

效果展示 3.1

本实例为新中式装修风格的卧室表现效果,在设计上通过使用大量简化传统花纹的木制家具,将现代元 素与传统元素结合在一起,实例的最终渲染结果及线框图如图3-1和图3-2所示。通过渲染结果,可以看出本 实例中所要表现的灯光主要为日光照明效果。

图3-2

打开本书配套场景文件"新中式风格卧室.max",如图3-3所示。接下来将较为典型的常用材质进行详细 讲解。

3.2 材质制作

3.2.1 制作家具木纹材质

在进行室内设计时,为了让空间中的家具看起 来更搭配一些,可以考虑通过为这些家具赋予同一

种木纹材质来体现出这种 效果。本实例中的背景 墙、飘窗、衣柜、床头柜 及墙角边的凳子均使用同 一种木纹材质,渲染结果 如图3-4所示。

01 打开"材质编辑器"面板。选择一个空白材质 球,将其设置为VRayMtl材质,如图3-5所示。

在"基本参数"卷展栏中,单击"漫反射"属性后面的方块按钮,在弹出的"材质/贴图浏览器"对话框中选择"位图"命令,如图3-6所示。

3 材质/贴图浏览	8	×
按名称搜索		
- 贴阁		
- 通用		
BlendedBoxM	lap	
Color Corre	ction	
combustion		
MultiTextur	e (多紋理)	
OSL 贴图		
Perlin 大理	石	
RGB 倍增		
RGB 染色		
ShapeMap		
Substance		
TextMap		
位图		
體凹痕		
合成		
	确定	取消

● 单击"确定"按钮后,在自动弹出的"选择位 图图像文件"对话框中将"浅色木纹.jpg"贴图文件 添加进来,制作出该材质球的表面纹理,如图3-7 所示。

	又件		
历史记录:	C:\Users\#RI\Deaktop		
查找范围(D):	📕 新中式卧室日光表现	• 0 <mark>3</mark> .	• 🔤 •
大快速访问			
桌面 库	法色木纹	Jaka Sta	
→ 此电脑 ●			
网络			
网络	文件名(2):	×	- 打开(0)
网络	文件名(3): 文件名(3): 所有鑑	* 	(*) 打开(0) 取消
网络	文件名(D): 文件类型(D): 所有稿: 名称模板:	* 	111开(0) 取消
网络	文件名(3): 文件类型(1): 所有描 名称模板: Gamma	* *	117开(Q) 取(約
网络	文件名(D): 文件表型(D): 所有描述 名称模板: Gamma ● 自动(操奏)	* * *	計开(D) 現(初
网络 设备	文件名(3): 文件考型(1): 原有關 名称模板: Gaimat ● 自动(操存) ● 微重 10 2	۰. ۱۳۵۴	打开(0) 取消
网络 设备	文件名(3): 文件务型(1): 所有能 名称模板: Gaima ● 自动(信存) ● 度当 10 :	★ ★ ■ 用住	117F (Q) RC81

图3-7

04 设置"反射"的颜色为白色,"光泽度"的值 为0.75,制作出木纹材质球的高光及反射效果,如 图3-8所示。

05 制作完成后的木纹材质球显示结果如图3-9所示。

3ds Max+VRay 效果图制作从新手到高手

3.2.2 制作墙体材质

为了增加墙体的细节 表现,本实例中的墙体在 设计上力求体现出一定的 布纹凹凸质感,渲染结果 如图3-10所示。

●1 打开"材质编辑器"
 ●3-10
 面板。选择一个空白材质球,将其设置为VRayMtl
 材质,如图3-11所示。

图3-11

在"基本参数"卷展栏中,设置"漫反射"的 颜色为白色,如图3-12所示。

漫反射			预设 自定义		٧
粗糙度	0.0	\$			
反射			最大深度	5	4
光泽度	1.0	\$	青面反射		
✔ 菲涅耳反射			■ 暗淡距离		÷
菲涅耳折射率		4 🗐			4
金属度	0.0	\$	影响通道	仅颜色	

03 在"贴图"卷展栏中,在"凹凸"贴图通道上加载一张"深一点的布纹.jpg"文件,并设置"凹凸"的强度值为30.0,制作出墙体的凹凸质感,如图3-13所示。

+		无贴图
- 7		202344150
	100	二二 (1)上 [2]
¢	*	无點图
¢		无贴图
	0 0 0	* * * * * *

● 制作完成后的墙体纹理材质球显示结果如 图3-14所示。

图3-14

3.2.3 制作地板材质

本实例中的地板材质 渲染结果如图3-15所示。 ① 打开"材质编辑器" 面板。选择一个空白材质 球,将其设置为VRayMtl 材质,如图3-16所示。

图3-15

22 在"贴图"卷展栏中,在"漫反射"的贴图通 道上加载一张"地板纹理.jpg"文件,制作出地板材 质的表面纹理,如图3-17所示。

反射	100.0	¢	~	无贴图
光泽度	100.0	\$	~	无贴图
折射	100.0	¢	-	无贴图
光泽度	100.0	¢	-	无贴图
不透明度	100.0	\$	-	无贴图
凹凸	30.0	\$	-	无贴图
置换	100.0	\$	~	无贴图

03) 在"基本参数"卷展栏中,设置"反射"的颜

色为白色,设置"光泽度"的值为0.7,制作出地板 材质的高光及反射效果,如图3-18所示。

图3-18

● 制作完成后的地板材质球显示结果如图3-19所示。

图3-19

3.2.4 制作窗户玻璃材质

在制作窗户玻璃材质时,最好先观察一下身 边的窗户质感,如图3-20所示为拍摄的一张窗户照 片,从照片上可以看出窗户玻璃一般具有明显的反 射效果。如图3-21所示则为本实例中窗户玻璃材质 的渲染结果。

01 打开"材质编辑器"面板。选择一个空白材质 球,将其设置为VRayMtl材质,如图3-22所示。

在"基本参数"卷展栏中,设置"漫反射"的颜色为白色,设置"反射"的颜色为白色,设置"反射"的颜色为白色,设置"光泽度"的值为0.95,制作出窗户玻璃材质的高光和反射效果,如图3-23所示。为了方便帮助读者区分"漫反射""反射"及接下来要介绍的"折射"颜色设置,读者可以查看"漫反射"和"反射"的颜色参数设置,如图3-24所示。

图3-23

④ 设置"折射"的颜色为浅白色,制作出玻璃材质的折射效果,如图3-25所示。需要注意的是, "折射"的颜色参数与"漫反射"及"反射"的颜色参数略有不同,如图3-26所示。这样,可以避免渲染出来的窗户玻璃效果过于透明。

图3-26

04 制作完成后的窗户玻璃材质球显示结果如 图3-27所示。

3.2.5 制作摆件金属材质

本实例中床头柜上的 小鹿摆件、床头灯上的金 色部分以及衣柜上的玻璃 边框均使用了一种金色的 金属材质来表现其质感, 渲染结果如图3-28所示。

01 打开"材质编辑器"面板。选择一个空白材质

球,将其设置为VRayMtl材质,如图3-29所示。

在"基本参数"卷展栏中,设置"漫反射"与
"反射"的颜色为暗金色,制作出金属材质的基本
色,如图3-30所示。颜色的具体参数设置如图3-31
所示。

图3-30

03 设置"光泽度"的值为0.8,制作出金属材质的 高光效果。设置"金属度"的值为1.0,提升材质的 金属质感,如图3-32所示。

04 制作完成后的金色金属材质球显示结果如 图3-33所示。

图3-33

3.2.6 制作被子布料材质

本实例中被子的渲染 结果如图3-34所示。 ① 打开"材质编辑器" 面板。选择一个空白材质 球,将其设置为VRayMtl 材质,如图3-35所示。

图3-34

在"基本参数"卷展栏中,设置"漫反射"的 颜色为浅黄色,如图3-36所示。颜色参数设置如 图3-37所示。

漫反射			预设 自定义		۳
粗糙度	0.0	÷			
反射			最大深度	5	\$
光泽度	0.3	÷	■ 背面反射		
✔ 菲涅耳反射			暗淡距离		A.V
臣涅耳折射率 🚺					A W
金属度	0, 0	\$	影响通道	仅颜色	¥

03 设置"反射"的颜色为白色,设置"光泽度"的值为0.3,为被子布料材质添加一点点微弱的高光效果,如图3-38所示。

04 在"贴图"卷展栏中,为"凹凸"贴图通道上添加一张"深一点的布纹.jpg"文件,并设置"凹凸"的强度值为5.0,制作出布料的凹凸效果,如图3-39所示。

图提				
漫反射	100.0	\$	*	无贴图
反射	100.0	\$	~	无贴图
光泽度	100.0	\$	*	无贴图
折射	100.0	\$	*	无贴图
光泽度	100.0	\$		无贴图
不透明度	100.0	*	4	无贴图
凹凸	5.0	\$	~	贴图 #4 (深一点的布纹.jpg)
置换	100.0	\$	¥	无贴图
自发光	100.0	\$	4	无贴图
漫反射粗糙度	100.0	\$	4	无贴图
		4	N	

●5 制作完成后的被子布料材质球显示结果如 图3-40所示。

3.2.7 制作不锈钢金属材质 本实例中床头灯灯座上白色金属部分使用了不 锈钢金属材质,渲染结果如图3-41所示。

01 打开"材质编辑器"面板。选择一个空白材质球,将其设置为VRayMtl材质,如图3-42所示。

图3-42

在"基本参数"卷展栏中,设置"漫反射" 和"反射"的颜色为白色,设置"光泽度"的值为 0.8,制作出不锈钢金属材质的高光及反射效果。设置"金属度"的值为1.0,增加材质的金属特性,如 图3-43所示。

 制作完成后的不锈钢金属材质球显示结果如 图3-44所示。

图3-44

3.2.8 制作背景墙布纹材质

本实例中的背景墙采用了布纹材质,渲染结果如图3-45所示。

01 打开"材质编辑器"面板。选择一个空白材质 球,将其设置为VRayMtl材质,如图3-46所示。

在"基本参数"卷展栏中,设置"漫反射"的 颜色为浅红色,颜色的参数设置如图3-47所示。设置"反射"的颜色为白色,设置"光泽度"的值为 0.3,为背景墙的材质添加一点微弱的高光效果,如 图3-48所示。

图3-48

● 在"贴图"卷展栏中,为"凹凸"贴图通道上添加一张"布纹.jpg"文件,并设置"凹凸"的强度值为30.0,制作出布料的凹凸效果,如图3-49所示。

▼ 贴图					
漫反射	100.0	\$	¥	无贴图	
反射	100.0	+	-	无贴图	
光泽度	100.0	-	-	无贴图	
折射	100.0	*	~	无贴图	
光泽度	100.0	\$	4	无贴图	
不透明度	100.0	-	Y	无贴图	
凹凸	30.0	\$	~	贴图 #5 (布纹.jpg)	
置换	100, 0	\$	¥ [无贴图	
自发光	100.0	*	-	无贴图	
漫反射粗糙度	100.0	\$	Y	无贴图	

图3-49

● 制作完成后的背景墙布料材质球显示结果如 图3-50所示。

图3-50

3.2.9 制作床头布纹材质

本实例中的床头主要 表现为灰色的布纹质感, 渲染结果如图3-51所示。 01 打开"材质编辑器" 面板。选择一个空白材质 球,将其设置为VRayMtl 材质,如图3-52所示。

图3-51

在"贴图"卷展栏中,为"漫反射"贴图通道 上添加一张"布纹.jpg"文件,并使用拖曳的方式将 该贴图复制到下方的"凹凸"贴图通道上,制作出 床头布料材质的表面纹理及凹凸效果,如图3-53所 示。需要注意的是,复制贴图时,在系统自动弹出的 "复制(实例)贴图"对话框中,选择"实例"选 项,如图3-54所示。

▼ 贴图				
漫反射	100.0	÷ ~	贴图 #6 (布纹, jpg)	
反射	100.0	\$ ¥ [无贴图	
光泽度	100.0	\$ ¥	无贴图	
折射	100.0	\$ ¥	无贴图	
光泽度	100.0	\$ ¥	无贴图	
不透明度	100.0	\$ ¥	无贴图	
凹凸	30.0	* *	贴图 #6 (布纹.jpg)	
置换	100.0	\$ ¥	无贴图	
自发光	100.0	\$ v	无贴图	
	复制(3	实例)贴图	×	
	方: [[[[[[]	去 》 实例 》 复制 》 交換 御定	TTC 175	
		图3-	-54	

在"基本参数"卷展栏中,设置"反射"的颜
 色为白色,设置"光泽度"的值为0.3,如图3-55
 所示。

015-11-15-294					
漫反射	8	M	预设 自定义		۷
粗糙度	0.0	\$			
反射			最大深度	5	÷
光泽度	0.3	\$	■ 背面反射		
✔ 菲涅耳反射			■暗淡距离		Ŷ
華淫耳折射率 []		÷ 💷			Â
金属度	0.0	4	影响通道	仅颜色	Y

图3-55

04 制作完成后的床头布料材质球显示结果如图3-56

所示。

图3-56

3.2.10 制作大理石材质

本实例中背景墙里的 大理石质感渲染结果如 图3-57所示。

01 打开"材质编辑器" 面板。选择一个空白材质 球,将其设置为VRayMtl 材质,如图3-58所示。

3 材质编辑器 - 大理石 × 模式(D) 材质(M) 导航(N) 选项(O) 实用程序(U) ■ 5° 12 8 0 0 11 9 2 漫反射 🗖 预设 自定义 相極度 0.0 \$

图3-58

02 在"贴图"卷展栏中,为"漫反射"贴图通道 上添加一张"大理石.jpg"文件,制作出大理石材质 的表面纹理,如图3-59所示。

漫反射	100.0	\$	4	贴图 #7 (大理石. jpg)
反射	100.0	\$	-	无贴图
光泽度	100.0	÷	-	无貼图
折射	100.0	\$	-	无贴图
光泽度	100.0	÷	4	无贴图
不透明度	100.0	¢	~	无贴图

03 在"基本参数"卷展栏中,设置"反射"的颜 色为白色,设置"光泽度"的值为0.9,制作出大理 石的反射及高光效果,如图3-60所示。

漫反射			预设	自定义		v
粗糙度	0.0	¢				
反射			最	大深度	5	\$
光泽度	0.9	¢	青面	i反射		
✔ 菲涅耳反射			= 暗淡	距离		\
菲涅耳折射率 🚺		÷ [A V
金属度	0.0	\$	影	响通道	仅颜色	

图3-60 04 制作完成后的大理石材质球显示结果如图3-61

图3-61

3.2.11 制作灯光材质

所示。

本实例中的灯具使用 了灯光材质, 渲染结果如 图3-62所示。

01 打开"材质编辑器" 面板。选择一个空白材质 球,将其设置为VRay灯 光材质,如图3-63所示。

图3-62

02 在"参数"卷展栏中,设置"颜色"的值为 0.5,降低VRay灯光材质的发光强度,如图3-64 所示。

-

X

.

.

-

ш

-9

*-

02 在"参数"卷展栏中,在"颜色"贴图通道上 添加一张"窗外环境.jpg"文件,并设置"颜色"的 值为0.2,如图3-68所示。

图3-67

中止: 0,001 🗘

颜色:		0.2 🛊	贴图 #8	(窗外环境. JPG)	-
透明度:			无贴图		
	TP 122	我影响。哈斯			
W 10	信增	颜色的不过	5 度明度	0 L 091	
置换:	作法 倍增 1.0	最影机哪刀 颜色的不过 ◆	。 ق明度 无	貼图	
置换: 复接照明	作法 信增 1.0	最影机∝力 颜色的不过 ◆	。 ق明度 无	贴图	

图3-68

03 制作完成后的窗外环境材质球显示结果如 图3-69所示。

图3-69

3.3 摄影机参数设置

本实例中设置有两个摄影机,分别从两个角度 来展示卧室的设计效果,具体设置步骤如下。

模式(D) 材质(M) 导航(N) 选项(O) 实用程序(U) . . 111 -. 52 12 5 5 5 5 0 0 0 11 4 4 ● 自发光
 ▼ VRay 灯光材质
 - 彩数 颜色: 1.0 \$ 无粘图 ¥ 透明度: 无粘图 ¥ 不透明度: 育面发光 补偿摄影机曝光 倍增颜色的不透明度 買换: 1.0 ♥ 无贴图 ♥ 直接照明 ■开 中止: 0,001 🗘

×

3 材质编辑器 - 自发光

图3-63

图3-64

03 制作完成后的灯光材质球显示结果如图3-65 所示。

图3-65

制作窗外环境材质 3.2.12

本实例中窗外环境材质 的渲染结果如图3-66所示。 01 打开"材质编辑器"面 板。选择一个空白材质球, 将其设置为VRay灯光材质, 如图3-67所示。

Camera001] [Bjbft] [BDA.IQBB2ER]

图3-73

05 选择场景中的摄影机,在"修改"面板中,展 开"其他"卷展栏,勾选"启用"选项,开启"剪切 平面"功能,并设置"近"的值为2.9m,如图3-74 所示。

06 展开"物理摄影机"卷展栏,设置"宽度"的 值为19.0,设置"焦距"的值为18.0,如图3-75 所示。

					Phy	sCamera001			
					修动	女器列表			
						物理摄影机			
					*	1 3 1			
				_		基本			
•	其他 剪切平面——				¥.	物理摄影机 胶片/传感器			
	✔ 启用					预设值: 自知	主义	v	
	近:	2.9m	-			宽度:	19.0 🛊	毫米	
	远:	1000. Om	*			镜头			
	环境范围					焦距:	18.0 \$	毫米	
	近距范围:	0. Om	*			■指定视野:	55, 41 \$		
	远距范围:	1000. Om	*			缩放:	1.0 🗘	х	
						光圈: f	/ 8.0	\$	
	图3	-74				图3	3-75		

图3-74

07 设置完成后,再次观察"摄影机"视图,这 次可以看到卧室正面的摄影机展示角度如图3-76 所示。

图3-76

图3-72

04 按下C键, 切换至"摄影机"视图, 可以看到 由于该摄影机的位置已经处于所要表现的空间之外, 故在默认状态下无法显示出卧室的内部,如图3-73 所示。

3.3.2 设置卧室侧面角度展示

① 在"顶"视图中,选择刚刚所创建的摄影机, 按住Shift键,以拖曳的方式复制一个新的摄影机并 调整其位置至如图3-77所示。

02 在"修改"面板中,展开"其他"卷展栏,取 消勾选"启用"选项,如图3-78所示。
03 展开"物理摄影机"卷展栏,设置"宽度"值 为40.0,增加摄影机的拍摄范围,如图3-79所示。

● 设置完成后,观察"摄影机"视图,可以看到卧室侧面的摄影机展示角度如图3-80所示。

图3-80

在摆放摄影机时,摄影机的机位可以参考摄影

师在空间里所站的位置。但是,如果这个空间非常 小,摄影机所拍摄到的范围就会很窄。以本实例为 例,这是一个13m²的卧室,如果要从床的正前方来 渲染,摄影机放到房间里,如图3-81所示,那么, 在"摄影机"视图所得到的角度如图3-82所示。

图3-81

如果在"修改"面板中对摄影机的"宽度" 值进行调整,的确可以增加摄影机的拍摄范围,如 图3-83所示为摄影机的"宽度"值为90时,"摄影 机"视图的显示效果。但是,虽然摄影机的拍摄范 围增加了,但是画面产生了较大的变形,看起来非

所以,读者可以参考本章所讲解的方法,将摄 影机的位置放在房间以外,通过设置摄影机的"剪 切平面"位置来进行渲染,如图3-84所示。这样就 可以得到一个看起来更加宽广、也比较自然一些的 拍摄角度,如图3-85所示。

图3-84

图3-85

3.4 灯光设置

本实例主要表现日光的照射效果,具体操作步骤如下。

3.4.1 制作日光照明效果

01 在"创建"面板中,将下拉列表切换至VRay,单击"(VR)太阳"按钮,如图3-86所示。

02 在"顶"视图中,创建一个"(VR)太阳"灯 光,如图3-87所示。创建完成后,在系统自动弹出的 "V-Ray太阳"对话框中,单击"是"按钮,为该场 景自动添加"VRay天空"环境贴图,如图3-88 所示。

 V-Ray 太阳
 ×

 你想自动添加一张 "VRay 天空" 环境點图

 是 (Y)
 否 (X)

 图3-88

Ⅰ3 添加完成后,按快捷键8键,打开"环境和效果"面板,可以看到"VRay天空"环境贴图已经被成功添加,如图3-89所示。

太阳"灯光的高度至如图3-90所示。

在"修改"面板中,展开"太阳参数"卷展栏。设置"强度倍增"值为0.01,设置"大小倍

增"值为2.0,设置"过 滤颜色"为浅黄色,如 图 3-91 所示。其中, "过滤颜色"的参数设置 如图3-92所示。

制作灯带照明效果 3.4.2

01 在"创建"面板中, 将下拉列表切换至VRay, 单击"(VR)灯光"按 钮,如图3-93所示。 02 在场景中如图3-94

+ 2 . 0	• • •
• • • •	o° ≋
VRay	•
▼ 对象类型	
自动栅	格
(VR)灯光	(VR)光域网
(VR)环境灯光	(VR)太阳
图3	-93

所示位置处,创建一个 "(VR)灯光"用来模拟吊顶上的灯带照明效果。

图3-94

03 在"前"视图中,旋转完成灯光的照射角度 后,移动其位置至如图3-95所示。

04) 在"修改"面板中,展开"常规"卷展栏。设 置"倍增"的值为0.5,设置"模式"为"温度"选 项,并将"温度"的值设置为4500.0,这样,可以观 察到灯光的"颜色"自动变为橙色,如图3-96所示。

05 灯光的参数设置完成后,在"顶"视图中, 对其进行复制并分别调整角度和位置至如图3-97所 示,用来模拟其他三处位置的灯带照明效果。

图3-97

制作射灯照明效果 3.4.3

01 在"创建"面板中, 将下拉列表切换至VRay, 单击"(VR)光域网"按 钮,如图3-98所示。 02 在"前"视图中,在 筒灯模型位置下方创建一 个"(VR)光域网"灯光,如图3-99所示。

2021/8/11 18:07:13

60

3ds Max+VRay 效果图制作从新手到高手

03 在"顶"视图中,调整"(VR)光域网"灯光 的位置至如图3-100所示。

图3-100

04 按住Shift键,对"(VR)光域网"灯光进行 复制,在系统自动弹出的"克隆选项"对话框中, 选择"实例"选项,如图3-101所示。这样复制出 来的"(VR)光域网"灯光是相互关联的关系, 在后续的参数调整上,只需要调整场景中任意一 个"(VR)光域网"灯光,就会对场景中的所有 "(VR)光域网"灯光进行更改。

图3-102

06 在"修改"面板中,设置"(VR)光域网"灯 光的"IES文件"为"筒灯.IES",设置"颜色"为 橙色,设置灯光的"强度值"为100.0,如图3-103 所示。其中,颜色的参数设置如图3-104所示。

启用	
启用视口着色	
显示分布	
目标	
IES 文件 節灯	
X 轴旋转0.0	-
Y 抽旋转0.0	
Z 轴旋转 0.0	
中止	1
閉影偏移 0.0m	. :
投影阴影	
影响漫反射	
漫反射基值1.0	
影响高光	
高光基值1.0	
使用灯光图 仅期影	¥
覆盖图形	
图形 点	
高度0.0:	
宽度	
长度0.00	
直径0.0n	
颜色模式 颜色	۷
颜色	
色温	
覆盖强度 重缩放	۷
强度类型 功率(1m)	*
强度值 100.	0 ;
区域高光	
视口线框颜色	
图标文本	22
推除	

颜色选择器: 颜色 × 色调 白度 186 \$ 红: 绿: 145 \$ 蓝: 87 💠 色调: \$ 饱和度 136 \$ 亮度: 186 🗘 1 重置(R) 确定(Q) 取消(C) 图3-104

2021/8/11 18:07:14

图3-106

图3-107

04 在"修改"面板中,展开"常规"卷展栏,设 置灯光的"倍增"值为1.0,如图3-108所示。

图3-108

技术专题 "(VR)太阳"灯光参数解析

"(VR)太阳"灯光主要用来模拟真实的室 内外阳光照明,在"修改"面板中共有"太阳参 数""天空参数""选项"和"采样"四个卷展 栏,如图3-109所示。下面,对其中较为常用的参数 进行介绍。

0	VR)太阳001	
稱	改器列表	
	(VR)太阳	
*	• • • • • • • • • • • • • • • • • • • •	
× - +	 「」 (1) (1)	
× + + +	 本 同参数 天 空 参数 	
× - + + +	 本間参数 大官参数 洗項 	

图3-109

1. "太阳参数"卷展栏

展开"太阳参数"卷展栏,其参数设置如图3-110 所示。

启用		~
强度倍增	1.0	\$
大小倍增	1.0	\$
过滤颜色		
颜色模式	过滤	v

常用参数解析

- 启用:开启"(VR)太阳"灯光的照明 效果。
- 强度倍增:设置"(VR)太阳"光照的 强度。
- 大小倍增:设置渲染天空中太阳的大小, "大小倍增"的值越小,渲染出的太阳半径越小,同时地面上的阴影越实;"大小倍 增"的值越大,渲染出的太阳半径越大,同时地面上的阴影越虚,如图3-111所示分别 为该值是0.2和10的渲染结果对比。通过对 比,可以看出该值为0.2时,日光投射到床 上的阴影边缘效果越清晰;该值为10时, 日光投射到床上的阴影边缘效果看起来越 模糊。

3ds Max+VRay 效果图制作从新手到高手

图3-111

过滤颜色:该参数用于改变"(VR)太阳"灯光的颜色,并可以明显影响渲染的图像色彩。
 如图3-112所示分别为"过滤颜色"设置为橙色(红:244,绿:120,蓝:19)和蓝色(红:46,绿:73,蓝:239)的渲染结果对比。

天空模型 Hos…al. ▼

0.5 \$

0.0 \$

2.5 \$

0.35 🜲

地面反照率

图3-113

间接水平照明

混合角度

浊度

臭氧

地平线偏移

图3-112

 颜色模式:用于设置"过滤颜色"以何种模 式来影响"(VR)太阳"灯光的颜色。

▼ 天空参数

2. "天空参数"卷展栏

展开"天空参数" 卷展栏,其参数设置如 图3-113所示。

常用参数解析

天空模型:用
 于选择控制渲
 染玉穴环墙的程序

染天空环境的程序模型。

- 地面反照率:用于改变地面的颜色。
- 间接水平照明:用于设置来自天空的间接照 明强度。
- 混合角度:用于控制地平线和天空之间所形成的渐变大小。
- 地平线偏移:用于设置地平线的偏移位置。
- 浊度:控制大气中的灰尘量,并影响
 "(VR)太阳"灯光以及天空的颜色。
- 臭氧:控制大气中臭氧的含量。

3. "选项"卷展栏

展开"选项"卷展 栏,其参数设置如图3-114 所示。

排除		
不可见		
 影响漫反射 	1.0	÷
▶ 影响高光反射	1.0	÷
2 投射大气阴影		

图3-114

常用参数解析

- "排除"按钮:将场景中的对象排除在阳光 的照明之外。
- 不可见:启用时,太阳光将不会被渲染出来。
- 影响漫反射:设置"(VR)太阳"灯光对 材质的漫反射影响程度。
- 影响高光反射:设置"(VR)太阳"灯光
 对材质的高光反射影响程度。
- 投射大气阴影: 启用时,大气效果可以投射 阴影。

4. "采样"卷展栏

展开"采样"卷展栏,其参数设置如图3-115 所示。

常用参数解析

阴影偏移 0.0m ◆ 光子发射半径 0.05m ◆

- - 光子发射半径:设置光子照射区域的半径。

3.5 渲染及后期设置

3.5.1 渲染设置

01 打开"渲染设置: V-Ray 5"面板,可以看 到本场景已经预先设置完成使用VRay渲染器渲染场 景,如图3-116所示。

3 渲染设置:	/-Ray 5 –	- 🗆 X
目标:	产品级渲染模式 🔹	stritt.
预设:	未选定预设	但来
渲染器:	V-Ray 5	■保存文件
查看到渲染:	Quicksilver 硬件渲染器 ART 渲染器	01 💌 🖬
公用 V-Ra	扫描线渲染器	r Elements
▼ 公用参数 时间输出	VUE 文件渲染器 V-Ray 5	
 单帧 活动时间 	V-Ray GPU 5 Arnold HX: U FJ 100	9 (: 1 +
● 范围:	0 \$ 至 100	\$
	文件起始编号: 0	÷.
● 帧:	1, 3, 5-12	

图3-116

在"公用参数"选项卡中,设置渲染输出图像
 的"宽度"为2400, "高度"为1800,如图3-117
 所示。

▼ 公用参数 时间输出 每 N 帧: 1 \$ 单帧 ● 活动时间段: 0 到 100 ● 范围: 0 \$ 至 100 \$ 文件起始编号: 0 \$ 前: 1,3,5-12 要渲染的区域 视图 输出大小 自定义 🔻 光圈宽度(毫米): 36.0 🛟 2400 \$ 320x240 720x486 宽度: 1800 🗘 640x480 800x600 高度: 图像纵横比: 1.33333 🔒 像素纵横比: 1.0 💠 🔒 图3-117

在V-Ray选项卡中,展开"图像采样器(抗锯齿)"卷展栏,设置渲染的"类型"为"渲染块",
 如图3-118所示。

公用 V-Ray GI 设置 Render Elements > 全局开关 ■ > 交互式产品级渲染选项 ■ > 欠互式产品级渲染选项 ■ > 預像来样器(抗锯齿) ■ 資染速單 五 > 渲染速單 五 ● 一 ● 2 ● 2 ● 24 ● 這染块高度 ● 1.0 ● ※該阀值

图3-118

●4 在GI选项卡中,展开"全局照明"卷展栏,设置"首次引擎"的选项为"发光贴图",设置"饱和度"的值为0.3,如图3-119所示。

图3-119

在"发光贴图"卷展栏中,将"当前预设"选择为"自定义",并设置"最小比率"和"最大比率"的值均为-1,如图3-120所示。

3.5.2 后期处理

05 以相同的方式添加一个"色彩平衡"图层,在"色彩平衡"卷展栏中,设置"Yellow-Blue(黄色-蓝 色)"的值为0.020,如图3-126所示,细微调整渲染图像的整体色调。

图3-126

06 以相同的方式添加一个"曝光"图层,在"曝光"卷展栏中,设置"Contrast(对比度)"的值为 0.200,如图3-127所示,提升渲染图像的层次感。

07 本实例的最终图像渲染结果如图3-128所示。

(1) 120(1) 1

