÄÀý×ÓÖУ¬Ñо¿µÄ¶ÔÏó¾ÍÊÇÈË£¬È˵Ä״̬·ÖΪסÔÚ³ÇÊлòÕßסÔÚÏç´åÁ½ÖÖ¡£ ÈýÕßÖ®ÖУ¬×î¿í·ºµÄ¸ÅÄî¾ÍÊÇËæ»ú¹ý³Ì£¬ÏÞÖÆ×î¶àµÄ¾ÍÊÇÂí¶û¿Æ·òÁ´¡£¶ÔÓÚÂí¶û¿Æ·òÁ´£¬±ØÐëÂú×ãÁ½¸öÌõ¼þ£º ¢Ùµ±Ç°×´Ì¬½ö¸úÉÏÒ»¸ö״̬Óйأ» ¢Ú×ܹ²µÄ״̬ÊýÊÇÓÐÏ޵ġ£Èç¹û״̬Êý¿ÉÒÔÊÇÎÞÏÞ¶à¸ö£¬ÄÇÑùµÄÎÊÌâ¾Í³ÆÎªÂí¶û¿Æ·ò¹ý³Ì¡£µ«ÔÚÂí¶û¿Æ·ò¹ý³ÌÖÐÈÔȻҪÇó£¬Ê±¼äÊÇÀëÉ¢µÄ£¬ÀýÈçÇ°ÃæµÄÀý×ÓÊÇÒÔ¡°ÄꡱΪµ¥Î»µÄ¡£Èç¹ûʱ¼äÔÊÐíÊÇÁ¬ÐøµÄ£¬ÄÇÑùµÄÎÊÌâ¾Í³ÆÎªËæ»ú¹ý³Ì¡£±¾Êé½ö½öÌÖÂÛÂí¶û¿Æ·òÁ´¡£ ÔÚij¸öʱ¼äµãÉÏ£¬¶ÔÏóµÄ״̬Ϊs1£¬ÏÂÒ»¸öʱ¿Ì£¬ËüµÄ״̬ÒÔijÖÖ¸ÅÂÊת»»µ½ÆäËû״̬(Ò²°üº¬Ô­×´Ì¬s1)£¬ÕâÀïËù˵µÄ¡°ÒÔijÖÖ¸ÅÂÊת»»¡±×îÖÕÊÇͨ¹ý×´Ì¬×ªÒÆ¾ØÕó(»ò³ÆËæ»ú¾ØÕó)µÄÐÎʽÀ´¸ø³öµÄ¡£×ªÒƾØÕóµÄ¶¨ÒåÈçÏ£º ÁîA¡ÊMn¡Án(R)£¬¼ÙÉ裺 £¨1£© Aij¡Ý0£» £¨2£© ¶ÔÓÚËùÓеÄ1¡Üj¡Ün£¬¡Æni=1Aij=1¡£ ÄÇô£¬A³ÆÎªÒ»¸ö×ªÒÆ¾ØÕó(»òËæ»ú¾ØÕó)¡£¾ØÕóAµÄÁÐÏòÁ¿±»³ÆÎª¸ÅÂÊÏòÁ¿¡£ ´ËÍ⣬Èç¹û¾ØÕóµÄij¸ö´ÎÃݽö°üº¬ÕýÊýÏ¸Ã×ªÒÆ¾ØÕó³ÆÎªÊÇÕýÔòµÄ¡£ÕâÀ¡°Ä³¸ö¡±µÄÒâ˼¾ÍÊÇ´æÔÚÒ»¸öÕûÊýnʹµÃ¶ÔÓÚËùÓеÄi£¬j£¬ÓÐ(An)ij>0¡£ ´Ó×´Ì¬×ªÒÆ¾ØÕóÖУ¬(½áºÏ֮ǰµÄÀý×Ó)¿ÉÒÔ¿´³öAijÔªËØ¸ø³öµÄÐÅÏ¢¾ÍÊÇ(ÔÚÒ»¸öµ¥Î»Ê±¼ä¼ä¸ôÄÚ)¶ÔÏó´Ó״̬j×ªÒÆµ½×´Ì¬iµÄ¸ÅÂÊ¡£ÁîP=(p0£¬p1£¬¡­£¬pn)TÊÇÒ»¸öÏòÁ¿£¬Èç¹û¶ÔÓÚËùÓеÄi£¬ÓÐpi¡Ý0ÒÔ¼°¡Æpi=1£¬ÄÇôP¾Í³ÆÎªÒ»¸ö¸ÅÂÊÏòÁ¿(probability vector)¡£ËùÒÔ¿ÉÒÔ¿´³ö£¬ÈÎÒâÒ»¸ö×ªÒÆ¾ØÕóÖеÄijһÁж¼ÊÇÒ»¸ö¸ÅÂÊÏòÁ¿¡£ ¶¨Àí£º ÁîAÊÇÒ»¸ön¡ÁnµÄÕýÔò×ªÒÆ¾ØÕó¡£ÄÇô£º (1) 1Ò»¶¨ÊǾØÕóAµÄÒ»¸öÌØÕ÷Öµ£¬²¢ÇÒ1µÄ¼¸ºÎÖØÊýµÈÓÚ1£¬³ý´ËÖ®Í⣬ËùÓÐÆäËûµÄÌØÕ÷ÖµÖ®¾ø¶ÔÖµ¶¼Ð¡ÓÚ1£» (2) A¿ÉÒԶԽǻ¯£¬²¢ÇÒlimm¡ú¡ÞAm´æÔÚ£» (3) L=limm¡ú¡ÞAmÊÇÒ»¸ö×ªÒÆ¾ØÕó£» (4) AL=LA=L£» (5) ¾ØÕóL=£Ûÿðþ½›£¬ÿðþ½›£¬¡­£¬ÿðþ½›£Ý£¬¼´LµÄÿһÁж¼Ò»Ñù£¬¶¼ÊÇÿðþ½›¡£¶øÇÒÿðþ½›¾ÍÊǾØÕóAÏà¶ÔÓÚÌØÕ÷Öµ1µÄÌØÕ÷ÏòÁ¿£» (6) ¶ÔÓÚÈÎÒâ¸ÅÂÊÏòÁ¿w£¬¶¼ÓÐlimm¡ú¡Þ(Amw)=ÿðþ½›¡£ Õâ¸ö¶¨Àí·Ç³£·Ç³£ÆæÃîµÄµØ·½¾ÍÊÇËü½â´ðÁË֮ǰÄǸöÁîÈËÀ§ÈŵÄÎÊÌ⣡ԭÎÊÌâÊÇ£º Èç¹û¼ÙÉè×ʼµÄʱºò£¬³ÇÏçÈ˿ڵıÈÀýΪ7¡Ã3£¬¿ÉÒÔÓÃÒ»¸öÁÐÏòÁ¿À´±íʾËüP=£Û0.7£¬0.3£ÝT£¬ÓûÖªµÀ×îÖÕ³ÇÏçÈ˿ڵıÈÀýΪºÎ£¬Ôò¾ÍÊÇÒª¼ÆËãAnP£¬Èç¹û×ʼµÄ³ÇÏçÈ˿ڵıÈÀýΪ9¡Ã1£¬½á¹ûÓÖÈçºÎ¡£ÉÏÊö¶¨ÀíÖеÄ×îºóÒ»Ìõ¾Í±íÃ÷£¬µ±nÇ÷½üÓÚÎÞÇî´óµÄʱºò£¬AnP¾ÍµÈÓÚÿðþ½›£¬¶øÇÒÓëPÊÇÎ޹صġ£¸ü¾«ÃîµÄµØ·½»¹ÔÚÓÚ£¬Õâ¸ö¶¨Àí»¹¸æËßÎÒÃÇvÊÇÒ»¸ö¸ÅÂÊÏòÁ¿£¬¶øÇÒËü¾ÍÊÇÌØÕ÷Öµ1Ëù¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿¡£ Õâ¸ö¶¨ÀíµÄÖ¤Ã÷ÒѾ­³¬³öÁ˱¾ÊéµÄ·¶Î§£¬µ«¿ÉÒÔÓÃ֮ǰ¸ø³öµÄÀý×ÓÀ´ÑéÖ¤Ò»ÏÂËü¡£×¢Òâµ½Èç¹ûÏëÒª¼ÆËãAnP£¬Æäʵ¾ÍÊÇÒªÏÈÉè·¨¼ÆËã¾ØÕóA×Ô³Ën´ÎµÄ½á¹û£¬ÕâʱΪÁ˼ÆËã·½±ãÓ¦¸ÃÏȽ«¾ØÕóA¶Ô½Ç»¯¡£Îª´Ë£¬ÏÈÇó¾ØÕóAµÄÌØÕ÷¶àÏîʽ£¬Í¨¹ýÆäÌØÕ÷¶àÏîʽ±ãÖªµÀ¾ØÕóAÓÐÁ½¸öÌØÕ÷Öµ£¬Ò»¸öÊÇ1£¬Ò»¸öÊÇ0.88¡£¸ù¾Ý¶¨Àí£¬1±ØÈ»ÊǸþØÕóµÄÌØÕ÷Öµ¡£¸ü½øÒ»²½£¬ÌØÕ÷Öµ1¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿ÊÇ£Û1£¬5£ÝT£¬ÌØÕ÷Öµ0.88¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿ÊÇ£Û1£¬-1£ÝT¡£ËùÒÔÖªµÀ¾ØÕó¶Ô½Ç»¯Ê±ËùÓõÄQºÍQ-1·Ö±ðΪ Q=11 5-1£¬Q-1=-16-1-1 -51 ÓÚÊÇ¿ÉÖª¾ØÕóAµÄ¶Ô½Ç»¯½á¹ûÈçÏ£º 10 00.88=D=Q-1AQ ËùÒÔÓÐ A=QDQ-1ªÝAm=QDmQ-1 limm¡ú¡ÞAm=limm¡ú¡ÞQDmQ-1=Qlimm¡ú¡ÞDmQ-1 È»ºó°ÑÖµ´ø½øÈ¥¾ÍÄÜËã³ö×îÖÕ½á¹ûÈçÏ limm¡ú¡ÞAm=1/61/6 5/65/6 ֮ǰ¼ÆËã¹ýÌØÕ÷Öµ1¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿ÊÇ£Û1£¬5£ÝT£¬ÌØÕ÷ÏòÁ¿³ËÒÔÒ»¸öϵÊýÈÔÈ»ÊÇÌØÕ÷ÏòÁ¿(×¢ÒâÒªÇó×îºóµÄÌØÕ÷ÏòÁ¿Í¬Ê±ÊÇÒ»¸ö¸ÅÂÊÏòÁ¿£¬ËùÒÔ»áµÃµ½£Û1/6£¬5/6£ÝT£¬¿É¼ûÉÏÊö¼ÆËãÓ붨ÀíËù½ÒʾµÄ½á¹ûÊÇÍêȫһÖµġ£ ¾ØÕóµÄ¼«ÏÞ£¬Æäʵ¾ÍÊÇÔÚÌÖÂÛlimm¡ú¡ÞAmµÄ´æÔÚÐÔ£¬Ò²¾ÍÊǰѾØÕólimm¡ú¡ÞAm×Ô³Ëm´Îºó£¬Èç¹û½á¹û¾ØÕóÖÐÿ¸öÔªËØµÄ¼«ÏÞ¶¼´æÔÚ£¬¾Í˵Õâ¸ö¾ØÕóµÄ¼«ÏÞÊÇ´æÔڵġ£¶ø¾ØÕó¼«ÏÞÊÇ·ñ´æÔÚ¿ÉÒÔÓÉÏÂÃæµÄ¶¨Àí±£Ö¤¡£ ¶¨Àí¾ØÕó¼«ÏÞ´æÔڵijäÒªÌõ¼þ£º (1) |¦Ë|<1»òÕߦË=1£¬ÆäÖЦËÊÇAµÄÈÎÒâÌØÕ÷Öµ¡£ (2) Èç¹û¦Ë=1£¬ÄÇôËü¶ÔÓ¦µÄ¼¸ºÎÖØÊýµÈÓÚ´úÊýÖØÊý¡£ ¶¨Àí¾ØÕó¼«ÏÞ´æÔڵijä·ÖÌõ¼þ£º (1) |¦Ë|<1»òÕߦË=1£¬ÆäÖЦËÊÇAµÄÈÎÒâÌØÕ÷Öµ¡£ (2) ¾ØÕóAÊǿɶԽǻ¯µÄ¡£ 3.4²éÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽ »¹ÊÇÏÈ´ÓÒ»¸öÀý×ÓÀ´Ì¸Æð¡£Í¼3ª²15ÖÐ×ó²àÊÇ×´Ì¬×ªÒÆ¾ØÕ󣬯äÖÐÿ¸öλÖö¼±íʾ´ÓÒ»¸ö×´Ì¬×ªÒÆµ½ÁíÍâÒ»¸ö״̬µÄ¸ÅÂÊ¡£ÀýÈ磬´Ó״̬1×ªÒÆµ½×´Ì¬2µÄ¸ÅÂÊÊÇ0.28£¬ËùÒÔÔÚµÚÒ»ÐеڶþÁеÄλÖ㬸ø³öµÄÊýÖµÊÇ0.28¡£ ÔÚÂí¶û¿Æ·òÁ´ÖУ¬Ëæ»ú±äÁ¿ÔÚÒ»¸ö°´Ê±¼äÅÅÐòµÄÊý×éT1£¬T2£¬¡­£¬TnÖУ¬¸ù¾Ý×´Ì¬×ªÒÆ¾ØÕóÈÃÎÒÃÇ¿ÉÒԷdz£Ö±¹ÛµØµÃÖªµ±Ç°Ê±¿Ìijһ״̬ÔÚÏÂһʱ¿Ì±äµ½ÈÎÒâ״̬µÄ¸ÅÂÊ£¬Èçͼ3ª²17Ëùʾ¡£ ÏÖÔÚµÄÎÊÌâÊÇÄܲ»ÄÜ×ö¸ü½øÒ»²½µÄÔ¤²â¡£ÀýÈ磬µ±Ç°Ê±¿ÌT1ʱµÄ״̬Ϊa£¬ÄÜ·ñÖªµÀÔÚÏÂÏÂʱ¿ÌT3ʱ״̬ΪbµÄ¸ÅÂÊÊǶàÉÙÄØ£¿ÕâÆäʵҲÏ൱ÈÝÒ××öµ½£¬Èçͼ3ª²18Ëùʾ¡£ ͼ3ª²17°´Ê±¼äÅÅÐòµÄ×´Ì¬×ªÒÆÇé¿ö ͼ3ª²18¼ÆËãÏÂÏÂʱ¿Ìij״̬µÄ¸ÅÂÊ Õâ¸ö¹ý³ÌÓÃ×ªÒÆ¾ØÕóµÄ×Ô³ËÀ´±íʾÊǷdz£Ö±¹ÛÇÒ·½±ãµÄ¡£¾ØÕóPÖеÚ1Ðоͱíʾ£¬µ±Ç°Ê±¿Ì״̬aÔÚÏÂһʱ¿Ì±äµ½×´Ì¬a¡¢b¡¢cµÄ¸ÅÂÊ£¬¾ØÕóPÖеÚ2Áоͱíʾ£¬ÓÉ״̬a¡¢b¡¢c£¬ÔÚÏÂһʱ¿Ì×ªÒÆµ½×´Ì¬bµÄ¸ÅÂÊ¡£ÄÇô¸ù¾Ý¾ØÕóµÄ³Ë·¨¹«Ê½£¬P2ÖеÚ1ÐеÚ2ÁеÄλÖþͱíʾ¡°µ±Ç°Ê±¿ÌT1ʱµÄ״̬Ϊa£¬ÔÚÏÂÏÂʱ¿ÌT3ʱ״̬ΪbµÄ¸ÅÂÊ¡±¡£Ò²¾ÍÊÇ˵£¬Èç¹ûÏëµÃµ½¿çÔ½2¸öʱ¿ÌµÄ×ªÒÆ¾ØÕ󣬾ͰѿçÔ½1¸öʱ¿ÌµÄ×ªÒÆ¾ØÕó³ËÒÔ¿çÔ½1¸öʱ¿ÌµÄ×ªÒÆ¾ØÕó¼´¿É¡£Í¬Àí£¬Èç¹ûÏë¿çÔ½3¸öʱ¿ÌµÄ×ªÒÆ¾ØÕ󣬾ͰѿçÔ½2¸öʱ¿ÌµÄ×ªÒÆ¾ØÕó³ËÒÔ¿çÔ½1¸öʱ¿ÌµÄ×ªÒÆ¾ØÕó¼´¿É¡£¸üÆÕ±éµØÓÐPm+n=PmPn£¬¶øÕâ¸ö¹ØÏµ¾Í±»³ÆÎª²éÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽ(Chapmanª²Kolmogorov Equation)¡£ ÏÂÃæÊDzéÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽµÄÒ»¸ö±íÊö£º ÁîTÊÇÒ»¸öÀëɢ״̬¿Õ¼äÖеÄn²½Âí¶û¿Æ·òÁ´£¬Æä×´Ì¬×ªÒÆ¾ØÕóΪ Pn=£Ûpn(j£¬k)£Ýj£¬k¡ÊS ÆäÖУ¬pn(j£¬k)=P(Tm+n=k|Tm=j)=pnj£¬kÊÇn²½×´Ì¬×ªÒƸÅÂÊ¡£ÄÇô£¬Pm+n=PmPn£¬»òµÈ¼ÛµØÓÐ pn+mi£¬j=¡Æk¡ÊSpni£¬kpmk£¬j ×îºó¸ø³ö²éÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽµÄÖ¤Ã÷¡£ Ê×ÏÈ¿¼ÂÇÔÚnʱ¿Ì£¬ÏµÍ³Õý´¦ÔÚʲô״̬¡£¸ø¶¨T0=i£¬pni£¬k=P(Tn=k|T0=i)¾Í±íʾ(ÔÚʱ¿Ìn)ϵͳ´¦ÓÚk״̬µÄ¸ÅÂÊ¡£µ«ÊÇ£¬´ËºóÔÙ¸ø¶¨Tn=k£¬ÔÚµÚnʱ¿ÌÖ®ºóµÄÇé¿ö¾ÍÓë¹ýÈ¥µÄÀúÊ·±Ë´Ë¶ÀÁ¢ÁË¡£ÓÚÊÇ£¬ÔÙ¹ým¸öʱ¼äµ¥Î»ºó£¬´¦ÔÚ״̬jµÄ¸ÅÂÊÊÇpmk£¬j½«Âú×ã³Ë»ý pni£¬kpmk£¬j=P(Tn+m=j£¬Tn=k|T0=i) ½«ËùÓÐkµÄÇé¿ö½øÐмÓ×ܾͻáµÃµ½ÒªÖ¤Ã÷Ö®½áÂÛ¡£Ò»¸ö¸ü¼ÓÑϸñµÄÖ¤Ã÷ÈçÏ pn+mi£¬j=P(Tn+m=j|T0=i) =¡Æk¡ÊSP(Tn+m=j£¬Tn=k|T0=i) =¡Æk¡ÊSP(Tn+m=j£¬Tn=k£¬T0=i)P(T0=i) =¡Æk¡ÊSP(Tn+m=j|Tn=k£¬T0=i)P(Tn=k£¬T0=i)P(T0=i) =¡Æk¡ÊSpmk£¬jP(Tn=k£¬T0=i)P(T0=i) =¡Æk¡ÊSpni£¬kpmk£¬j ÉÏÊöÖ¤Ã÷ÖÐÔËÓÃÁËÂí¶û¿Æ·òÁ´µÄÐÔÖÊÀ´µÃµ½ P(Tn+m=j|Tn=k£¬T0=i)=P(Tn+m=j|Tn=k)=P(Tm=j|T0=k)=pmk£¬j ×îÖÕ£¬½áÂÛµÃÖ¤¡£ 3.5Âí¶û¿Æ·òÁ´ÃÉÌØ¿¨Âå ÔÚÒÔ±´Ò¶Ë¹·½·¨Îª»ù´¡µÄ¸÷ÖÖ»úÆ÷ѧϰ¼¼ÊõÖУ¬³£³£ÐèÒª¼ÆËãºóÑé¸ÅÂÊ£¬ÔÙͨ¹ý×î´óºóÑé¸ÅÂÊ(MAP)µÄ·½·¨½øÐвÎÊýÍÆ¶ÏºÍ¾ö²ß¡£È»¶ø£¬Ôںܶàʱºò£¬ºóÑé·Ö²¼µÄÐÎʽ¿ÉÄܷdz£¸´ÔÓ£¬Õâ¸öʱºòѰÕÒÆäÖеÄ×î´óºóÑé¹À¼Æ»òÕß¶ÔºóÑé¸ÅÂʽøÐлý·ÖµÈ¼ÆËãÍùÍù·Ç³£À§ÄÑ£¬´Ëʱ¿ÉÒÔͨ¹ý²ÉÑùµÄ·½·¨À´Çó½â¡£ÕâÆäÖзdz£ÖØÒªµÄÒ»¸ö»ù´¡¾ÍÊÇÂí¶û¿Æ·òÁ´ÃÉÌØ¿¨Âå(Markov chain Monte Carlo£¬MCMC)¡£ 3.5.1ÖØÒªÐÔ²ÉÑù Ç°ÃæÒѾ­Ïêϸ½éÉÜÁË»ùÓÚËæ»úËã·¨½øÐж¨»ý·ÖÇó½âµÄ¼¼Êõ¡£ÕâÀïÖ÷ÒªÓõ½ÆäÖÐµÄÆ½¾ùÖµ·¨¡£ÕâÀï½ö×ö¼òµ¥»Ø¹Ë¡£ ÔÚ¼ÆË㶨»ý·Ö¡Òbag(x)dxʱ£¬»á°Ñg(x)²ð½â³ÉÁ½ÏîµÄ³Ë»ý£¬¼´g(x)=f(x)p(x)£¬Æäf(x)ÊÇijÖÖÐÎʽµÄº¯Êý£¬¶øp(x)ÊǹØÓÚËæ»ú±äÁ¿XµÄ¸ÅÂÊ·Ö²¼(Ò²¾ÍÊÇPDF»òPMF)¡£Èç´ËÒ»À´£¬ÉÏÊö¶¨»ý·Ö¾Í¿ÉÒÔ±íʾΪÇóf(x)µÄÆÚÍû£¬¼´ ¡Òbag(x)dx=¡Òbaf(x)p(x)dx=E£Ûf(x)£Ý µ±È»£¬g(x)µÄ·Ö²¼º¯Êý¿ÉÄܾßÓкܸ´ÔÓµÄÐÎʽ£¬ÈÔÈ»ÎÞ·¨Ö±½ÓÇó½â£¬Õâʱ¾Í¿ÉÒÔÓòÉÑùµÄ·½·¨È¥½üËÆ¡£Õâʱ»ý·Ö¿ÉÒÔ±íʾΪ ¡Òbag(x)dx=E£Ûf(x)£Ý=1n¡Æni=1f(xi) ÔÚ±´Ò¶Ë¹·ÖÎöÖУ¬ÃÉÌØ¿¨Âå»ý·ÖÔËËã³£³£±»ÓÃÀ´ÔÚ¶ÔºóÑé¸ÅÂʽøÐлý·Öʱ×ö½üËÆ¹À¼Æ¡£±ÈÈçÒª¼ÆËã I(y)=¡Òbaf(y|x)p(x)dx ±ã¿ÉÒÔʹÓÃÏÂÃæÕâ¸ö½üËÆÐÎʽ I^(y)=1n¡Æni=1f(y|xi) ²»ÄÑ·¢ÏÖ£¬ÔÚÀûÓÃÃÉÌØ¿¨Âå·¨½øÐлý·ÖÇó½âʱ£¬·Ç³£ÖØÒªµÄÒ»¸ö»·½Ú¾ÍÊÇ´ÓÌØ¶¨µÄ·Ö²¼ÖнøÐвÉÑù¡£ÕâÀïµÄ¡°²ÉÑù¡±Òâ˼Ҳ¾ÍÊÇÉú³ÉÂú×ãijÖÖ·Ö²¼µÄ¹Û²âÖµ¡£Ö®Ç°ÒѾ­½éÉܹý¡°Äæ²ÉÑù¡±ºÍ¡°¾Ü¾ø²ÉÑù¡±µÈ·½·¨¡£ ²ÉÑùµÄÄ¿µÄºÜ¶àʱºò¶¼ÊÇΪÁË×ö½üËÆ»ý·ÖÔËËã£¬Ç°ÃæµÄ²ÉÑù·½·¨(Äæ²ÉÑùºÍ¾Ü¾ø²ÉÑù)¶¼ÊÇÏȶԷֲ¼½øÐвÉÑù£¬È»ºóÔÙÓòÉÑùµÄ½á¹û½üËÆ¼ÆËã»ý·Ö¡£ÏÂÃæÒª½éÉܵÄÁíÍâÒ»ÖÖ·½·¨¡°ÖØÒªÐÔ²ÉÑù¡±(Importance sampling)ÔòÁ½²½²¢×öÒ»²½£¬Ö±½Ó×ö½üËÆ¼ÆËã»ý·Ö¡£ ÏÖÔÚµÄÄ¿±êÊǼÆËãÏÂÃæµÄ»ý·Ö E£Ûf(x)£Ý=¡Òf(x)p(x)dx °´ÕÕÃÉÌØ¿¨ÂåÇ󶨻ý·ÖµÄ·½·¨£¬½«´ÓÂú×ãp(x)µÄ¸ÅÂÊ·Ö²¼ÖжÀÁ¢µØ²ÉÑù³öһϵÁÐËæ»ú±äÁ¿xi£¬È»ºó±ãÓÐ E£Ûf(x)£Ý¡Ö1n¡Æni=1f(xi) µ«ÊÇÏÖÔÚµÄÀ§ÄÑÊǶÔÂú×ãp(x)µÄ¸ÅÂÊ·Ö²¼½øÐвÉÑù·Ç³£À§ÄÑ£¬±Ï¾¹Êµ¼ÊÖкܶàp(x)µÄÐÎʽ¶¼Ï൱¸´ÔÓ¡£Õâʱ¸ÃÔõô×öÄØ£¿ÓÚÊÇÏëµ½×öµÈÁ¿±ä»»£¬ÓÚÊÇÓÐ ¡Òf(x)p(x)dx=¡Òf(x)p(x)q(x)q(x)dx Èç¹û°ÑÆäÖеÄf(x)p(x)q(x)¿´³ÉÊÇÒ»¸öеĺ¯Êýh(x)£¬ÔòÓÐ ¡Òf(x)p(x)dx=¡Òh(x)q(x)dx¡Ö1n¡Æni=1f(xi)p(xi)q(xi) ÆäÖÐp(xi)q(xi)±»³ÆÎªÊÇxiµÄÈ¨ÖØ»òÖØÒªÐÔÈ¨ÖØ(Importance Weights)¡£ËùÒÔÕâÖÖ²ÉÑùµÄ·½·¨¾Í±»³ÆÎªÊÇÖØÒªÐÔ²ÉÑù(Importance Sampling)¡£ ͼ3ª²19ÖØÒªÐÔ²ÉÑùÔ­Àí Èçͼ3ª²19Ëùʾ£¬ÔÚʹÓÃÖØÒªÐÔ²ÉÑùʱ£¬²¢²»»á¾Ü¾øµôijЩ²ÉÑùµã£¬ÕâÓëÔÚʹÓþܾø²ÉÑùʱ²»Í¬¡£´Ëʱ£¬ËùÓеIJÉÑùµã¶¼½«ÎªÎÒÃÇËùÓ㬵«ÊÇËüÃǵÄÈ¨ÖØÊDz»Í¬µÄ¡£ÒòÎªÈ¨ÖØÎªp(xi)q(xi)£¬ËùÒÔÔÚͼ3ª²19ÖУ¬µ±p(xi)>q(xi)ʱ£¬²ÉÑùµãxiµÄÈ¨ÖØ¾Í´ó(ÉîÉ«ÏßÔÚdzɫÏßÉÏ·½Ê±)£¬·´Ö®¾ÍС¡£ÖØÒªÐÔ²ÉÑù¾ÍÊÇͨ¹ýÕâÖÖ·½Ê½À´´ÓÒ»¸ö¡°²Î¿¼·Ö²¼¡±q(x)ÖлñµÃ¡°Ä¿±ê·Ö²¼¡±p(x)µÄ¡£ 3.5.2Âí¶û¿Æ·òÁ´ÃÉÌØ¿¨ÂåµÄ»ù±¾¸ÅÄî Âí¶û¿Æ·òÁ´ÃÉÌØ¿¨Âå·½·¨ÊÇÒ»ÀàÓÃÓÚ´ÓÒ»¸ö¸ÅÂÊ·Ö²¼ÖнøÐвÉÑùµÄËã·¨£¬¸ÃÀà·½·¨ÒÔ¹¹ÔìÂí¶û¿Æ·òÁ´Îª»ù´¡£¬¶ø±»¹¹ÔìµÄÂí¶û¿Æ·òÁ´·Ö²¼Ó¦¸ÃͬÐèÒªÖ®·Ö²¼µÈ¼Û¡£ MCMC¹¹ÔìÂí¶û¿Æ·òÁ´£¬Ê¹ÆäÎÈ̬·Ö²¼µÈÓÚÒª²ÉÑùµÄ·Ö²¼£¬ÕâÑù¾Í¿ÉÒÔͨ¹ýÂí¶û¿Æ·òÁ´À´²ÉÑù¡£ÕâÖֵȼÛÈçºÎÀí½âÊÇÉîÈë̽ÌÖ¾ßÌå²Ù×÷·½·¨Ö®Ç°£¬ÐèÒªÏȹ¥¿ËµÄÒ»¸öÎÊÌâ¡£ÔÚ´Ë֮ǰ£¬Ï£Íû¶ÁÕß¶ÔÂí¶û¿Æ·òÁ´ÒѾ­ÓÐÁËÒ»¸ö±È½ÏÇåÎúµÄÈÏʶ¡£ ÏÖÔÚ£¬ÓÃÏÂÃæµÄʽ×ÓÀ´±íʾÿһ²½(ʱ¿ÌÍÆ½ø)ÖдÓ״̬siµ½×´Ì¬sjµÄ×ªÒÆ¸ÅÂÊ p(i£¬j)=p(i¡új)=P(Xt+1=sj|Xt=si) ÕâÀïµÄÒ»²½ÊÇָʱ¼ä´Óʱ¿Ìt¹ý¶Éµ½ÏÂһʱ¿Ìt+1¡£ Âí¶û¿Æ·òÁ´ÔÚʱ¿Ìt´¦ÓÚ״̬jµÄ¸ÅÂÊ¿ÉÒÔ±íʾΪ¦Ðj(t)=P(Xt=sj)¡£ÕâÀïÓÃÏòÁ¿¦Ð(t)À´±íʾÔÚʱ¿Ìt¸÷¸ö״̬µÄ¸ÅÂÊÏòÁ¿¡£ÔÚ³õʼʱ¿Ì£¬ÐèҪѡȡһ¸öÌØ¶¨µÄ¦Ð(0)£¬Í¨³£Çé¿öÏ¿ÉÒÔʹÏòÁ¿ÖÐÒ»¸öÔªËØÎª1£¬ÆäËûÔªËØ¾ùΪ0£¬¼´´Óij¸öÌØ¶¨µÄ״̬¿ªÊ¼¡£Ëæ×Åʱ¼äµÄÍÆÒÆ£¬×´Ì¬»áͨ¹ý×ªÒÆ¾ØÕó£¬Ïò¸÷¸ö״̬À©É¢¡£ Âí¶û¿Æ·òÁ´ÔÚt+1ʱ¿Ì´¦ÓÚ״̬siµÄ¸ÅÂÊ¿ÉÒÔͨ¹ýtʱ¿ÌµÄ״̬¸ÅÂʺÍ×ªÒÆ¸ÅÂÊÀ´ÇóµÃ£¬²¢¿Éͨ¹ý²éÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽµÃµ½ ¦Ði(t+1)=P(Xt+1=si)=¡ÆkP(Xt+1=si|Xt=sk)P(Xt=sk) =¡Ækp(k¡úi)¦Ðk(t)=¡Ækp(i|k)¦Ðk(t) ÓÃ×ªÒÆ¾ØÕóд³É¾ØÕóµÄÐÎʽÈçÏ ¦Ð(t+1)=¦Ð(t)P ÆäÖУ¬×ªÒƾØÖеÄÔªËØp(i£¬j)±íʾp(i¡új)¡£Òò´Ë£¬¦Ð(t)=¦Ð(0)Pt¡£´ËÍ⣬pni£¬j±íʾ¾ØÕóPnÖеÚij¸öÔªËØ£¬¼´pni£¬j=P(Xt+n=sj|Xt=si)¡£ Ò»ÌõÂí¶û¿Æ·òÁ´ÓÐÒ»¸öƽÎÈ·Ö²¼¦Ð*£¬ÊÇÖ¸¸ø¶¨ÈÎÒâÒ»¸ö³õʼ·Ö²¼¦Ð(0)£¬¾­¹ýÓÐÏÞ²½Ö®ºó£¬×îÖÕ¶¼»áÊÕÁ²µ½Æ½ÎÈ·Ö²¼¦Ð*¡£Æ½ÎÈ·Ö²¼¾ßÓÐÐÔÖʦÐ*=¦Ð*P¡£¿ÉÒÔ½áºÏ±¾ÕÂÇ°ÃæÌ¸µ½µÄ¾ØÕó¼«Ï޵ĸÅÄîÀ´Àí½âÂí¶û¿Æ·òÁ´µÄƽÎÈ·Ö²¼¡£ Ò»ÌõÂí¶û¿Æ·òÁ´ÓµÓÐÆ½ÎÈ·Ö²¼µÄÒ»¸ö³ä·ÖÌõ¼þÊǶÔÓÚÈÎÒâÁ½¸ö״̬iºÍj£¬ÆäÂú×ãϸÖÂÆ½ºâ(Detailed Balance)£º p(j¡úi)¦Ðj=p(i¡új)¦Ði¡£¿ÉÒÔ¿´µ½£¬´Ëʱ (¦ÐP)j=¡Æi¦Ðip(i¡új)=¡Æi¦Ðjp(j¡úi)=¦Ðj¡Æip(j¡úi)=¦Ðj ËùÒÔ¦Ð=¦ÐP£¬Ã÷ÏÔÂú×ãÆ½ÎÈ·Ö²¼µÄÌõ¼þ¡£Èç¹ûÒ»ÌõÂí¶û¿Æ·òÁ´Âú×ãϸÖÂÆ½ºâ£¬¾Í˵ËüÊÇ¿ÉÄæµÄ¡£ ͼ3ª²20MCMCµÄ»ù±¾Ô­Àí ×îºóÀ´×ܽáÒ»ÏÂMCMCµÄ»ù±¾Ë¼Ïë¡£Ôھܾø²ÉÑùºÍÖØÒªÐÔ²ÉÑùÖУ¬µ±Ç°Éú³ÉµÄÑù±¾µãÓë֮ǰÉú³ÉµÄÑù±¾µãÖ®¼äÊÇûÓйØÏµµÄ£¬ËüµÄ²ÉÑù¶¼ÊǶÀÁ¢½øÐеġ£È»¶ø£¬MCMCÊÇ»ùÓÚÂí¶û¿Æ·òÁ´½øÐеIJÉÑù¡£Õâ¾Í±íÃ÷£¬µ±Ç°µÄÑù±¾µãÉú³ÉÓëÉÏһʱ¿ÌµÄÑù±¾µãÊÇÓйصġ£Èçͼ3ª²20Ëùʾ£¬¼ÙÉ赱ǰʱ¿ÌÉú³ÉµÄÑù±¾µãÊÇx£¬ÏÂÒ»´Îʱ¿Ì²ÉÑùµ½x¡äµÄ(×ªÒÆ)¸ÅÂʾÍÊÇp(x|x¡ä)£¬»òÕßд³Ép(x¡úx¡ä)¡£ÎÒÃÇÏ£ÍûµÄÊÇÕâ¸ö¹ý³ÌÈç´Ë¼ÌÐøÏÂÈ¥£¬×îÖյĸÅÂÊ·Ö²¼ÊÕÁ²µ½¦Ð(x)£¬Ò²¾ÍÊÇÒª²ÉÑùµÄ·Ö²¼¡£ Ò×¼û£¬×ªÒƸÅÂÊp(x|x¡ä)Óë²ÉÑù·Ö²¼¦Ð(x)Ö®¼ä±ØÈ»´æÔÚijÖÖÁªÏµ£¬ÒòΪϣÍûÒÀÕÕp(x|x¡ä)À´½øÐÐ×ªÒÆ²ÉÑù×îÖÕÄÜÊÕÁ²µ½¦Ð(x)¡£ÄÇÕâ¸ö¹ØÏµµ½µ×ÊÇÔõôÑùµÄÄØ£¿Ê×ÏÈ£¬¸ø¶¨ËùÓпÉÄܵÄx£¬È»ºóÇó´Óx×ªÒÆµ½x¡äµÄ¸ÅÂÊ£¬ËùµÃÖ®½á¹û¾ÍÊÇx¡ä³öÏֵĸÅÂÊ£¬Èç¹ûÓù«Ê½±íʾ¼´ ¦Ð(x¡ä)=¡Ò¦Ð(x)p(x¡ä|x)dx ÕâÆäʵҲ¾ÍÊDzéÆÕÂüª²¿Â¶ûΏçÂå·òµÈʽËù½ÒʾµÄ¹ØÏµ¡£Èç¹ûÂí¶û¿Æ·òÁ´ÊÇÆ½Îȵģ¬ÄÇô»ùÓÚ¸ÃÂí¶û¿Æ·òÁ´µÄ²ÉÑù¹ý³Ì×îÖÕ½«ÊÕÁ²µ½Æ½ÎÈ״̬ ¦Ð*(x¡ä)=¡Ò¦Ð*(x¡ä)p(x|x¡ä)dx¡ä ¶øÆ½ÎÈ״̬µÄ³ä·ÖÌõ¼þÓÖÊÇÂú×ãϸÖÂÆ½ºâ ¦Ð(x)p(x¡ä|x)dx=¦Ð(x)p(x|x¡ä) ¿É¼ûϸÖÂÆ½ºâµÄÒâ˼ÊÇ˵´Óx×ªÒÆµ½x¡äµÄ¸ÅÂÊÓ¦¸ÃµÈÓÚ´Óx¡ä×ªÒÆµ½xµÄ¸ÅÂÊ£¬ÔÚÕâÑùµÄÇé¿öÏ£¬²ÉÑù¹ý³Ì½«×îÖÕÊÕÁ²µ½Ä¿±ê·Ö²¼¡£Ò²¾ÍÊÇ˵£¬Éè¼ÆµÄMCMCËã·¨£¬Ö»ÒªÑéÖ¤ÆäÂú×ãϸÖÂÆ½ºâµÄÌõ¼þ£¬ÄÇôÓÃÕâÑùµÄ·½·¨×ö»ùÓÚÂí¶û¿Æ·òÁ´µÄ²ÉÑù£¬×îÖÕ¾ÍÄÜÊÕÁ²µ½Ò»¸öÎȶ¨×´Ì¬£¬¼´Ä¿±ê·Ö²¼¡£ ʵ¼ÊÓ¦ÓÃÖУ¬ÓÐÁ½¸öÂí¶û¿Æ·òÁ´ÃÉÌØ¿¨Âå²ÉÑùË㷨ʮ·Ö³£Óã¬ËüÃÇÊÇMetropolisª²Hastings(Ã·ÌØÂÞ²¨Àû˹ª²ºÚ˹͢˹)Ëã·¨ÓëGibbs Sampling²ÉÑù£¨¼ª²¼Ë¹£©£¬¿ÉÒÔÖ¤Ã÷¼ª²¼Ë¹²ÉÑùÊÇÃ·ÌØÂÞ²¨Àû˹ª²ºÚ˹͢˹Ëã·¨µÄÒ»ÖÖÌØÊâÇé¿ö£¬¶øÇÒÁ½Õß¶¼Âú×ãϸÖÂÆ½ºâµÄÌõ¼þ¡£ 3.5.3Metropolisª²HastingsËã·¨ ¶Ô¸ø¶¨µÄ¸ÅÂÊ·Ö²¼£¬Èç¹û´ÓÖÐÖ±½Ó²ÉÑù±È½ÏÀ§ÄÑ£¬ÄÇôMetropolisª²HastingsËã·¨¾ÍÊÇÒ»¸ö´ÓÖлñȡһϵÁÐËæ»úÑù±¾µÄMCMC·½·¨¡£ÕâÀïËù˵µÄMetropolisª²HastingsËã·¨ºÍÄ£ÄâÍ˻𷽷¨ÖÐËùʹÓõÄMetropolisª²HastingsËã·¨±¾ÖÊÉÏÊÇÒ»»ØÊ¡£ÓÃÓÚÄ£ÄâÍË»ðºÍMCMCµÄԭʼËã·¨×î³õÊÇÓÉMetropolisÌá³öµÄ£¬ºóÀ´Hastings¶ÔÆä½øÐÐÁËÍÆ¹ã¡£HastingsÌá³öûÓбØÒªÊ¹ÓÃÒ»¸ö¶Ô³ÆµÄ²Î¿¼·Ö²¼(proposal distribution)¡£µ±È»´ïµ½¾ùºâ·Ö²¼µÄËÙ¶ÈÓë²Î¿¼·Ö²¼µÄÑ¡ÔñÓйء£ Metropolisª²HastingsËã·¨µÄÖ´Ðв½ÖèÈçÏ¡£ 1.³õʼ»¯x0 2.¶ÔÓÚi=0µ½N-1 u~U(0£¬1) x*~q(x*|x(i)) Èç¹ûu<¦Á(x*)=min1£¬¦Ð(x*)p(x|x*)¦Ð(x)p(x*|x) x(i+1)=x* ·ñÔò x(i+1)=x(i) Metropolisª²HastingsËã·¨µÄÖ´Ðв½ÖèÊÇÏÈËæ±ãÖ¸¶¨Ò»¸ö³õʼµÄÑù±¾µãx0£¬uÊÇÀ´×Ô¾ùÔÈ·Ö²¼µÄÒ»¸öËæ»úÊý£¬x*ÊÇÀ´×Ôp·Ö²¼µÄÑù±¾µã£¬Ñù±¾µãÊÇ·ñ´Óǰһ¸öλÖÃÌø×ªµ½x*£¬ÓɦÁ(x*)ºÍuµÄ´óС¹ØÏµ¾ö¶¨¡£Èç¹û½ÓÊÜ£¬ÔòÌø×ª£¬¼´ÐµIJÉÑùµãΪx*£¬·ñÔò¾Í¾Ü¾ø£¬¼´ÐµIJÉÓõãÈÔΪÉÏÒ»ÂֵIJÉÑùµã¡£Õâ¸öËã·¨¿´ÆðÀ´·Ç³£¼òµ¥£¬ÄÑÃâÈÃÈËÒÉÎÊÕմ˲½ÖèÀ´Ö´ÐУ¬×îÖÕ²ÉÑù·Ö²¼ÄÜÊÕÁ²µ½Ä¿±ê·Ö²¼Â𣿸ù¾Ý֮ǰµÄ½²½â£¬¿ÉÖªÒªÏëÑéÖ¤ÕâÒ»µã£¬¾ÍÐèÒª¼ì²éϸÖÂÆ½ºâÊÇ·ñÂú×ã¡£ÏÂÃæÊǾßÌåµÄÖ¤Ã÷¹ý³Ì£¬²»ÔÙ׸ÑÔ¡£ ¦Ð(x)p(x*|x)¦Á(x*)=¦Ð(x)p(x*|x)min1£¬¦Ð(x*)p(x|x*)¦Ð(x)p(x*|x) =min¦Ð(x)p(x*|x)£¬¦Ð(x*)p(x|x*) =¦Ð(x*)p(x|x*)min1£¬¦Ð(x)p(x*|x)¦Ð(x*)p(x|x*) =¦Ð(x*)p(x|x*)¦Á(x) ¼ÈÈ»ÒѾ­´ÓÀíÂÛÉÏÖ¤Ã÷Metropolisª²HastingsËã·¨µÄȷʵ¿ÉÐУ¬ÏÂÃæ¾ÙÒ»¸ö¼òµ¥µÄÀý×ÓÀ´¿´¿´Êµ¼ÊÖÐMetropolisª²HastingsËã·¨µÄЧ¹û¡£ÉÔ΢Óе㲻һÑùµÄµØ·½ÊÇ£¬ÕâÀﲢδ³öÏÖ¦Ð(x)p(x¡ä|x)ÕâÑùµÄºóÑé¸ÅÂÊÐÎʽ£¬×÷Ϊһ¸ö¼òµ¥µÄʾÀý£¬ÏÂÃæÖ»ÑÝʾ´Ó¿ÂÎ÷·Ö²¼ÖнøÐвÉÑùµÄ×ö·¨¡£ ¿ÂÎ÷·Ö²¼Ò²½Ð×÷¿ÂÎ÷ª²ÂåÂ××È·Ö²¼£¬ËüÊÇÒ԰¹Å˹¶¡¡¤Â·Òס¤¿ÂÎ÷ÓëºàµÂÀï¿Ë¡¤ÂåÂ××ÈÃû×ÖÃüÃûµÄÁ¬Ðø¸ÅÂÊ·Ö²¼£¬Æä¸ÅÂÊÃܶȺ¯ÊýΪ f(x£» x0£¬¦Ã)=1¦Ð¦Ã1+x-x0¦Ã2=1¦Ð¦Ã(x-x0)2+¦Ã2 ÆäÖУ¬x0ÊǶ¨Òå·Ö²¼·åֵλÖõÄλÖòÎÊý£¬¦ÃÊÇ×î´óÖµÒ»°ë´¦µÄÒ»°ë¿í¶ÈµÄ³ß¶È²ÎÊý¡£x0=0ÇÒ¦Ã=1µÄÌØÀý³ÆÎª±ê×¼¿ÂÎ÷·Ö²¼£¬Æä¸ÅÂÊÃܶȺ¯ÊýΪ f(x£» 0£¬1)=1¦Ð£Û1+x2£Ý ÏÂÃæÊÇÔÚRÖнøÐлùÓÚMetropolisª²HastingsËã·¨¶Ô¿ÂÎ÷·Ö²¼½øÐвÉÑùµÄʾÀý´úÂë¡£ rm(list=ls()) ## Çå³ýÈ«²¿¶ÔÏó set.seed(201912) reps=40000 # target density: the cauchy distribution cauchy<-function(x£¬ x0=0£¬ gamma=1){ out<-1/(pi*gamma*(1+((x-x0)/gamma)^2)) return(out) } chain<-c(0) for(i in 1:reps){ proposal<-chain£Ûi£Ý+runif(1£¬ min=-1£¬ max=1) accept<-runif(1)0 È»ºóÈ¡×ÔÓɶÈΪXtµÄ¿¨·½·Ö²¼Îª²Î¿¼·Ö²¼¡£ÊµÏÖ´úÂëÈçÏ¡£ rm(list=ls()) ## Çå³ýÈ«²¿¶ÔÏó f <- function(x£¬ sigma) { if (any(x < 0)) return (0) stopifnot(sigma > 0) return((x / sigma^2) * exp(-x^2 / (2*sigma^2))) } m <- 40000 sigma <- 4 x <- numeric(m) x£Û1£Ý <- rchisq(1£¬ df=1) k <- 0 u <- runif(m) for (i in 2:m) { xt <- x£Ûi-1£Ý y <- rchisq(1£¬ df = xt) num <- f(y£¬ sigma) * dchisq(xt£¬ df = y) den <- f(xt£¬ sigma) * dchisq(y£¬ df = xt) if (u£Ûi£Ý <= num/den) x£Ûi£Ý <- y else { x£Ûi£Ý <- xt k <- k+1 #y is rejected } } È»ºóÒªÑé֤һϣ¬Éú²úµÄ²ÉÑùÊý¾ÝÊÇ·ñÕæµÄ·ûºÏÈðÀû·Ö²¼¡£×¢ÒâÔÚRÖÐʹÓÃÈðÀû·Ö²¼µÄÏà¹Øº¯Êý£¬ÐèÒª¼Ó×°VGAM°ü¡£ÏÂÃæµÄ´úÂë¿ÉÒÔÈöÁÕßÖ±¹ÛµØ¸ÐÊܵ½²ÉÑù½á¹ûµÄ·Ö²¼Çé¿ö¡£ > curve(drayleigh(x£¬ scale = 4£¬ log = FALSE)£¬ from = -1£¬ to = 15£¬ xlim=c(-1£¬15)£¬ ylim=c(0£¬0.2)£¬ + lty = 2£¬ col="blue"£¬xlab = ""£¬ ylab="") > par(new=TRUE) > plot(density(x£Û1000:m£Ý) £¬ xlim=c(-1£¬15)£¬ ylim=c(0£¬0.2)£¬col="red") ´Óͼ3ª²23Öв»ÄÑ¿´³ö£¬²ÉÑùµã·Ö²¼È·Êµ·ûºÏÔ¤ÆÚ¡£µ±È»£¬Õâ½ö½öÊÇÒ»¸öÑÝʾÓõÄСÀý×Ó¡£ÏÔÈ»£¬Ëü²¢²»¸ßЧ¡£ÒòΪ²ÉÓÃ×ÔÓɶÈΪXtµÄ¿¨·½·Ö²¼À´×÷Ϊ²Î¿¼º¯Êý£¬´óÔ¼ÓÐ40%µÄ²ÉÑùµã¶¼±»¾Ü¾øµôÁË¡£Èç¹û»»×öÆäËû¸ü¼ÓºÏÊʵIJο¼º¯Êý£¬¿ÉÒÔ´ó´óÌáÉý²ÉÑùµÄЧÂÊ¡£ ͼ3ª²23²ÉÑùµã·Ö²¼ 3.5.4Gibbs²ÉÑù Gibbs²ÉÑùÊÇÒ»ÖÖÓÃÒÔ»ñȡһϵÁй۲ìÖµµÄMCMCËã·¨£¬ÕâЩ¹Û²ìÖµ½üËÆÓÚÀ´×ÔÒ»¸öÖ¸¶¨µÄ¶à±äÁ¿¸ÅÂÊ·Ö²¼£¬µ«´Ó¸Ã·Ö²¼ÖÐÖ±½Ó²ÉÑù½ÏΪÀ§ÄÑ¡£Gibbs²ÉÑù¿ÉÒÔ±»¿´³ÉÊÇMetropolisª²HastingsËã·¨µÄÒ»¸öÌØÀý¡£¶øÕâ¸öÌØÊâÖ®´¦¾ÍÔÚÓÚ£¬Ê¹ÓÃGibbs²ÉÑùʱ£¬Í¨³£ÊǶԶà±äÁ¿·Ö²¼½øÐвÉÑùµÄ¡£±ÈÈç˵£¬ÏÖÔÚÓÐÒ»¸ö·Ö²¼p(z1£¬z2£¬z3)£¬¿É¼ûËüÊǶ¨ÒåÔÚÈý¸ö±äÁ¿Éϵķֲ¼¡£ÕâÖÖ·Ö²¼ÔÚʵ¼ÊÖл¹Óкܶ࣬±ÈÈçһάµÄÕý̬·Ö²¼Ò²ÊǹØÓÚÆä¾ùÖµºÍ·½²îÕâÁ½¸ö±äÁ¿µÄ·Ö²¼¡£ÔÚËã·¨µÄµÚt²½£¬Ñ¡³öÁËÈý¸öÖµz(t)1£¬z(t)2£¬z(t)3¡£Õâʱ£¬¼ÈÈ»z(t)2ºÍz(t)3ÊÇÒÑÖªµÄ£¬ÄÇô¿ÉÒÔÓÉ´Ë»ñµÃÒ»¸öеÄz(t+1)1£¬²¢ÓÃÕâ¸öеÄÖµÌæ´úԭʼµÄz(t)1£¬¶øÐµÄz(t+1)1¿ÉÒÔÓÉÏÂÃæÕâ¸öÌõ¼þ·Ö²¼À´»ñµÃ p(z1|z(t)2£¬z(t)3) ½ÓÏÂÀ´Í¬ÑùµÄµÀÀíÔÙÓÃÒ»¸öеÄz(t+1)2À´Ìæ´úԭʼµÄz(t)2£¬¶øÕâ¸öеÄz(t+1)2¿ÉÒÔÓÉÏÂÃæÕâ¸öÌõ¼þ·Ö²¼À´»ñµÃ p(z2|z(t+1)1£¬z(t)3) ¿É¼û¸Õ¸Õ»ñµÃµÄÐÂÖµz(t+1)1ÒѾ­±»Ö±½ÓÓÃÉÏÁË¡£Í¬Àí£¬×îºóÓÃz(t+1)3À´¸üÐÂz(t)3£¬¶øÐµÄÖµÓÉÏÂÃæÕâ¸öÌõ¼þ·Ö²¼À´»ñµÃ p(z3|z(t+1)1£¬z(t+1)2) °´ÕÕÕâ¸ö˳ÐòÈç´ËÍù¸´¼´¿É¡£ÏÂÃæ¸ø³ö¸üΪÍêÕûµÄ¼ª²¼Ë¹²ÉÑùµÄËã·¨ÃèÊö¡£ 1. ³õʼ»¯{zi£º i=1£¬¡­£¬M} 2. ¶ÔÓÚ¦Ó=1£¬¡­£¬T£º ª²²ÉÑù z(¦Ó+1)1~p(z1|z(¦Ó)2£¬z(¦Ó)3£¬¡­£¬z(¦Ó)M) ª²²ÉÑù z(¦Ó+1)2~p(z2|z(¦Ó+1)1£¬z(¦Ó)3£¬¡­£¬z(¦Ó)M) ¦ó ª²²ÉÑù z(¦Ó+1)j~p(zj|z(¦Ó+1)1£¬¡­£¬z(¦Ó+1)j-1£¬z(¦Ó)j+1¡­£¬z(¦Ó)M) ¦ó ª²²ÉÑù z(¦Ó+1)M~p(zM|z(¦Ó+1)1£¬z(¦Ó+1)2£¬¡­£¬z(¦Ó+1)M-1) µ±È»Èç¹ûÒª´ÓÀíÂÛÉÏÖ¤Ã÷Gibbs²ÉÑùȷʵ¿ÉÒԵõ½Ô¤ÆÚµÄ·Ö²¼£¬¾ÍÓ¦¸Ã¿¼²ìËüÊÇ·ñÂú×ãϸÖÂÆ½ºâ¡£µ«ÊÇÇ°ÃæÒ²½²¹ý£¬Gibbs²ÉÑùÊÇMetropolisª²HastingsËã·¨µÄÒ»¸öÌØÀý¡£ËùÒÔÆäʵÉõÖÁÎÞÐè·ÑÁ¦È¥¿¼²ìÆäÊÇ·ñÂú×ãϸÖÂÆ½ºâ£¬Èç¹ûÄܹ»Ö¤Ã÷¼ª²¼Ë¹²ÉÑù¾ÍÊÇMetropolisª²HastingsËã·¨£¬¶øMetropolisª²HastingsËã·¨ÊÇÂú×ãϸÖÂÆ½ºâ£¬ÆäʵҲ¾ÍµÃµ½ÁËÎÒÃÇÏëÒªµÄ¡£ÏÂÃæÊÇÖ¤Ã÷µÄ¹ý³Ì£¬ÆäÖÐx-k±íʾһ¸öÏòÁ¿(x1£¬¡­£¬xk-1£¬xk+1£¬¡­£¬xD)£¬Ò²¾ÍÊÇ´ÓÖÐÌÞ³ýÁËxkÔªËØ¡£ Áîx=x1£¬¡­£¬xD¡£ µ±²ÉÑùµÚk¸öÔªËØ£¬pk(x*|x)=¦Ð(x*k|x-k) µ±²ÉÑùµÚk¸öÔªËØ£¬x*-k=x-k ¦Ð(x*)p(x|x*)¦Ð(x)p(x*|x)=¦Ð(x*)¦Ð(xk|x*-k)¦Ð(x)¦Ð(x*k|x-k)=¦Ð(x*k|x*-k)¦Ð(xk|x*-k)¦Ð(xk|x-k)¦Ð(x*k|x-k)=1 ÒÔGibbs²ÉÑùΪ»ù´¡ÊµÏÖµÄMCMCÔÚ×ÔÈ»ÓïÑÔ´¦ÀíÖеÄLDAÀïÓÐÖØÒªÓ¦Óá£Èç¹û¶ÁÕßÕýÔÚ»òÕߺóÐø×¼±¸Ñо¿LDAµÄ»°£¬ÕâЩÄÚÈݽ«ÊǷdz£ÖØÒªµÄ»ù´¡¡£