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Aspects of energy economy

1.1

Importance of energy supply

A sufficient high, economic attractive and safe supply of energy is an essential condition for the

welfare of the human beings-™

. For the production of food, water supply, for heating and cooling, for

the transport sector and for the infrastructure as well as for the production of goods for consumption,

large amounts of energy are necessary in industrialized countries. Energy for the organization and

preservation of environment is necessary too with rising importance. Figure 1.1 gives an overview on

these aspects and some numbers characteristic for German conditions. Transportation, industry and

house heating require the major part of energy.
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Figure 1.1 Overview on the importance of energy for the human life

(a) General overview on fields of application of energy; (b) Some data for Germany (consumption of primary energy in

different sectors of energy economy; total = 6t HCU/(person * a) ,

HCU = hard coal units)

Here and later often the unit HCU (hard coal unit) is applied to characterize energy carriers. The

hard coal unit 1t HCU corresponds to 8.3MW « h (thermal) or 30GJ. For the different primary energy,

conversion factors corresponding to Table 1.1 can be applied.

Table 1.1 Conversion factors for different energy carriers (in relation to hard coal units HCU)
Energy carrier Heating value/ (MJ/kg) Heating value/ (kW * h/kg) | Conversion/(kg HCU/kg)
hard coal 30 8.3 1
lignite 8 2.2 0.27
crude oil 43.9 12.2 1.4
natural gas 42 11.6 1.43
uranium 605 000 170 000 20 480

* mnatural uranium, 0.7 wt% UZ235.
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Sometimes energy balances use the unit 1 t of oil with a heating value of around 12. 2kW -« h or
43.9MJ as a further unit. Electrical energy often is valuated with an average efficiency of 33%. The
delivery of 1kW + h, from renewable or nuclear energy to the energy economy corresponds than to
3kW ¢ h, . The energy demand of the people has raised up very much during the past (Figure 1.2): from
some 100kgHCU/ (person » a) to around 6t HCU/(person » a) (in Germany) and around 2.3t HCU/

(person ¢ a) as an average value worldwide today.
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Figure 1.2 Daily demand on primary energy (kW « h/(person * d)) of people at different times of the human development

Further improvements regarding supply in many countries are necessary. Today as example in India
just around 0. 84t HCU/(person * a) are available. For many other countries similar numbers are
relevant (Figure 1.3). This situation must be improved in the future to avoid large problems in the
interaction of countries worldwide. To save energy, which is propagated mainly in western countries (as
example for the conservation of climate), is necessary for those countries, but it is not a solution for

countries, which don’t have a sufficient energy supply today.
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Figure 1.3 Specific consumption of primary energy in some countries and population (2019)

The energy supply furthermore is correlated to the Gross National Product (GNP) and to the
quality of life. Maybe this can be expressed by the expectation of lifetime of people in different
countries. Figure 1.4 shows the differences of GNP in countries indicating large differences of energy
supply. Figure 1.5 correlates this value with the lifetime. The values in Figure 1.4 and Figure 1.5 are
valid for the year 1997. In some countries, like China, the numbers have changed, for instance, the
specific energy consumption is already in the order of 4.5t HCU/(person * a), the average life time
today is in the order of 75 years.

The discrepancies of these values worldwide is not acceptable in the future and will cause serious
problems. Improvements are necessary.
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Figure 1.4 Correlation between primary energy supply and gross national product

(a) Values in different countries and cities worldwide(status: 1997); (b) Development in China
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Figure 1.5 Correlation between expected lifetime and the Gross National Product (1997)

(a) Values for some elected countries worldwide(status: 1997); (b) Development in China
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In the meantime, some countries made large progress: as example, the values in China are now
around 10 000 dollar/(person * a) for the gross national product and higher than 3.3t HCU/(person * a)
for the specific energy consumption. The average life time became larger and has now a value about 75 years.

A sufficient high standard of life is a precondition for a good prognosis for expectation of lifetime of
population worldwide. These standards are coupled with a sufficient high production of food, good
standards of hygiene and medical services and a functioning infrastructure. All these aspects require a
sufficient and effective structure of energy supply. To realize this goal worldwide will require large
efforts and the investment of very large capitals. Additionally rising environmental problems have to be
considered in this connection. Especially the CO,-question will have importance. Similar consideration
as for primary energy supply are valid for the supply with electrical energy. Figure 1.6(a) gives an
overview on the status in some countries worldwide regarding this energy carrier, which indicate that
there are large differences. In China much progress was realized with respect to the rise of the
production of electrical energy. In the last 20 years there was a rise by a factor of 5(Figurel.6(b)).
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Figure 1.6 Production and consumption of electricity per year and per person

(a) Comparison for different countries (status: 1998); (b) Development in China

Around 30% of the primary energy, which is applied worldwide,is used to produce electricity. As
an average around 3200kW « h,/(person * a) is available for the world population; in Germany, this
value is nearly 6700kW + h,/(person * a). However in some countries like India even in 2019 just
1000kW « h,/(person « a) is characteristic for the supply of the people. This situation, in more detail
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explained in Figure 1.6, requires intensive work and effort to improve the conditions of life worldwide.

Corresponding to this disadvantageous supply for people in many countries, the height of installed
capacities for the production of electrical energy today still is extremely different in important countries
(Figure 1.7). Countries with an insufficient height of installed electrical capacity have low values of
gross national product and low standards of life. Figure 1.7 shows that there is a huge demand of
additional power plants, transportation systems and grids to be built in the future. Additionally

many old power plants have to be replaced by new ones, because they have reached their end of life and
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Figure 1.7 Aspects of supply with electrical energy: time dependent development of capacities
(a) Correlation between gross national product and installed capacity of power plants (kW/person) in different countries (status:
1998); (b) Population and installed capacities in different regions of the world(status: 2019); (¢) Development of capacities of power
plants in the past and expectations (example: European Union (25 countries)); (d) Development of capacity of power plants in a
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efficiencies should be improved. Furthermore, storage systems for clectrical energy have to be developed
and introduced, if the share of renewable energies rises up.

As example in the European Union(EU), where a capacity of around 600GW, is installed, in the
next 30 years additional 200GW have to be added to the grid. Furthermore, old plants have to be
substituted. Some countries with lower state of development have huge demand. In totally it is estimated
that around 500GW_, have to be built in the EU. In Germany, the number is 40GW in the next 10 years
(expectation 2015). This must be mainly base load plants. Because in the meantime political decisions
have been made in Germany to go out of use of fossil fuels and of nuclear power reacts the capacities of
wind energy converters and of photo voltaic installations have been enlarged drastically.

The wind capacity was 6.1GW, in 2000 and 62GW_, in 2019. The photo voltaic installations rised up
from 0.1GW_ in 2000 to 54GW_ in 2019. These changes were realized by massive subventions from the
government. Especially the changing offer of wind energy and solar energy require the installation of
very large capacities and storages.

Some differences regarding the supply structures worldwide can be explained by climatic conditions
naturally too. However, it is understandable that all countries, which have values below average
worldwide numbers, aspire changes and progress. This is the case at least for more than 50% of the world
population. In totally the energy demand of the world will rise up dramatically in the next decades and one of
the most important questions of future worldwide development will be to fulfill this requirement. It is important
for the people in the world to establish similar conditions of life everywhere (Figure 1.8 (a)).

The safe, economic reliable energy supply is very important for all requirements of daily life.
However, in many countries the intensive use of fossil fuels is connected to burden for the environment,
as example of CO, emission. Data in Figure 1.8 (b) indicates the big differences regarding important
data for some countries and of the worldwide average. Therefore it is understandable that there is a big

movement in the world to change the conditions and to equalize the differences.
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Figure 1.8 Aspects of energy supply in different countries of the world
(a) Worldwide electricity production (in the past till 1997); (b) Development of production of electricity in the world
since 1990; (c¢) Some data relevant for life conditions in different countries(status: 2019)
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Figure 1.8 (Continued)

1.2 Development in the past and status of world energy economy

The worldwide primary energy supply has been raised up strongly during the last decades (Figure 1.9,
The doubling time in the past was around 30 years. In 2019 nearly 1.8 x 10"t HCU/a worldwide were
inserted for the supply. This corresponded at a population of the world of 7.7 X 10° people to an average
supply of 2.3t/HCU/(person « a).

The world population has raised up in the last 100 years by a factor of more than 4, mainly caused
by medical progress and improved structures of food supply. Even severe disturbances like World War 1
and 2 or big crisis of oil supply and very high oil prices did not influence the general tendencies of rise of

world population and of energy demand very much (Figure 1.9 (b)).
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Figure 1.9 Development of the world population and the energy supply in the world (in the past)
(a) World population(value in 2019: 7.7%10%); (b) Primary energy supply worldwide(value in 2019: 1.8x 10"t HCU/a)

Mainly the increase of population in the world and improvements of standard of life in some
countries caused this development on the energy sector. Figure 1.3 to Figure 1.7 indicated however,
that there are still large differences of consumption and therefore of life conditions worldwide. There
are countries with very large population in the world like India, Pakistan, Bangladesh or many states in
Africa, where the specific consumption of electrical energy is smaller by a factor of 4 compared to the
average value worldwide. Naturally the supply in these countries must be improved in the future to a
large extent to avoid social problems, migration of people and wars. In the countries indicated above as
example, the transportation sector today is practically not at all developed compared to the situation in
USA ., Europe or some countries in Asia like China and Japan.

Until now the supply was based mainly on the fossil energy carriers as coal, crude oil and natural gas
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(Figure 1.10). Renewable and nuclear energy play a role in the order of just 10% of the total supply
structure. However their importance is growing up. The expectation is that they will take over a share of
nearly 30% of the demand after the next three decades worldwide. To estimate the share of
noncommercial energy carriers always contains some uncertainties. In some countries they represent the
most important part of the energy supply.
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Figure 1.10 Contribution of different energy carriers to the worldwide supply with primary energy
(a) Development of different energy carriers (worldwide); (b) Shares of different primary energy
carriers on the worldwide energy supply (example: 2012; total energy supply: 1.7 X 10"t HCU/a);

(c) Shares of different primary energy carries on the energy supply of a country (example: Germany;

2012; total energy supply: 4.60%10°t HCU/a); (d) Shares and changes of primary energy consumption

in different regions and specific countries(2019)
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Special developments took place in the last decades in the field of worldwide electricity production.
Table 1.2 includes some data for production differentiated to the energy carriers. The supply of regions
was already shown in Figure 1.8. Sometimes strong changes in the energy supply systems can occur. An
example is Germany, where after the accident in Fukushima (2011) the decision was made to shut down
7 large nuclear plants immediately and to go out of nuclear supply totally till the year 2022. The
substitution of the missing electrical energy shall be done by use of wind energy and electricity from
photovoltaic systems (Table 1.2(b)). Naturally as a consequence in future, large storage capacities and
extended grids for transport have to be realized. Furthermore, much higher capacities and costs for

electrical energy have to be accepted.

Table 1.2 Aspects of development of the production of electrical energy TW + h/a
Year Coal Nuclear energy Oil Natural gas Hydro power + renewable Total
1970 2075 80 1625 — 1175 4955
1980 3163 714 1661 976 1802 8316
1990 4286 1989 1216 1632 2212 11 335
2000 5759 2407 1402 2664 2968 15 200
2005 7040 2640 1240 3750 3550 18 220
2010 8330 2725 828 4560 4290 20733
2015 8950 2330 900 4750 4900 ~22 500
2019 ~27 000

(a) Development of electrical energy production worldwide (share of energy carriers)

. . ‘ Production of

Primary energy Capacity of Share of o Share of
. ) electricity(brutto) . Remark
carrier plants/GW capacity/ % production/ %
/(TW « h/a)

Lignite 20.9 9.7 136.5 22 Massive reduction(1)
Hard coal 25.3 11.7 84.4 13.6 Massive reduction(2)
Nuclear energy 10.8 5.0 72.0 11.6 Massive reduction(3)
Natural gas 29.8 13.8 83.8 13.5 Massive reduction(4)
Oil + other 6.6 3.7 18.0 8.9 Massive reduction(5)
Wind energy 55.7 25.8 104.2 16.8 Massive subvention
Bio mass 7.8 3.6 49.0 7.9 Massive subvention
Photovoltaic 43.2 20.0 39.8 4 Massive subvention
Hydro energy 5.6 2.6 19.8 .2 Massive subvention
Other 10 4.7 12.4 .1 Massive subvention
Total ~216 100 ~620 100

(b) Production of electricity and capacities of plants (example: Germany, 2017)
1,2-—coal production has been reduced; since 2018 no more have coal mining in Germany; 3—large nuclear power reacts were taken out of
operation after the accidents in Fukushima(2011); 4-—massive reduction of use of natural gas in future; 5—oil for clectricity production in

Gase load plants is practicly forbidden

Worldwide today 70% of the electricity is produced on the basis of fossil fuel. Europe and North
America still consume more than 60% of the electricity. Africa and South America need large progress
regarding the production of electrical energy. Large investments in power plants, grids and distribution
systems are necessary to realize this goal.

The need and supply of energy develops very fast in some countries worldwide, as example in
China. Figure 1. 11 and Figure 1. 12 indicate some important parameters of the energy economy in
China.

All data related to consumption and supply is rising up strongly, corresponding to the progress in this

country. Further aspects related to special branches of energy economy are explained by Figure 1.12.
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Important parameters of energy economy developing in time (example: China)-™*

(a) Population(value in 2019: 1.4X10%); (b) Primary energy (CE = coal equivalent) (value in 2019 4.76 X 10°t HCU/a) ;

(¢) Shares of energy carriers; (d) CO, emission(value in 2019: ~1x 10"t CO,/a); (e) Gross national product(value in 2019

10 000 dollar/(person » a)); (f) Ratio of primary energy applied to the gross national products
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Figure 1.12 Characteristic data of electricity economy developing in time (example: China)™*
(a) Production of electricity (value in 2019: 7800TW - h/a); (b) Shares of
energy carriers for the production of electricity; (c¢) Capacity of power plants
(value in 2019: 2000GW_); (d) Shares of type of power plants(value in 2019

fossil: 68%; regen. + hydro: 27%; nuclear: 5%); (e) Specific electricity
supply (per person)

There are further indicators, which characterize the change of economical conditions in a country
and demonstrate the progress as is shown in Figure 1. 13. The consumption of steel and cement are
mainly correlated to the growing sections of industry, infrastructure and private houses. The strong
rising up of private cars is an indicator for the growing welfare of people. This makes it necessary to

supply more oil for this sector of the energy economy. There is the expectation that electrical energy for
this sector will become more important in the future™ .
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Figure 1.13 Characteristic change of masses of some products depending on time (example: China)t™*
(a) Steel production(value in 2019: ~10°t/a); (b) Cement production(value in 2019: 2.37 % 10°t/a); (¢) Number of private

cars(value in 2019 2.07 X 10%cars); (d) Consumption of oil for transportation sector(value in 2019: ~3.5x 10*/a)

These enormous growth rates of energy demand will drive the worldwide energy need. Similar
analysis for other countries show rising energy demand for the different sectors too. India, Indouesia or
Brasil are example for these developments.

The rising up of efficiency in all steps of the chain of energy conversion and use are decisive
measures to reach this requirement. Until now just around 30% of the primary energy are converted into
end-energy for application in different sectors of the energy economy. The future production of
electricity has to be economically acceptable, shall fulfill “ecological high as possible” standards and
shall be based on a safe and reliable supply with fuel.

Energy supply includes dynamical processes of substitution of different energy carriers and of
technologies to use it (Figure 1.14). Traditional biomass, which was the main energy in the 18th and
19th century, was substituted by coal. Coal was substituted by oil and gas. From the middle of the 20th
century nuclear energy started to get importance; however in the moment because of some safety
concerns regarding today established technologies, the market introduction of these technologies was
delayed. In the last decades renewable energies made some progress, and there is the expectation that
they could cover a substantial part of the future energy market. These substitution effects in the future
will continue, regarding aspects like easy handling, saving resources and avoiding CO, emissions.

Economic conditions and development of energy price play a role as they are generally expected in
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energy economy. The development and substitution effects can be different in countries for some time.
A characteristic example in the moment is Germany, where nuclear energy is stopped and renewable

energy is accelerated by massive subventions.
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Figure 1.14 Effects of substitution of energy carriers in the world cconomyLloj

It is interesting to recognize that similar substitution effects happened in industrial processes too.
Figure 1. 15 shows a very important example, the steel production following different process
technologies. Processes have been changed corresponding to requirements of higher material qualities,
reduction of specific energy consumption or environmental requirements. This principle of substitution
can be seen in many fields of industry and in the energy sector. As example in the transportation sector,
the different systems like transport by trains and ships, by cars and airplanes, show similar tendencies of
substitution. Furthermore, optimizations are always necessary. Generally for industrial processes or in
the energy economy, compromises have to be found between the aspects of efficiency (technology),
economics (production costs), environmental requirements (emission) and saving resources (minimal
consumption of raw materials, energy and minimal waste) and needs of the consumer. In the last
decades, in many countries gaseous fuels became more important compared to solid fuels because of
environmental aspects. Furthermore, liquefied gases in some countries were preferred from the same
reasons. Especially under the influence of the CO,-question and climate protection, many changes in the

energy economy have been initiated or will be carried out in future.
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Figure 1.15 Some examples of substitution in the energy economy[m]

(a) Substitution of processes for steel production in the last decades; (b) Substitution in the transport infrastructure (USA) ;

(c) Substitution in the secondary energy supply sector (Germany)
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Figure 1.15 (Continued)

1.3 Prognosis on energy demand

For the future world energy economy-'!"**

» the questions of development of the population and the
standards of life are the destinating parameters. Naturally the aspects of fulfilling the economical and
environmental conditions of energy supply have to be taken into account too. Therefore it is difficult to
make a tight prognosis of the future energy demand of the world. Estimations of different organizations
naturally come to partly strong different results. In any case the population of the world is still growing
up and this tendency will continue. Today an average growth rate is around 2% /a. This causes that the
population will rise up from around 6.7 X 10° in 2010 to nearly 9 X 107 in 2050 (Figure 1.16). The
growing rate in the southern part of the world is much larger (factor of about 2.5) than that in the

northern part.
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Figure 1.16 Estimation of the development of the population in the world"?
(a) Estimated growth of population in the world; (b) Growth rates in regions and some large countries ( * average values

for many states in Africa)

Many models using to estimate the development of energy demand are applied in energy economy.
The following three models in Figure 1.17 are characteristic. They differ from each other regarding the

expected growth rates.
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Figure 1.17 Models for description of growth

The last indicated tendency of growth with saturation normally is estimated as the most probable.
The equation, which was used to describe saturation

‘il—]:’:c-N-(l—ﬁ)

describes two tendencies. On the one hand, the population growth is proportional to the number of

N

already living people (N); on the other side, the growth of the number will be limited by an upper value

(N . ) and a thinkable increase (N—>N_ ). The differential equation can be solved by partial integration

' dN J dN
A . —+ B -« — = (C e —+ .
J N T-N/N. ¢ t + const
Introducing the starting condition t =0, N = N, one gets the solution
1
N(t) =N.

"1-(N, - N.)/N,sexp(—c= )
This curve describing saturation generally is used in many models to establish prognosis. It is applied
for population growth, energy supply, use of raw materials and supply with products. Figure 1.18(a)

shows this curve. Uncertainties are large as shown for an example resulting from the electrical economy
(Figure 1.18(b)).
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Figure 1.18 Aspects of prognosis for growth of energy demand

(a) Estimation of growth with saturation; (b) Uncertainties: growth rate for electricity production and prognosis (example: Germany)

Many studies have been carried out to estimate the future worldwide demand on energy. This
includes some assumptions on the changes of standards of life too. Figure 1.19 gives an overview on
possible development of the specific energy consumption per person and per year. Today this value is
around 2.4t HCU/(person + a). For 7.2 % 10° people in 2010, this means a primary energy demand of
around 17X 10°t HCU/a.

The growth rates in the actual time are very different for countries worldwide (Figure 1.19(a)). An
average growth rate of around 2%/a worldwide is considered as a minimal value because this value

corresponds already to the growth rate of population in some countries with large population.
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In this case no or only little progress in many countries which have large population and low specific
energy demand, would be assumed. This situation will not be accepted in the future.

The economic growth and the strong rise of energy demand connected to this development is
especially visible in countries like China (Figure 1.19(c) and Figure 1.19(d)). There is the expectation
that the production of electricity and the delivery of energy for the transportation sector will rise up
significantly in the future (see Figure 1.19(b)). A rise of the capacity of power plants of around 8% /a

and doubling the number of cars in 15 years are expected.
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Figure 1.19 Some relevant aspects for development of energy economy: influences of estimations of growth rates
(a) Growth rate of energy in different countries (2010); (b) Estimation of growth of specific energy supply (worldwide,
average); (¢) Annual growth of installed capacity of power plants (example: China)!®); (d) Oil demand and number of cars

for road transport (example: China) ™

Naturally the reliable prediction of future development in a complex field like the world energy
economy is difficult. Applying detailed models for many countries in the world, different organizations
came to results for the future worldwide energy demand (Figure 1.20). There is a wide spreading
depending on assumptions and expectations.

A model with 8 X10° people in the year 2020 and a specific energy demand of 2.5t HCU/ (person *
a) results in a demand of around 210"t HCU/a. This number would not include real progress in many
countries.

Differences indicated in Figure 1. 20 can be explained by different economic growth rates or
political conditions as concepts for saving resources, CO,-penalties, or ocko scenarios. Furthermore, it
should be stated that the additional demand on energy mainly exists in countries which are characterized

as developing or nearly developed countries.
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Figure 1.20 Results of prognosis on the worldwide demand of primary energy*“'“j

(a) Prognosis of world energy council (WEC) ; (b) Some results of prognosis of world demand on primary energy (average from
many different prognoses)

1—other renewable sources; 2—nuclear energy; 3-—coal; 4—oil; 5—natural gas; 6—hydro

In any case large investments in plants for production, conversion, transport and storage of energy
supply systems are necessary. Immense efforts will be required to reach the goal indicated by Figure
1.20.

Especially if the share of renewable energy carriers shall be as large as planned today in some
western countries, very large investments are necessary. As example the storage of electrical energy
requires totally new concepts and large financial efforts.

Without a sufficient good and safe energy supply it will be difficult or even impossible to maintain
peace and welfare in the world. There is another interesting aspect in the correlation between the
specific numbers of end use of energy and gross national product (GNP).

Efforts for saving energy by optimization of processes and rational use of energy can reduce the
specific values of consumption, as this has happened in the last decades. The strong coupling between
GNP and primary energy supply can change in time by technical measures of rational use of energy and
administrative measures in the different sectors of energy economy (Figure 1.21(a)). Large savings of
primary energy were possible at rising values of GNP. The demand of electricity however retained a
rising tendency. Similar developments of the influences of energy savings are known from many
industrial processes and many countries. Figure 1.21 shows results for Germany together with variations
of the oil price. Rising values of energy prices always have initiated strong efforts to save energy and to
improve processes in all steps of the chain of energy conversion. As the oil price dropped again, the
efforts as example in Germany were reduced. New aspects like realization of CO,-poor or free
technologies again favor rising efforts to develop new energy technologies.

In other countries like China, Russia, USA. similar developments of enlarging the energy efficiency
took place (Figure 1.21(b)). The value stayed relatively constant in Germany in the two decades.

For the worldwide development, a view on the growth of population, energy demand and the
development of the “gross national product” is necessary (Figure 1.21(c)). These large growth of values

have to be discussed together with the development of CO, emission.
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Figure 1.21 Aspects of developments in the energy economy
(a) Development of the energy consumption per Gross National Product (example: Germany) and price of crude
oil; (b) Development of the energy consumption per Gross National Product in different countries; (¢) World
population (10° people); (d) Gross National Product (in 10'* US$ (2005)); (¢) World energy supply (in billiards
BTUs); (f) Worldwide CO, emission (10°t/a)

1—China; 2—Germany; 3—world; 4—former Soviet Union; 5—Africa

1.4 Energy reserves and resources

Worldwide large amounts of energy carriers are available for future use 1100

They are ordered in
form of reserves and resources (Figure 1.22). The reserves cover those shares of energy carriers, which
are already totally detected, developed and can be produced under actual economic conditions. The
resources contain all amounts, which are expected from geological estimations. Today they are mostly
not recoverable under economic conditions.

Included in these resources there are as example coals in large depth or gas and oil, which just could
be produced under disadvantageous conditions. Change of costs and improvements of technology which
just could be produced will allow in future partly to use these resources. Following this systematic in
Figure 1.22 the values in Table 1.3 have to be discussed for the future worldwide energy supply during

the next decades.
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Figure 1.22 McKelvy diagram for the classification of energy reserves and resources->°
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Table 1.3 Reserves and resources of fossil energy carriers (HCU = Hard Coal Unit, 1t HCU =0.67t oil) (2128

Energy carrier Reserves/(10°t HCU) | Resources/(10°t HCU) Remark
Crude oil 300 500
Oil sand/oil shale 200 250 Just parts contained as resources
Natural gas 280 200
Hard coal 800 4000
Lignite 100 1000

Especially the very large reserves and resources of coal initiate the development of many new

technologies to use this energy carriers under optimized economical and environmental conditions. As

example gasification and liquefaction of coal will become important in future.

Numbers especially about reserves are changing in time dependent on economical and environmental

conditions. This can be explained on behalf of the example of oil (Figure 1.23). The estimations have

been nearly doubled in the last 30 years because resources which were declared as reserves on the basis of

rising oil price. Similar considerations are valid for the other primary energy carriers.
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Figure 1.23 Development of estimations on oil reserves (economic producible,estimation
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It can be estimated that in totally around 1.4 X 10t HCU fossil fuel are available worldwide in
form of reserves. Assuming a today consumption of fossil fuel of 1.4 % 10"t HCU/a. the reserves would
be sufficient for 100 years. However there is no escalation of the consumption of fossil fuel included in
this estimation. Considering fossil resources of nearly 6 X 10'*t HCU fossil fuel could be an option for
several 100 years. However in this case it is expected that the emission of CO, will limit the consumption
of these total resources.

The changes of estimation of reserves of all fossil fuels dependent from time, as shown in Figure
1.23 for oil, were large in the last decades. These expectations naturally influence the market and the oil
prices. The prices of other energy carriers follow these tendencies.

Similar considerations on economic conditions to use different categories of fuel are representative
for the uranium reserves as example (Table 1.4). As shown there is a distribution of the uranium
reserves dependent on their production costs corresponding to the McKelvey-diagram. The today known
and safe reserves of 4.6 % 10° t Uranium correspond to an energy of 9X 10''t HCU, if they are applied in
light water reactors.

Table 1.4 Categories of costs of nuclear fuels >

Category <40 dollar/kg <80 dollar/kg <130 dollar/kg | <<250 dollar/kg
Known and production reserves Uranium 1.73%x10%¢ 2.5%10°%¢ 3.2x10%¢
Estimated add. reserves Uranium 1Xx10%¢ 1x10°%t 1.4%x10%¢
Estimated resources Uranium 5x107t
Estimated resources Thorium 5x107t

Natural Uranium can be valuated corresponding to the relation:
1t U22 x 10"t HCU (without breeding effect)

Today 7% 10°~10"t of Uranium can be declared as reserves. This corresponds to an energy value of
1.4x10" ~2x10"t HCU. In the future breeding processes will become important. In this case, U 238
is converted into the fissionable Pu 239.

1t U then would correspond to about 10° t HCU including theoretical numbers for breeding. The
energetic value of Thorium is the same, if breeding into U 233 is included.

Uranium reserves with small content of uranium are available, but they are today not of economic
interest. Granit as example contains 26mg/L U, shale material partly contains 150mg/L and phosphate
around 100mg/L. In some cases these reserves could become interesting at an earlier time, because other
materials could be produced as byproducts.

In case of breeding, naturally the value of fissile material using these special reserves is much higher
as mentioned before. A practical breeding effect with a factor of 20 is estimated as feasible.

Furthermore Thorium is available with similar values of reserves and resources like Uranium. Using
breeding process the generation of U 233 is possible, which is a similar usable nuclear fuel like the
fissionable U 235. By this way the availability of nuclear fuel can be doubled. Principally the seawater
contains large amount of Uranium (around 3mg U/m® water) and this is an unlimited source of energy.
Several methods used to produce Uranium from sea water are valuated as feasible, however the
production costs are estimated to be much too high today.

It is well known that breeding effects can allow a higher output of energy. However the factor of
usage of Uranium depends from the cost of reprocessing and the price of Uranium on the world market.
A dynamic optimization regarding this question is necessary and delivers different answers depending on
the boundary conditions of the energy market of the future.

A very helpful measure in the energy economy is the range of an energy carrier. One distinct

between a static and a dynamic range. The dynamic range can include different developments and
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changes. The static value is defined by the relation

R, =M/M

stat
Here M is the total available amount of a specific energy carrier and M is the actual worldwide

consumption. As example, one gets for the static range of crude oil: M ~5 % 10° t/a. M =2x10"t,

R ¢ =40 years, if the well-known economic reserves are taken into consideration.

stat
The dynamic range includes the fact that the yearly worldwide consumption is rising up with a rate o
(% /a). This tendency is caused by the rising world population and the larger specific consumption. In

this case, applying an escalation rate g one gets after n years:
. . . 1 _n+l
M=M-. (1+q+qz+---+q”):M-71j1q . g =1+0/100

The dynamic range follows then as

Ry =n = 1+fM(q—1) /lnq—l
M

If as example a today estimated fossil reserve of M =1.5X 10"t HCU is considered and an actual

worldwide consumption of M=1.4x10"¢ HCU/a is assumed, one gets a number of R, =70 years,
assuming an escalation rate of 2% per year. This escalation rate would include mainly the rise of
population worldwide, which today is nearly 2% /a. The numbers of the today worldwide production,
the reserves and the resources show the dominant role of coal (Table 1.3). Coal would be a solution for
the energy supply of the world for some hundred years.

There is a third possibility to define a time, which is characteristic for the range of an energy
carrier. It is the so called exhaustion time, which indicates a time when the energy carrier has been
consumed to a special rest value. This method allows to the same time to estimate the consumption of the
energy carrier in time.

The actual production P of an energy carrier can be connected to the cumulated already produced
energy L. by the relation
dE
dt

Furthermore, it can be assumed that the actual production P will be proportional to the amount of

C

Ec(t):J;P(t/)dt’, P(1) =

already produced cumulated energy E, and the still possible production (E., —E)/E .. .
E. - E.
P=a-L_- T
E .. corresponds to the totally available amount of the energy carrier. These assumptions are feasible
because production P will be proportional to the investment already done (plants, underground pits,
open pits, material processing plants. transportation systems), which are proportional to the amount of
energy already produced (E_). On the other hand, the production will be stopped long before
exhaustion occurs, when the possible quantity of production (E. — E_) becomes small. As a result, the

differential equation

The solution is

E.
EC(Z‘):Em -eXp(a . [)/{EO_1+€XP(0{ . t>:|

C
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The production P is calculated as follows:
2

dE, E. E.
P(t):d[ :EOQ'(F—l)-a'eXp(a'l) F—1+6Xp(a-t)

Because for t =0, P = P, is known. the production at the starting point of the consideration

c c

determines «a

p :a.Eo.<1_E2)
0 c Eoo
_ Py 1

"

The determination of limits (t—<) delivers E_ = E ., as defined before.

It is interesting to determine the time of the maximal production. From

% =0, t=t,,
one gets the result
E! E’ E.
lm"”‘:PO . (1_Ex>.ln<Egl)

The maximal value of production following this model is connected to the resources E . , the actual
production P, and the cumulated production E(C) at the starting point of consideration:

1 E% 1

4 E} E!
17

Eoo

Based on the considerations explained before, an exhaustion time of an energy carrier can be

P..=P, -

defined as example by a condition like E./E . =0.9, which seems to be a reasonable measure. The time
T" ., at which 90% of the energy would be consumed then can be defined by

T" (90% _E ( ES) 1 (E“ 1)
( 0)*P0'1*E 'HQ'?S

©

The valuation of this type of equations delivers T * -values for coal as example between 170 and 200
years for reserves of 1.5X 10" to 2.5x 10"t HCU. Figure 1.24 shows possible time dependencies of coal
production depending on time and height of reserves. Aspects like limitation of use of coal because of

CO,-questions are not included in this consideration.
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Figure 1.24 Correlation between coal production, time and available reserves

1—2.5%10"%t HCU; 2—2% 10"t HCU; 3—1.5%10"%t HCU

The role of fossil energy will stay important in the next decades. Following many estimations

nuclear energy and renewables will become more important. Naturally the aspects of CO, emission and
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waste management will influence these expectations. Prognosis carried out by different institutions for
the world energy supply assumes shares of around 50% of the total demand in 2030. The other 50%
would be delivered by nuclear energy and renewables. The height of the share of renewables depends on
technical progress and innovations especially in the field of storage of energy.

A further very important topic is the worldwide distribution of reserves and resources. Table 1.5
gives an overview on the reserves, which are present on the different continents.

Table 1.5 Regional distribution of energy reserves 117

Continent Crude oil/(10°t HCU) Natural gas/(10°t HCU) Coal/(10°t HCU)
Asia + Middle East 150 90 190
Australia 1 40 80
Southern America 60 10 15
Africa 25 15 30
North America 40 10 250
Europe + Russia 25 60 300

Hard coal is distributed nearly equal in all continents worldwide. Crude oil today mainly is available
in some parts of the world. Natural gas is available in all continents. The dependence of a country from
energy import is a very important aspect of safe and reliable supply of energy economy. Especially there
are cheap reserves of crude oil in the Near East (Arabia, Iran, Iraq), whereas Russia has large reserves
of natural gas. China and USA have large reserves of hard coal too. Uranium is mainly available in
Canada and Africa.

In the last time large reserves of gas have been mobilized in the USA by fracking methods. There
are further countries, which plan to follow this concept of production of natural gas. For countries like
Germany which don’ t have worth mentioning reserves on natural gas and oil imports are essential.
Furthermore it is important to get the energy carriers from many different countries to reduce the
dependencies and to realize a stable as possible supply. Figure 1.25 explains some aspects for Germany.
The share of the energy by inland production dropped very much in the last decades, because the
production of hard coal in Germany had stopped because of economical reasons (Figure 1. 25). The
import of oil and natural gas has been raised up and therefore today Germany depends on upto 70% from
imports. Here oil and coal are imported from many countries, however for natural gas just some few

exporting countries are available for Western Europe.
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Figure 1.25 Energy imports: status in the past, today and expectationsm]

(a) Inland production and import (example: hard coal in Germany; in 2019 total consumption: 3.7 X 10"t coal/a; 100% import) ;

(b) Energy import in Germany (in the past and expectations)
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Figure 1.25 (Continued)

The worldwide development of energy economy caused a special situation for the hard coal
production in Germany. Imports from different countries became important for this sector of the energy
economy, which originally was independent from foreign countries. The dependence of energy imports
in Germany became even higher by this development and today amount to be above 70%. This is a

danger for the safety of energy supply. The hard coal production has been totally finished in Germany in 2018.

1.5 Aspects of future worldwide energy supply

Assuming a future worldwide average fossil energy demand of around 20 X 10'’t HCU/a during the
next decades, an estimated amount of fossil resources of energy of 3 x 10t HCU, which could be used
principally in the future, would be sufficient for around 150 years. All known energy strategies include
the massive use of fossil fuels in the future too and rising importance of renewables and nuclear energy.
Following these strategies with the importance of fossil fuel, the rates of CO, emission however will still
be high in the next decades. Therefore some very important questions of further research and
development in the field of energy technology will require answers.

* Is the rising content of CO, in the atmosphere a problem or not?

* Can the nuclear fusion be realized as a usable energy source?

* Is the use of renewables corresponding to large shares of the world economy feasible?

* Can the safety of nuclear systems be improved to common accepted levels?

* Are solutions for final storage of CO, available?

The CO, emission is indeed a key question for the energy economy worldwide(Figure 1.26).
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Figure 1.26 Worldwide options for future energy strategies: importance of the CO,-question
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Fusion is considered as an unlimited energy source, if it can be realized physically and technically.
Furthermore in a far future, it has to be economically competitive to other than available energy
sources. The development has taken and will take in the future a lot of time as shown in Table 1.6. As
example, the time necessary between discovery of the fundamental effect of nuclear fission (1938) and
the first large commercial power plants (Germany, PWR with 1200MW ) was around 30 years. In case
of fusion the time between the discovery of the first fusion reaction (1991 in the JET project) and maybe
reactions in a self-sustaining plasma system will be already more than 30 years, if the ITER project[zgj
will be successful. The step to a technically continuously working system with heat transfer to power
cycle will consume much more time than it was necessary in case of development of fission. Therefore

the expectation is that fusion will not play a role for energy supply in the next decades.

Table 1.6 Time dependence of introduction of the fission energy and possible time schedules for the development of fusion energy

Step Nuclear fission Nuclear fusion
. o 1938 1991
Proof of physical principle .
(Otto Hahn) (JET project)
1942 2025 7
Proof of chain reaction . . .
(Enrico Fermi) (ITER project)
. about 1950 2035 7
Demonstration reactor .
(USA. LWR) (ITER, technical phase)
. about 1970 2050C 7
Commercial power plant o .
(Germany, PWRBIblis) (first prototype)
Market introduction with significant about 1980 after 2060 ()
shares in some countries (worldwide, LWR) (commercial plant)
. . future
Worldwide application . . ?
(innovative reactor)

The renewable energies must be used to a large extent if CO, emission shall be avoided. Regarding
technology, wind energy convertors, solar thermal systems and photovoltaic cells for electricity
production are available. Furthermore biomass conversion and hydropower are applicable worldwide.
Today the production costs of renewable energies are relatively high compared to electricity production
from coal and nuclear energy with the exception of hydropower. However for nearly all these energy
systems, efficient and economic acceptable storage systems are necessary.

So far as the COZ-questionBO]

caused by conversion of fuel is considered, the valuation shows that
the burning of all fossil fuels produces different amount of CO, (Figure 1.27). Natural gas shows some
advantages compared to oil fractions and coal. Lignite with a high water content shows the relatively
highest specific CO,-values during the burning process (Figure 1. 27 (b)). The burning of biomass
produces CO, too, however the forming of biomass in the atmosphere by reactions including the catalytic
action of green areas bounds CO, again.
xH,0 + yCO, + E_,, + (aNO4 + bSO, + cPO,) —C,H, O, + H,O + O, + further products
12H,0 + 6CO, + 2.8MJ (solar energy) —> C;H;,04 + 60, + 6H,0
The production of oxygen by this reaction is fundamentally important for the life on earth.
Therefore the conservation of green plants, trees and the extension of the areas for the photosynthesis is
an extremely important topic connected to the energy economy.
Caused by these conversion processes until now, the worldwide CO, emission has been raised up till
nearly 3.8 X 10"t CO,/a or around 4.9t CO,/(a + person) assuming a world population of 7.8 x 10’
people (status in 2020).

—
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Figure 1.27 Data of burning fossil fuels in power plants
(a) Specific emission of CO, during burning processes of fuels: hydrogen for comparison; (b) Specific CO, emissions from power

plants based on fossil fuels: dependence from net efficiency; (¢) Development of efficiencies in the last decades of power plants

based on use of fossil fuels

There are massive efforts of development, as example in the field of fossil fuelled power plants to
reduce the specific CO, emission. However if a sequestration of CO, and a final storage should be
realized in the future, the specific values given in Figure 1.27(b) will rise up again. The process steps of
CO,-separation, compression and transport to final storage require energy and reduce the net efficiency
again. Partly values of reduction of 15% ~25% (relatively) are expected. These values depend on the
technical conditions and are found from optimization of the total chain of conversion including all steps.
Some more details on these possibilities are explained in Chapter 14. Figure 1.28 contains some values,
which characterize aspects of CO,-emission worldwide.

The rise up in the worldwide emission of CO, corresponds to an average increasing rate of 3% /a. As
a consequence, until now the CO, content of the atmosphere became larger and the expectation is that
the temperature will rise up between 3C and 5C on the earth in the next 100 years. There is fear that
intolerable consequences for the environment and human beings would occur. Figure 1.29 contains some
information on necessary reduction of the emission of CO, in the world economy to stabilize the world

climate.
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Figure 1.28 Some data on worldwide CO, emissions #**3""

(a) Development of worldwide CO, emission dependent from type of fuel; (b) Development of worldwide CO, emission since 2000;
(c) Specific CO, emission in different countries (t CO,/(person + a)) (status 2019); (d) Specific CO, emissions in China

(development) ; (e) Specific CO, emissions in Germany (planning of politics)

The curve for the rising values of CO, in the atmosphere can be explained qualitatively by the
following estimation. For the content X, one can formulate the equation:

dXco, Mo

a oy ety Xeo,

Mco is the yearly emission of CO,, V is the volume of the atmosphere. @, §, 7 characterize
2

absorption of CO, in water (a), forming of new biomass (3) and other effects like disappearing out of
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Figure 1.29 Aspects of necessary reduction of CO, emission to stabilize the climate
(a) CO, concentration in the atmospherem]; (b) Necessary reduction of CO, to stabilize the CO,-content of around 400mg/L in the

atmosphere; (c¢) Rise of temperature as a consequence of content of CO, in the atmosphere

the atmosphere (7). Applying some values like Mc02 ~3x10"t/a, V~10°m® (assumption: distribution
till 20km height in the air), one gets a slope of
dXco,
dt

A practical requirement resulting from the field of climate protection is to reduce the yearly CO,

~2.5%x10 %/a~ 2.5mg/L/a

emission of the world energy economy. A value of around 15 X 10"t CO,/a or an average value of
around 2 t CO,/(person * a) in future seems to be a reasonable measure. Compared to the today
situation worldwide, this includes very strong requirements for reduction in many industrialized
countries. In some countries there is still some room to enlarge the specific emissions. For the world
energy economy in totally this aspect of necessary reduction of CO, emission requires, that in 2040
already 70% of the primary energy must be produced CO,-free. Figure 1. 30 makes clear that this
requirement would cause a total change of the structure of the world energy supply and the energy
economy of countries like Germany.

This will be extremely difficult and expensive, because as example today Germany still depends to
nearly 80% from fossil fuels.

The requirements to reduce specific CO, emission by saving energy and by substitution of fossil fuels

by renewables or nuclear CO,-free energy will be very important for countries, which today have still
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Figure 1.30 Allowed shares of fossil energy if the requirements of reduction
of CO, emission to protect the climate shall be fulfilled
(a) Allowed fossil share of worldwide energy supply to limit CO, emission; (b) Allowed fossil share of energy supply in

Germany to limit CO, emission

high values of specific emissions. USA, Canada, Russia and all European countries belong to this
category.

The long term requirements for the energy economy are even more stringent, if the demands of the
climate research shall be fulfilled. In Figure 1.28 (d) this was explained for the German situation. The
energy economy has based until now mainly on the use of fossil fuels. Reaching a goal of as example 2 t
CO,/(person + a) means that just around 1.6 X 10%t CO,/a will be allowed for emission. This is
equivalent to 20% of the today usual values of yearly emission. Carbon containing energy carriers could
just be used in the transportation sector and for chemicals, as example of plastics. In many countries the
situation would be similar.

This strategy for the world energy economy causes immense efforts for systems of generation,
transport, storage and rational use of energy. Renewables and nuclear energy must play an important
role in the supply structures of the future to realize the goals and avoid large problems in the world
because of shortage of energy supply.

The energy supply of the future has to be sustainable (Table 1.7). For the energy carriers this
includes the following requirement.

Table 1.7 Aspects of sustainability

* Economic competitive

* Availability of fuel for very long time

» Safety of processes and waste management

* Application in all sectors of energy economy

* No misuse of materials (as example of fissile material)

* Realization of technologies worldwide

* Limitation of damaging consequences for the environment

* Guarantee of energy supply under all circumstances

So far as nuclear energy is considered, there is no doughty that it is and will be economically
competitive in the future. However, nuclear technologies in the future must be realized with extreme
high safety standards to be acceptable by people worldwide. In the sense of classification of accidents,

severe accidents with high release rates of radioactive materials have to be avoided. This requirement
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will be valid not only for reactors, but also for all steps of waste management. More details are
explained in Chapter 11. Because today the electricity production just covers around 30% of the energy
market, nuclear energy must be made available for the energy economy in totally.

Special processes are necessary to reach this goal. Some processes are already fully developed as
cogeneration, some are near the technical maturity, and some require still much work of development.
The future application of nuclear energy for the non-clectric market is the topic of nuclear process heat

and will be discussed in this book in detail.

1.6 Aspects of nuclear energy for the future world energy economy

In totally for the future worldwide energy supply different options can be considered (Table 1.8).
Partly they are solutions for all time, as solar energy, geothermal energy and nuclear fusion; partly they

promise supply for some 100 till 1000 years, like nuclear fission systems.

Table 1.8 Options for a worldwide long duration energy supply

Option Possible time duration | Status of development Problems
partly technical costss CO, emissions, worldwide
Coal (expensive reserves include(d)) | some 100 years i o
available distribution
o i i i partly technical costs, CO, emissions, environment,
Oil (including oil sand/oil shale) some 100 years i ) o
available worldwide distribution
. partly technical costs, CO, emissions, physical proof
Natural gas (off-shore include(d)) | some 100 years .
available necessary
Nuclear fusion solution for all time | not yet available physical and technical realization, costs
Nuclear fission (poor Uranium ores, . . risks; environment; breeding +
) . ) some 1000 years technical available .
Thorium included, breeding) reprocessing necessary
) ) partly technical costs; environment, worldwide
Geothermal energy solution for all time . o
available distribution
. . . . costs; risks, partly environmental
Solar energy solution for all time | technical available .
questions

The options have to be analyzed, compared and valuated under the following aspects:

* Availability of resources (physical);

* Auvailability of technologies (infrastructure) ;

» Safety of supply (physical and political) ;

» Safety during operation (extreme accidents exclude(d));

* Tolerable emissions (CO, ;s radioactivity) ;

* Availability of acceptable final storage;

* Acceptable economical conditions (external costs include(d)).

There are some aspects, which characterize the importance of nuclear energy in general for the

future of the world energy economyBs'ng

. They are valuated as large advantages and until now support
the worldwide activities to introduce this energy into the markets:

* A new energy carrier is available, which allows a very long time of use, if reprocessing and
breeding are included. Inserting large amounts of poor ores worldwide, the time of use would be
longer than 1000 years. Uranium gained from sea water today is not interesting at all from the
economical standpoint. However it represents an option practical for all time (Table 1.9).

* The production cost of electricity and heat from nuclear power plants already today is lower
compared to that on the basis of oil, coal or gas in many countries. This is true especially if large

cost shares for transportation of fuel or electrical energy are included. It must be expected that
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for future utilization, the additional costs for separation, transportation and final storage of CO,

have to be added too. Then the economic advantages of nuclear energy become even larger.

Table 1.9 Resources and reserves of Uranium and ranges

of the energy carrier 2%

Category Reserves/(10° t) | Static range/years Remark
Reserves of cost category<<80 US $ / 38 54 Just 3% ~5% of generation cost of electricity
kgU ’ are caused by Uranium ore costs
Reserves of cost category between 80
0.94 13
and 130 US$ /kg U
Additional Uranium resources (more 20 280 Electricity generation costs become till
expensive til factor 5) 25% higher
Thorium resources ~ 20 280 Use in high converter reactors
. . Doubling of production cost of electricity;
Use of Uranium in breeder reactors 5~25 250~1000 o
reprocessing is necessary
Uranium from sea water (<1000 US . L . L Generation costs of electricity are higher
Practical unlimited | Practical unlimited
$/tW by a factor 3

* The production costs of electricity of nuclear plants are just weakly dependent from the price of

uranium ore. Uranium, which is more expensive than that is used today, will stay economic

attractive, because the price of uranium ore today causes just around 3% ~ 5% of the total

production costs of electricity.

* The costs of production of electricity from renewables (wind, solar, biomass) are relatively high

too. The problems of storage and transport are not solved for this changing energy offer and this

will cause additional high cost shares.

For the cost estimates, simple approximate equations can be applied. The last term covers the

environmental damage or risks connected to the discussed energy technology:

X =X

capital

+X

fuel + Xwastc management

+X

external

The external costs today are not included in the usual cost estimations. In future however this will

become necessary to allow reasonable comparisons.

The parameters in the simplified cost equations are defined as:

X——production costs of electricity;

K;,,—specific investment costs;

a——capital factor (including depreciation, interest, insurance, taxes, operation) ;
T——hours of full power operation;

K ¢, —fuel costs;

H, heating value (or burn up);

7 efficiency;

owm —specific number for waste production;

Ky —specific waste management costs;

X external costs.

ext

The following Table 1.10 gives an overview on some cost data, which could be relevant in western

Europe countries. Furthermore some data are added for expected developments.

—
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Table 1.10 Production costs of electricity (status 2010, German conditions)

Production Production
Price of .
Technology costs today/ costs (future” )/ Remark

raw material
[ct/(kW « h)] [ct/(kW * h)]

Oil fired power plant 5008 /t 10~15 till 17 CO,-penalty included (future)
Coal fired power plants 100 $ /t 5~10 till 12 CO, -penalty included (future)
Natural gas GUD-plant 400 $ /t 8~10 till 12 CO, -penalty included (future)
improved waste management
Nuclear power plant 308 /1b U304 4~8 till 10 .
included (future )
Wind 6~15 10~15 on shore/off shore
Solar 20~40 15~20 without storage
Biomass 10~20 till 25 storage possible

* including estimated costs for CO,-waste management; + including additional efforts for waste management for radioactive isotopes

(example: partitioning) .

Some more data characterizing the different technologies of power production are contained in
Chapter 15. Data of costs of fuel supply or waste management are changing during the operation time of
plants over 3 to 6 decades. Figure 1.31 (a) shows as example changes of prices of Uranium in the last
years. These changes did not influence the production costs of electricity too much, as already
explained. The consequences are more important for fossil fuels. Figure 1.31 (b)contains changes for
oil, gas and coal. Especially the oil price showed very large change in the last years. This influenced the
development and introduction of new technologies drastically. As example the development of nuclear
process heat was financed by the state government in Germany with large amounts of money during the
eighties because of the high prices of oil and natural gas to that time. In the last years the oil price has
rised up again and the expectation is that this tendency will continue. New developments to realize plants
with higher efficiencies and to realize new energy concepts become again interesting.

The situation of competition between different power plants and their economic conditions naturally
depends from the country. Even today new light water reactors offer economic advantage compared to
plants based on fossil fuels. In the mean time, the world market price of fossil fuels has risen up and this

influences the economic conditions clearly.
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Figure 1.31 Changes of energy prices in the pastL40J
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(a) Development of Uranium ore prices between 1968 and 2011 ( $ /bbl ; (b) Development of prices of fossil fuel in the

last decdes (example: conditions for the German energy market) ™ ; (¢) Development of oil price in the last years
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Figure 1.31 (Continued)

The influences of transport distances on cost structures (Figure 1.32(a)) have to be considered too,
and it can be stated that natural gas and LNG cause much higher transport costs than coal and oil. The
transport of coal by ship is relatively cheap compared to the transport costs by railways or cars on
streets. The transport costs for Uranium can be practically neglected.

The production cost of electrical energy forms just one minor share in the price for electrical
energy, which has to be payed by the consumer. Further shares are caused by transport, distribution and
taxes. Figure 1. 32 (b) shows the conditions in Germany, as example for an average cost value of
production of around 10ct/kW - h,. The final price is nearly three times higher for the private
consumer.
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Figure 1.32 Aspects of total costs of energy supply
(a) Costs of energy transport for different energy carriers dependent from transport distance (t HCU =t hard coal

unit) ; (b) Shares of total costs for electricity supply (example: Germany, private consumers)

In the future external costs have to be added to the normal production costs of energy. These
additional costs either result from the valuation of damages in the environment, which really occur like
by SO,, NO, , dust or heavy metals. On the other hand costs are valuated, which could result from
severe accidents as example.

In case of today introduced light water reactors, these are usually costs which could be caused by the
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consequences of severe core melt accidents. In case of use of fossil fuels, these are costs of waste
management to separate, transport and store carbon dioxide, if these processes are carried out.
Alternatively costs for changes of climate and consequences have to be defined.

The term X+ Which was contained in the equation given before covers for example the risks

from severe nuclear accidents applying nuclear energy and can be expressed in the form
Xexterna = D+ P/ (P« T

D is the damage expressed in money, Pp is the probability that the damage occurs. The waste
management in case of fossil fueled plants can be valuated in similar form. For the sequestration of CO,
one can write

X xternal = X 'Kco2

This term describes additional costs, which are caused by separation, transport and final storage of
CO,. They could be added to the fuel costs or can be included in the product costs in future.

For a detailed comparison and valuation of the different systems of electricity supply, one has to
find an optimum for the sum of production costs and external costs. The transportation and storage costs
have to be included too. Figure 1.33 (a) indicates tendencies in qualitative form, if the effort for safety
is chosen as variable.

Tendencies of changing energy prices and new requirements have to be included in life cycle cost
analysis and are especially important if renewable energy systems are compared to those based on fossil
or nuclear fuels. Figure 1.33(b) shows the principal aspects of this comparison. The time dependence of
production cost of fossil plant is relatively strong. Nuclear plants are only weak dependent from ore
costs. The costs of renewable systems will stay nearly constant over the whole operation time. These

differences between nuclear and fossil heat generation as well as renewables favor the application of

nuclear cnergy very much.

Production cosia
COsLs

Years:of operation Eftort safety
fal (b
Figure 1.33 Aspects of costs of electricity production (qualitative figures,including storage)
(a) Development of production costs of electrical energy during the whole operation time of fossil,nuclear power plants and renewable plants
1-—nuclear; 2—fossil; 3—renewable (qualitative explanation)

(b) Optimization between production costs and external costs

1-—production cost; 2-—external cost; 3-—total cost

The possibility to store fuel and to realize some independency from changes of market conditions
and energy prices is given in case of application of nuclear technologies. In Figure 1.34 a coal fired
power plant and a today introduced light water reactor are compared regarding this question. The
difference of masses on the side of supply and waste management is extremely large.

From the standpoint of technology and economy for coal and natural gas power plants, a storage of
fuel would be practically impossible over a very long time period. For nuclear power plants, the fuel for
some years could be stored and later used. The financial effort would be small in comparison to the fossil

fuelled alternatives.
* Especially the final storage of CO, as well as the transport from the plant to the storage are very
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Figure 1.34 Comparison of masses of supply and emissions in case of coal fired power plant (P, =1300MW,

7 =8000h/a) and nuclear power plant (LWR, P, =1300MW,  =8000h/a)

problematic because of the large masses per

year and the necessary volume. It should be

mentioned here that the storage of 1t CO, in deep underground cavities needs a volume of around

2m” (at a temperature of 30C and a pressure of 75bar).

* For many countries the siting of power plants causes problems, especially if the distance for

transportation of fuel from the source to the plant is large. Figure 1.35 shows one example for

energy transport over very long distances: this is a gas fired power plant in Western Europe

supplied by gas from Russia.
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Figure 1.35 Aspects of siting of fossil power plants relative to the sources of primary energy

Chain of energy transport
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Large transportation distances for energy carriers have to be overcome. Large distances cause
high investment costs for the infrastructure and therefore high transportation costs. In case of
nuclear power plants, the masses which must be transported are very small and sites for plants
can be selected corresponding to the needs of the consumers. Furthermore for cases of large
transportation distances, the necessary energetic input has to be considered. In some cases,
release of other climate relevant gases like CH, can play a role. As example production and
transport of natural gas from Siberia in Russia to Western Europe and China can cause additional
emissions of greenhouse gases, which are much more relevant for changes of climate than CO,
(factor more than 20 for CH, compared to CO,). For the use factor of primary energy one gets
for the total chain:

6
WZP/QP:H%

i=1

This factor depends clearly on the conditions of energy transport and conversions in the different

stages of this chain.

Figure 1. 36

Further important parameters connected with the choice of the site of a power plant are the
possibility of cooling and the standards of safety. The use of dry air cooling towers or the
application of cogeneration as example with HTR promises advantages regarding the question of
cooling. Choosing a site near the consumers of electricity or heat extreme requirements of safety
have to be fulfilled. New concepts with a maximum of features of inherent safety favor this
possibility of siting. In Western Europe, as example partly the transportation costs for electricity
are higher than the generation costs of nuclear power plants.

High temperature reactors open the field to apply improved processes to produce electrical energy
(Figure 1.36).
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(HTR-DT: stream turbine application; HTR-comb: combined cycle)

1—natural gas with combined cycle; 2—hard coal with steam cycle; 3—lignite with steam cycle; 4—nuclear energy with
LWR; HTR-combined: HTR with combined cycle; HTR-DT: HTR with steam cycle; * :

with CO,-waste management

As is well known the efficiency of the mostly applied light water reactors is around 33% . Higher

efficiencies enable a better use of fuel and reduce the amount of high level waste relatively to the

produced electrical energy. Special solutions for the HTR can allow to apply combined cycles in the

future (see Chapter 3).

* The development of nuclear technology was accompanied with large progress in the field of many

technologies, which have accelerated developments and progress in other branches very much.
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Especially procedures of quality management and safety valuation were applied in quite different
branches. Characteristic examples, which used progress with very good success were technologies

of process engineering or the production and operation of air planes.

1.7 Nuclear energy for the market of electrical energy

The installation of nuclear power plants worldwide and thereby the introduction into the market has
happened relatively fast in the first decades. Just in the years since 1986 (accident in Chernobyl/
UdSSR) , the development of nuclear capacities was slowed down, because the acceptance of this new
technology by the population became smaller in some countries, as example in Europe. Furthermore the
economic conditions compared to other primary energy carriers like natural gas have changed partly in
several regions of the world. Actually (2017) the growing rate of nuclear capacities worldwide is in the

order of 1% /year. Figure 1.37 shows the development of capacities in the last decades.
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Figure 1.37 Total worldwide installed capacity of power plants for electricity productionm]

(a) Development till 1994; (b) Development from 2000 to 2021

Corresponding to the data in Figure 1. 37 today for 7.8 X 10° people in the world a capacity of
around 5000GW, is installed. Naturally the numbers for capacities will contain some uncertainties in
several countries.

Nearly 8% of the capacities are nuclear power reactors in the today established world energy economy.

In 2019, 456 large nuclear power plants with a total capacity of 400GW, were installed and in
operation. Furthermore 60 new plants are in construction. The nuclear power plants produced around
2500TW « h,/a in 2019. This corresponded to a share of nearly 11% of the total worldwide production
of electrical energy. Figure 1.38 shows the development of the production of electrical energy in nuclear
power plants in the past and the share of nuclear energy on the total worldwide production. The
reduction of share of nuclear energy in the last decade is caused by the rapid enlargement of power plants
based on coal, natural gas and the addition of large capacities of renewable energy carriers in many

countries in the world.
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Figure 1.38 Development of the world wide electricity production in nuclear power plantsmﬂ

(a) Production and nuclear have till the year 2001; (b) Development from 2000 to 2018

The reduction of production of the year 2010 was caused by reactions on the accident in Fukushima
(2011). In Japan as example nuclear power reactors were out of operation for sometime, in Germany 7
nuclear power reactors were taken out of operation finally.

In some countries the dependence from nuclear energy is already very strong as indicated in Table 1.11.

Table 1.11 Importance of nuclear energy in some countries (2013)"¢
Installed nuclear Total production of Share of nuclear
Country . .
capacity/GW electricity/(TW « h/a) cnergy/ %
France 66 570 78
Russia 25 1046 18
China 13 5300 2.5
USA 106 4300 19
Japan 46 1015 18
Germany 12 610 20
India 6 1770 5
World 392 22000 13

# after the accident in Fukushima in Germany the nuclear power was reduced from about 20GW to 12GW,,.

Especially France is nearly totally dependent on nuclear energy, because more than 75% are
produced by this energy carrier. The dependence from nuclear energy today is rising up in some
countries like China, India and Russia. Furthermore many old nuclear power plants in different
countries need revival. Partly the lifetime of existing power plants is extended. In some countries
operation times of 60 years have been licensed. In other counties, like Germany, the lifetime of nuclear power
plants was limited under the influences of the catastrophic accident in Fukushima/Japan in 2011. Worldwide

there is the expectation that the capacity of nuclear power plants could be doubled in the next two decades.
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There are some aspects, which are disadvantageous connected with the use and further introduction

of nuclear energy or which require progress in the future.

Specific emission/[ TRQAOW » a3]

s

L

[
=

A suited infrastructure containing competent construction companies, licensing bodies, advisers,
governmental organizations and operating companies has to be available or established. This is
still difficult today in some countries. Especially the independence of supervision and licensing is
an important boundary condition to realize high safety standards.

Release rates of radioactive substances in normal operation have to be limited. This requires high
efforts. However much progress was possible in the past (Figure 1.39). The release values
normally reached just some percent of the licensed limits. Further improvements in the future are

possible. From the technical standpoint an even more effective retention would be possible.
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Figure 1.39 Reduction of emissions (related to electricity production) during normal operation from nuclear power

plants(example: LWR in Germany; release via stack) !
(a) Noble gases; (b) 1131

This aspect needs optimization of the effort (Figure 1.40 (a)). In any case the share of nuclear

power plants on the radiological burden of population caused by emissions during normal operation, is

small compared to other sources as shown here for the example of Germany (Figure 1.40(b)).
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Figure 1. 40  Aspects of plant design regarding optimization of efforts to reduce emissions of
radioactive substance during normal operation

(a) Consideration on efforts to reduce emissions during normal operation; (b) Shares of radiological burden of population (example: Germany)

In future nuclear power plants severe accidents with the release of large amounts of radioactive
substances have to be excluded. Events like in Chernobyl (Figure 1.41) or in Fukushima (Figure
1.42) must be avoided by a suitable design of the plants. Especially the long time contamination
of land must be ruled out.

As the measurements show, in the neighborhood of Chernobyl even today after more than three
decades since the accident has happened, nearly 10 000km” are very highly contaminated and
people had to be resettled from these arecas. In larger distances further areas of more than

50 000km* are still contaminated with isotopes in such height. that special limitations for food

39
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Figure 1.41 Contamination of land after the catastrophic accident in Chernobyl (UdSSR, 1986) 1%

(a) Ce 137; (b) St 90

and drinking water are necessary. After the accident in Fukushima, similar sizes of areas had to
be evacuated to protect the population. Decontamination is necessary in an area of more than
10 000km. However, no early fatalities occurred because the population has been evacuated

directly after the accident.
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Figure 1.42 Contamination of land after the catastrophic accident in Fukushima (Japan, 2011

* Activity and decay heat stay relevant for radioactive waste for a very long time (Figure 1.43).
The final waste disposal must be realized without the danger of large release from these deposits.
In case of reprocessing, the amounts of masses which have to be brought to the final storage are
very small (4m°®glass/year for a LWR plant with a power of 1300MW_).

The release of fission products from final storage systems has been analyzed for the relevant
geological systems in different countries. The accident, which was assumed in all these cases, is the
massive ingress of water. Over a long time by the corrosive attack of water, thick walled storage vessels
for spent fuel elements will be damaged. Finally fission products can be leached out from the fuel and
transported from the storage region through different layers of covering rock and soil structures. On the
surface of the earth then doses for people can occur. Figure 1.44(a) shows results for different materials
in many countries, which consider the direct final storage of spent fuel elements. Similar considerations

and estimations were carried out for the storage of glass coquilles from reprocessing(Figure 1.44(b)).
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Figure 1.43 Conditions of radioactive waste during intermediate and final storage
(a) Activity dependent from time; (b) Decay heat dependent from time

1—spent fuel elements; 2—glass coquilles after reprocessingMﬂ
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Figure 1.44 Expected radiological burden from radioactive wastel 4516

(a) Direct final storage of spent fuel elements (SKB91 (Sweden); TVO92 (Finland); AECL 94 (Canada); H-3 (Japan); Kristallin-1
(Switzerland) ; Project Gewéhr (Switzerland)); (b) Final storage of glass coquilles loaded with fission products and small amounts of
Plutonium and minor actinides

1—storage of glass coquilles; 2—accident: massive water ingress(a factor 100 higher than normal)

Analyses of accident in final storage systems show that the doses for the population are much smaller
than limits set by the regulation authorities (example: Swiss).

The risks from power plants are significant higher than that from processes in the fuel cycle.
Further improvements are possible by partitioning and transmutation (Figure 1.45). This figure explains
that in case of final storage of glass coquilles, a section with the radiotoxicity of the Uranium, which
was inserted to produce the waste, occurs after around 50 000years. If partition and transmutation are
added in future, the section will be after around 1000 years.

Similar tendencies of curves as in Figure 1.45(b) are obtained, if the radiotoxicity is expressed in
Sv/(GW, « a), i.e. related to the produced electrical energy.

It becomes clear that in case 1, the direct final storage of spent fuel elements, the section of the
curve with that of the Uranium just happens after around 107 years. The reason is the high content of

Plutonium and minor actinides in the final storage. If the normal reprocessing is carried out, the
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Figure 1.45 Toxicity of radioactive waste (PWR, burn up: 35GWd/t)
(a) Characteristics for three different waste management strategies (curve 4: toxicity of 1t enriched Uranium (3.4% U235, 0.24% U234));

(b) Toxicity of waste dependent from storage time (expressed by the necessary volume of water per ton of heavy metal to realize free limits)

Plutonium is already reduced by a factor larger than 100, however the minor actinides stay in the waste.
Therefore the section occurs behind a time of 50 000 years. Just if by additional processes of partitioning
and transmutation the Plutonium content and the mass of minor actinides in the waste are reduced, the
section of the curve with the original inserted fuel is at a time of around 1000 till 2000 years after the
start of the phase of final storage. Further progress of waste processing is possible.

The non-proliferation of fissile material has to be guaranteed worldwide. This requires strong
international control of inventories and mass flows of those materials. Maybe one needs a control system
for highly radioactive materials in the future too, to avoid misuse, as example by terroristic attack.

Summarizing aspects that have been discussed before, some general statements can be made, which
are convincing arguments for the worldwide ongoing activities to make nuclear energy to a long term

important source for the energy supply in the future (Table 1.12).

Table 1.12 Aspects which favor the introduction of nuclear energy

* Nuclear energy is an additional energy source for worldwide use

* Production costs of nuclear energy today already are lower than those of the most competing energy carriers

* In future with rising energy costs nuclear energy is only very weak dependent from rising costs of Uranium ore; this is
quite different compared to plants using fossil fuel

* Use of nuclear cnergy allows to store raw-materials for a long time

* The fossil resources and reserves are spared by the introduction of nuclear energy

* High converters and breeding systems make nuclear energy an option of more than 1000 years

* Principally the final deposit of nuclear waste is much easier than that of CO, ; the amount of mass is smaller by a factor
of 10°; fission products decay, CO, stays for all time

* The realization of nuclear plants is possible in aride areas because of efficient use of air cooling towers

* Small plants can be realized to apply cogeneration processes near areas of consumption

* Process heat applications allow the reduction of CO, emission

* High temperature process heat applications open a totally new market for nuclear energy

* The use of nuclear energy enables a higher degree of safety of energy supply

* The development of nuclear technologies accelerates technological developments in other fields too
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It will be necessary to carry out a successful development of the processes, which are explained in
the next chapters. A main precondition to realize these advantages is a convincing safety concept, which

is proven and accepted by the public.

1.8 Some aspects regarding the application of nuclear energy in the non-
electric energy market

Until now nuclear energy mainly has been applied to produce electrical energy. However,it is well
known that electrical energy just covers a smaller share of the energy market. The structure of the

energy market in an industrialized country is shown in Figure 1.46.
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Figure 1.46 Energy conversion in the energy economy of a country
(a) Energy balance of an industrialized country (example: Germany, 2010; numbers in t HCU; primary energy: 5.207 X 10°t HCU/a;
secondary energy: 2.973 X 10%t HCU/2)™"™; (b) Chain of energy conversion

With regard to the figure shown before, one can state that the end-energy is used in industry for
household, trade and transportation. Starting from the primary energy (100%) around 57% are
available as end energy for the supply in these different sectors of energy economy. The difference
between primary energy and end-energy is caused by conversion and transportation in different stages of
the total chain. A total efficiency of the chain can be defined by the relation

77tot:E H’]z = 2 * 73

prim

Partly chains of energy conversion occur with more stages and values for ;.

Losses for conversion from primary energy into secondary energy occur in refineries, power plants,
coking processes, during the use as raw material for production processes. The end-energy is used in the
different sectors, applying specific process efficiencies. The shares for the different sectors shown here
are relevant for an industrialized country like Germany (2010) .

* Industry (26%);

* Transportation (29.2%)

* Household (28.6%);

—
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* Trade, commerce, infrastructure (16.2%),

The energy supply of countries can change strongly during time, as indicated in Figure 1.47 for the
energy economy of Germany. A major change was caused by the penetration of oil and natural gas into
the market since 1960. Nuclear energy started to play a role after 1980. A special change happened in
the energy economy after 1990, as the reunion of western and eastern Germany took place. The importance of
lignite, which was mainly relevant for eastern Germany, was reduced because of environmental aspects.

Renewable energy started to become important after 1995 because of large subventions.
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Figure 1.47 Development of the energy economy and change of importance of primary energy carriers (example: Germany)[m

@ includes the countries of former German Democratic Republic (DDR)

A characteristic distribution of different types of end-energy carriers (oil products, gases, clectrical
energy, liquid fuels, district heat) is given in Figure 1. 48. This distribution is the basis for
considerations on application of nuclear process heat. During the use of the secondary energy in the

different sectors, further losses occur and partly just a small part of the original applied primary energy

is used as the final energy requirement.
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Figure 1.48 Structure of the end-energy consumption in an industrialized country (example: Germany, 1998) M7

The market for heat and transportation energy is large, and therefore many considerations were

carried out to apply nuclear energy in this sectors 00" %% Some examples of delivery of heat from
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nuclear reactors, which are still in operation or have been in operation, are contained in Table 1.13.
These were mainly low temperature process heat applications. The plants had to follow special licensing
processes and had to fulfill high safety requirements.

Table 1.13 Some example of application of nuclear process heat™**"

Power of

Type of Power of . .
Name of plant Country process heat Start of delivery Remark *

reactor |plant/MW, )

delivery/ MW,

Calder Hall Grofbritannien | Magnox 4X4 15(75) ° 1956—1959
St. Petersburg | Russia LWGR 40 X1000 | 4 X80 1973/1976,1979/1981
Biliblno Russia LWGR 4X12 4X29 19741976
Kola Russia PWR 4X 440 146(46) 19731985
Stidukraine Ukraine PWR 2 %1000 446(102) 1983/1985
Saporosche Ukraine PWR 21000 1165(104) 1985/1986
Schewtschenko | Kasachstan FBR <150 <300 1973 Desalination
Kosloduy Bulgariay PWR 4 X440 230 1974—1989
Bonunice Slowakei PWR 4 X 440 240090) 1979—1985 (1986)
Paks Ungary PWR 4X 440 55(43) 1983—1987 (1977)
Bruce A Canada CANDU 4% 904 350(813) 1976—1978 (1978/1983)
Beznau Swiss PWR 2X 364 80(50) 1979 (1979) Steam for industry
Gosgen Swiss PWR 970 54(24) 1972 (1983) Steam for industry
Stade Germany PWR 672 40(40) Steam for industry

* mainly district heat; ¢ in parenthesis: till 1990 realized power; LWGR: RBMK-plants; FBR: fast breeder reactor.

In Germany, additionally there was a project to deliver process steam and electricity in a large
chemical complex by two pressurized water reactors with large power (2000MW,, each). These plans,
which have been worked out in detail were not realized because the license process in a dense populated
area became very difficult. As example a burst protection for the primary enclosure was required. It was
planned in detail.

The energy demand of the different sectors sets special conditions: in the transportation sector,
liquid fuel is still dominant; in the household sector mainly low temperature heat is necessary; and in the

industry, heat on different temperature levels is applied (Figure 1.49).
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Figure 1.49 Process heat spectrum in the industries as a function of process temperature in Germany as of 1996018

The figure for the industrial demands indicates that there is a large market with a temperature level

till around 250°C and then a smaller market for temperature between 250C and 800C . A large market

45
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exists for process temperature between 900°C and 1600T .

Nuclear process heat can be applied to processes with around 900C considering today available or

foresceable technologies. However these heat sources have to fulfill several conditions:

Avoiding of contamination of products and additional radiological burden of population;

Economically competitive to other solutions;

Acceptable by public; exclusion of severe accidents by an extremely high level of safety;

The capacity of the heat sources should be compatible to the capacity of processes, therefore

limitation of power and application of a modular concept of reactors to get as high as possible

availability;

Special new questions of coupling nuclear heat source and chemical processes have to be solved:

realization of intermediate heat exchanger circuits; limitation of permeation of Tritium and

hydrogen; handling of process gases in the neighborhood of nuclear plants.

There are some general reasons, which make nuclear process heat attractive for the future energy

economy, ¢.g. energy for heat supply and transportation. The heat supply is relevant for house heating

and industrial processes. For the future enhanced importance of nuclear energy, generally the following

aspects are discussed (Table 1.14). The production of liquid fuels could open a new additional market

for nuclear energy. Especially the possible independence from fossil fuels in the sector of transportation

is a promising option for the far future.

Table 1.14 Special aspects of work regarding nuclear process heat

* Fossil fuel is substituted and the production of CO, is avoided. This allows a saving of reserves of fossil fuels and

reduces the requirements regarding CO,-waste management. It is thought that in future the separation, transport and

final storage of CO, costs much money, if it will be possible at all

* The production of nuclear heat allows to realize lower costs than costs from burning fossil fuel like oil or gas. The

production cost of nuclear energy just weakly depend from rising prices of primary energy, in this case from the

Uranium ore price. Because this share is just in the order of some percent of production costs, in future even poor

Uranium ores with much higher production costs and prices can be used

* Nuclear process heat promises more independence from sensitive world markets of energy (oil, liquid gas. natural

gas). For many production processes this can be a very important factor of site selection

* Nuclear technologies are complex and can strengthen the industry in a country in other different fields

The aspect of lower costs of nuclear heat is a major argument for future energy strategies to use this

form of energy. Comparison of heat costs delivers a figure like that given in Table 1.15, where costs of

production from oil are compared to values relevant for nuclear energy. Today the nuclear heat costs are

smaller than the costs from systems burning of oil. The competition to coal is very different in

worldwide comparison.

Table 1.15 Some estimations on production cost for heat from oil and nuclear reactors

Energy carrier

Specific investment

Fuel costs

Costs of waste

management

Total costs of heat

Remark

cost/($ /kW «h,)| /C(ct/kW + h,) /Cct/kKW ;)
o " /(ct/kW + hy) o
Nuclear 1500 0.5 0.3 38 values for LWR
0il 500 6! 1.5% 7.5 CO, separation

1: oil price: 100 $ /barrel; 2: cost of CO, separation and waste management: 60 $ /t CO,; 3: depreciation time of LWR: 40 years.

Table 1. 15 contains the production costs of heat of light water reactors. It is assumed that the

results for full developed and commercially introduced HTR plants would be similar.

The heat

production of older LWR plants, which have been built as example in the cighties are in the order of
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=1

1.5 to 2¢t/kW « hy,. Oil prices have changed very much in the past as alrcady was explained in Figure
1.31. For the future rising oil prices are expected, because sources like oil shale and oil sand will have to
contribute to the supply.

A characteristic example for the possible future importance of nuclear process heat is the supply of
the transportation sector. Figure 1.50 shows the past development of the world oil market and future

possible changes.
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Figure 1.50 Estimations on the future development of the world oil market"*"]

(a) Estimation on oil supply
1-—US Department of Energy, 1999; 2-—world energy conference, 1999, conventional and unconventional oils; 3—Campell,
1997, only convent oils (2.5 % 10" t); 4—Shell study, 1995, convent and unconvent oils (6 X 10" t); 5—Shell study, 1998,

convent and unconvent oils (8 X 10" t)
(b) Estimation on oil supply

1—existing capacities; 2—use of known reserves; 3—non-conventional oils; 4—use of new discoveries

Assuming the today consumption of around 5 X 10°t oil/a and an available amount of relatively
cheap oil in the order of 200 X 10°t oil, the static range would result as 40 years. Including an escalation
rate of 2% /a, this time span is reduced to around 30 years.

The consumption of oil for the transportation sector has reached a saturation in some countries, as
example in Western Europe or the United States. There are other countries, in which now the demand
on liquid hydrocarbons for this purpose rises up very much, as example in China (Figure 1.51). In many
other countries, this tendency is expected for the future too. As a result the demand on oil or substitutes
for this energy carrier will show rising tendency in the next decades. The general accepted estimation is
that in 20 years, around 50% of the oil necessary for the world market have to be produced by

unconventional methods. The success of the discovery of new oil reserves became smaller in the last years.
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Figure 1.51 Some data of the transportation sector in China"*"

(a) Correlation between number of vehicle sale and oil consumption; (b) Oil production, consumption and import
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Figure 1.51 (Continued)

Already in the year 2014 China had to import around 35% of the demand of oil. The production of
additional oil by enhanced methods of recovery and the retorting of oil shale and oil sand will shift this
time schedule by some decades. It is clear however, that for a long time worldwide strategy of supply,
different other options have to be considered and soon as possible realized. Some alternatives to supply
the transportation sector with energy are shown in Table 1.16.

Including oil resources, which today are still declared as unconventional (oil sand, oil shale), the
world energy market can expect a supply of around 6 X 10" ~8x 10"t of oil. Corresponding to the today
consumption, this results in a static range of more than 100 years. Assuming an escalation rate of around
2% /a with a saturation of nearly 10'"°t/a for the consumption, the dynamic range will be reduced to 70
years. In any case new options for the supply of the transportation sector have to be developed for the far
future. An important and interesting question is what about the use of electrical energy in the transportation
sector. The development of efficient and cheap storage system is the key question for this application.

All processes mentioned in Table 1.16 are suited to produce energy carriers for the transportation
sector. The processes need energy for the conversion. As explained in Chapter 2 in more detail, the
processes mostly require around 50% of the feed as process heat. This can be substituted by nuclear

energy. The substitution allows the reduction of CO, emission and promises economic advantages.

Table 1.16 Some options to fulfill the worldwide rising demand of the transportation sector

* Rising the output of refineries by addition of all thermal energy from other heat sources

¢ Oil production by enhanced methods (steam flooding)

* Oil production from oil shale and oil sand by retorting processes and following upgrading to light liquid products
* Liquid gases for transportation purposes

* Production of energy alcohols (methanol, ethanol) from natural gas, biomasses or coal

* Production of gasoline from coal

* Methanol from H, and CO,-offgases

* Hydrogen production and use in gaseous or liquid form

An indication for this aspect was given in Table 1.15, where the oil price was compared with the
production cost of nuclear heat. Here mainly the heat costs of light water reactors are mentioned, but
the heat cost of modular HTR should not differ too much. The economic advantages of substitution of
oil by nuclear energy becomes clear. If penalties for CO, separation, transport and final storage are
added, the differences become even larger. More details of economic analysis are contained in Chapter

15. In future the ratio of H/C in fuels will become larger (Figure 1.52). Many technologies are well



known to realize this goal.
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Figure 1.52  Aspects of the ratio H/C of fossil fuels

(a) Correlation between H/C and O/C; (b) Change of the ratio H/C of fuels mixture in the energy economy dependent from time

1—natural gas; 2—oil; 3—oil shale; 4—asphalt; 5—hard coal (anthracite); 6-—hard coal (different types); 7—ignite; 8—peat

The technologies to convert C-containing substances into light hydrocarbons are hydrotreating,

retorting processes or gasification of C-containing fuels with steam or hydrogen. Further processes to

produce liquid fuels are methanol synthesis, Fischer-Tropsch-synthesis or principally coal hydrogenation

(Figure 1.53).
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Some future process combinations, which can produce light hydrocarbons for the transportation

All processes market here are well known from the developments of the past. Major improvements

in the future can be: saving of carbon, reduction of CO, emission, reduction of production costs.

Regarding these requirements,combinations between nuclear energy and renewable energy carriers

like biomass can get large importance in the future system of energy supply too. A proposal for this

concept is contained in Chapter 2.
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1.9 Some further aspects of future energy supply

Future energy supply systems, which should have importance for long time periods, have to fulfill
requirements of sustainability[51'53] :
* They must be technically feasible;
* Energy reserves and resources need to be saved;
* The environment must be protected;
* Economical requirements have to be fulfilled;
* The technologies must be available worldwide to people.
Suited concepts have to be analyzed, valuated and finally realized. Some explanations regarding

these aspects are given in Figure 1.54.
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Figure 1.54 Some aspects of acceptance and requirements for future energy systems

In the field of nuclear energy application, some of the topics indicated in the figure like extreme
safety considerations or aspects of waste management were underestimated in the past. They are now
moving into the focus of the international discussions and politics. Similar considerations now are related
to the question of CO, emissions and final deposit of this waste of fossil fuel technology. The reason is
that consequences of the emissions of CO, in normal operation of plants or the release of fission products
during severe accidents can have consequences for the whole world or neighbor countries. Principally all
systems need optimization of the effort, which is necessary to protect people and the environment.

Two examples may characterize this important topic of energy economy. One relevant example
from power plant technology is the cleaning of the off-gases from the burning process of coal. The
degrees of desulfurization of flue gases, which contain SO, , NO, and dust are well-known parameters in
the field of environmental protection. An optimal value of the effort in the field of tension between
economy and environmental requirements have to be found, and in the last decades strong regulations
for SO, emissions from power plants and from industry have been introduced (example: Germany). The
valuation of this question can be carried out on hand of existing data. For the total costs connected to the

cleaning systems and for environmental damages from SO, one gets with e as the effort for SO, removal:

Etot(e)% Eprod(e) + Ecnvir(e)%CI +CZ *e +C3 *

e +tcy

Here it is assumed that the production costs for electricity rise up linearly with the effect. On the
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other hand, the environmental cost drop with rising effort and reduced emission. A minimum of costs
follows from the relation

aEtot/ae =0; EJZEm/an>(); e (optim.) = A/Cg/Cz —Cy
The total costs for the community should show a minimum (Figure 1.55). The government today

usually sets a limit e’. In older times a value e * maybe was relevant. There are mainly technical limits.,
which will restrict the effort to specific values.
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Figure 1.55 Considerations on the optimization of the effort for flue gas cleaning (example: fossil power plants; SO, ,

NO, , dust-removal) (e = degree of removal of SO,, NO, , dust, e’ corresponds to technical limit)

(a) Degree of desulfurization and related investment costs dependent from effort (qualitative); (b) Estimation of cost structures:
optimization between production costs and environmental costs

1—value, which was realized in the past; 2—optimal value (actual) ; 3—legally prescribed value; 4—corresponding possibly future requirement

Corresponding to the progress of technology of removal of SO, as example the emission of this
substance has been reduced drastically in the past (German conditions). Parallel to this technical

development and initiating this tendency the regulations for power plants and industrial heat sources had
been changed (Table 1.17).

Table 1.17 Aspects of emisions from coal fired power plants and other sources"

Limits for SO, emission/ Limits for emissions/
Year 5 Substance 5
(mg/m" flue gas) (mg/m" flue gas)
till 1980 850 Dust 50
1982 650 NO, 200
today 400 CO 250
HCl 100
HF 15
(a) (b)
Emission Dimension | Value(1980) | Value(2000) Year SO, emission/(10°t/a)
Dust g/ (kW « h,) 0.7 0.2 1990 25
SO, g/ (kW + h,) 6 1 2000 10
NO, g/ (kW « h,) 3 1 2010 5
CO, | kg/(kW -+ hy) 0.8 0.75
(c) (d

(a) Regulations on emissions (example: SO,-limits in Germany); (b) Regulations on emissions (example: different limits in Germany) ;

(¢) Specific emissions from hard coal fired power plants (example: Germany); (d) SO,-emissions in the European Union (27 states)
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A further characteristic example for this type of optimizations and finding compromises may be
taken from the development of nuclear technologies. The effort e to limit the release of radioactivity
into the environment causes surely higher investment and production cost on the one hand and by this
measure the damage cost of the environment is reduced in case of severe accidents. One major activity in
the field of light water reactors in the last decades was to reduce the core melt probability, and as a
consequence to reduce the probability that large amount of radioactive substances could be released to
the environment (Figure 1.56). The tendency of this development, which is a consequence of technical

improvements of the systems, is shown in Figure 1.57.
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Figure 1.56 Aspects of core melt probability of LWR

(a) Some results of core melt probabilities of LWR from different risk studies™; (b) Qualitative picture of the number of

worldwide operating nuclear power plants with specific melt probability w
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Figure 1.57 Development of core melt probability: influence of technical improvements[%]

Some examples: 1—Sizewell B; 2-—N-4; 3—Biblis; 4—Konvoi; 5—EPR; 6—P-Bottom(not directly comparable) ;
7—Zion; 8—Surry; 9—AP 600; 10—ABWR; 11—Candu; 12—Sys80 +

Naturally the 450 large nuclear power plants, which today are operated worldwide and connected to
the grids, follow quite different standards of safety. This is already caused by the age of the plants. The
probability that a severe accident in the world can happen might be destinated by the plants with the
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largest probabilities. Strong impacts from the outside, like by terroristic attack or caused by air plane
crash, can change this valuation totally. Then the today usual probabilistic valuation, which results in
relatively small frequencies for strong core damage and large release rates, can not play the same role as
today in the licensing process and in the debate about acceptance of nuclear technologies. The severe
accident in Fukushima (2011) and the discussion on consequence of terroristic attack after the
catastrophic event in New York (2001) have changed the valuations following probabilistic analysis
worldwide.

There is much progress in the field of reactor safety. As Figure 1.57 explains the value of core melt
probability has been reduced by two decades in the last 30 years. Despite of this development old plants
are still in operation and contribute to the total risk worldwide. Characteristic efforts for the new
generation of nuclear reactors are improved concepts for decay heat removal, for a core catcher or for
future advanced reactor containments. This very interesting topic is explained on the example of the
development of the LWR-containment until now and further improvements. Figure 1. 58 shows some

options for this important last barrier in the LWR-technology to retain radioactive substances in the plant.

id) (o) i

Figure 1.58 Rising efforts for reactor safety (example: improvements of the LWR-containment)
(a) Steel shell with thin wall of concrete (<0.5m), arrangement above ground; (b) Steel shell with thicker concrete wall (<<1m for
older plants; 2m for younge plants) , arrangement above ground; (c) Steel shell with doubled concrete wall (~2m) , arrangement above

ground; (d) Underground arrangement; (e) Underground arrangement with protecting hill; (f) Arrangement in cavern in rocks

Very old plants had just a steel shell to contain the released radioactive material together with
coolant at a reasonable pressure (at around Sbar). Containments of many reactors operating today have
an additional concrete shell, which in most cases has a wall thickness of around 1m. The maximal
pressure is similar to the value mentioned before. The wall thickness is not sufficient to protect the
primary system against the crash of large air planes. Some few plants have been realized with a wall
thickness of 2m for the containment. Therefore they offer protection against the crash of military
planes. Today reactor concepts for LWR are under construction, which use two concrete shells and
promise higher safety by improved fission product retention and enlarged physical protection. In the
future underground arrangement of reactor containments can help to get safety even against extreme
strong impacts from the outside.

Additionally to the improvements indicated in Figure 1.57, as a further measure the containment
got a depressurization system in the last years and in some plants already N, filling in normal operation
with respect to possible hydrogen explosion was realized. The addition of a storage building for fission
products for the case of extreme accidents would be a further possibility to improve the safety (Figure
1.59). Similar aspects of optimization of the efforts regarding the process itself and the safety behavior

of the total plant can be discussed for nuclear process heat applications too (Chapter 11). Especially the
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connection between a nuclear plant and a chemical facility causes this type of questions to find optimal

combinations and parameters for the concepts.

(1]

Figure 1.59 Improved containment with the addition of an intermediate storage for radioactive substances,

occurring after severe accidents
1—containment or inner concrete cell (in modular HTR); 2—outer reactor building; 3—selfacting closure system for inner
cell; 4—washing pool and filtering system; 5—selfacting closure system; 6—intermediate storage for gas (with fission

products) ; 7—valve to depressurize the storage; 8—stack

The question, which risks are tolerated by the population and accepted by the politics, is different
and the answers are different in countries which use nuclear energy.

7) and this was for many years a basis for risk studies and

There is an old proposal made by Farmer
valuation of the result of this analysis. The release of I 131 (T,,, =8 days) was used as measure for the
burden of the population after an accident. Following curve in Figure 1.60(a) as example the release of
more than 10 000 Ci I 131 should have a probability smaller than 10 * per year, which means it should be
a seldom event. By this method it was possible to define regions with acceptable and not acceptable
consequences on the basis of the amount of the released radioactive substances. It was possible to
estimate doses for the population. Figure 1.60 (b) shows an example, worked out in Canada for the
CANDU systems. Here the whole body dose is chosen for the consequences. The application of a total
dose of 10” Sv to a group of persons can be correlated theoretically with around 20 fatalitics. Based on
this principal model of valuation of risks, there are many proposal in the field of risk analysis to
establish a scheme for general use. Figure 1.60 (¢) contains some numbers, which characterize the risk

of daily life. In any case these types of regulations are decisions by politics based on acceptance by the

society.
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Figure 1.60 Aspects of risk acceptance by the population
(a) Curve of Farmer for risk acceptance“m ; (b) Curve worked out in Canada for valuation of risks by nuclear power plantsrsx’ ;

(¢) Individual risk dependent from distance (example: Germany): death by cancer; (d) Risks for death by different reasons

(example: USA, 1970) ool

(leukemi(a) 1—natural reasons; 2—natural radiation; 3—all accidents; 4—nuclear accidents)



Individial risk

L 1

Aspects of energy economy

0014 T'oml Individun] risk
" | I'vpe of casvalty | number for persons
1 “death by leukemin or # 1n) [ 14{a -persan)]
eancer (naturnl resson ) ronald traffic 55791 L4000
1074 falls 17§27 1/10 000
fire T451 125 00d
piy? : = - =
: drivwning 6 L8] 17300 000
death by leukemin or — g
s cimeer (naturn ! mdiation ) fite arms i_‘ﬂ'_’ ||th[““_'
air traffie | 778 1404 000
- ik i P o [
107 4 death by accidents Id[lllu_c:h_.l..ti 1271 17160 D00
Jeukemia electrie shouk | 148 FLedd 0
" 4 lightring 160 /2 DO U0
tomndas 9] 142 500 000
-
I hurricanes 93 1/2 300 000
y _ death by mdintion cpsually total 1171 992 141 600
T thickness (nuglear

nuclenr bedidents

wechdents) (100 plani ] 13600 Q00 00
1" : hmhes
| 11 1108 LI
Distancekm
(el (d)
Figure 1.60 (Continued)

1. 10 Some aspects of process analysis in the field of energy technology

All processes, which are discussed in the following chapters are complex and in most cases a plant

consists of different combined sections. This requires as example to work out detailed mass and energy

balances. The following Table 1. 18 contains some forms of energy and exergy. which have to be

considered in these analysis.

Table 1.18 Forms of energy and corresponding exergy

Form of energy Energy Exergy
1
kinetic energy E= 5 m (0® —0%) E =E
potential energy E=mg(z—z,) E.=FE
work (without change of volume) E=W Ey=E
work (with change of volume) E=W,, Eg=Wyp-—p, (Vi =V
inner energy (closed system) E=U E,.=U-U,-T,S-8,))+tp, V=V,
flow of enthalpy E=H E,=H-H,-T,(-8)
T-T,

heat E:Q:mCT Eex:Q T
reaction enthalpy E=-AH, E = -AH,-T,(8-8,)
chemical energy E=H, E,~H,
electrical energy E=UI E =E
nuclear energy E=m + ¢* E,=E-Q-T,/T)

In the course of a process analysis, the boundaries for the balances have to be defined. These can

include the whole process, parts of the plant or groups of components or single component. The mass

and energy balances can cover chemical or nuclear reactions too

[61-66]

Figure 1.61 indicates a model, in which time dependent mass and energy streams enter the balance

volume. This volume can be a component, a region of a plant or a total plant.

For the change of mass and energy in the balance region one gets

dm

G T2 = 2 gt w e V
i J
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E:Z(Ei)ini E(Ej)out +HW

w characterizes changes of composition by chemical reactions, V is the volume of the system in

which the reaction takes place. HW characterizes internal conversion processes, the term E contains
enthalpies, mechanical heat and other forms of energy.
In case of nuclear reactions like fission or radioactive decay, the connection between energy and
mass corresponding to Einstein’s equation
AE =Am +c*, 1 atomic mass unit=931MeV,
lamu = im GO
12
has to be included. c is the velocity of light (¢ =300 000km/s) .
For many applications energetic and exergetic efficiencies based on a model as shown in Figure 1.62
are defined.

i #,
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Figure 1.61 Concept of mass and energy balance Figure 1.62 Model for the definition of efficiencies

The energetic efficiency can be expressed in general form by the equation

7 = energetic benefit/energetic expense

Zi—[jA_FZ.QfA—F‘Wmech‘A Zk:.ka
j j

7= . . =1- . :
ZHiE+ZQiE+‘Wmech‘E ZHiE+ZQiE+‘Wmech‘E

In case of thermodynamic cycles this equation is simplified in the form:
_ ‘ Wmcch ‘

>0,

Including all efficiencies of the total chain of energy conversion in a power plant,one obtains a

Tth

product for the total efficiency of a process.
Mot = Ten ® H77i
i
Here the 7;-values characterize efficiencies of the steam generator, the turbine, the electrical
generator, losses of the components of the steam cycle and expenses for the own consumption of a plant.

Similar efficiencies have to be defined in a process heat plant, which contains a chain of process steps too.

Often exergetic efficiencies have to be defined, in which the thermodynamic worth of energy is included.
7‘Wmech‘+.QA.(1_T /T)

env
> 0w
i

Here an amount of heat Q,. which leaves the process, is valuated corresponding to the

nexerg. -

temperature of the heat. The factor is the Carnot factor and indicates which efficiency to use the heat
could be possible from the thermodynamic standpoint. This type of valuations become important for
processes, which deliver several products. Cogeneration is a very important example.

In the course of process analysis it is often necessary to compare different technologies as far as total
energetic valuation is considered. Energy is necessary to construct the plants and to fabricate the necessary

materials, and to supply the fuel during operation. After the operation lifetime of the plant energy has to be
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inserted for decommissioning. Some notations and definitions are helpful to characterize plants:

* Energy expense for construction of the plant (EE_): these are expenses of construction of the

plant including all energy expenses for fabrication of materials, fabrication, mounting and
transport of components. Direct energy investment at the site of the plant, indirect energy

investment for the production of materials have to be included.

EE. =J;P* (Hdi + D mo, +J;Q(t)dz +J;P” (t)dt
Jr P" (t)dt electrical energy used directly at the site of the plant;
0
J; Q(t) dt —heat energy used directly at the site of the plant (oil, gas, coal, steam) ;
m; amount of materials for fabrication of components (steel, concrete, copper, aluminum,
plastics) ;
o; specific numbers of energy consumption to produce the materials (electrical energy, oil,

gas, coal calculated as primary energy) ;

J P (1) dt electrical energy used indirectly in the factories to produce the components.
0

The time schedules for the construction partly are long and reach some years.

* Equivalent of primary energy: the amount of primary energy which is necessary for the

production of one unit secondary energy (1kW ¢ h (electrical) means 2.5~3kW « h (thermal) in
case of nuclear or fossil power plants, 1kW ¢ h, corresponds with 1.3~1.5kW « h, in case of
hydropower). In general form is:

E (primary £ thermal) ~ E (electrical) /g

* Time of energetic amortization of a plant (T,): time of operation of a plant which is necessary

to produce the amount of primary energy which has been used to construct the plant (Figure 1.63).
Ta 1
EECZJ0 P(t)dt-;%Po-TA/n

In principal the following model can be applied (Figure 1.63). A time T, can be calculated from

the balance.

* Exploitation factor related to the construction of the plant (EF_): the factor EF_ is important

for the calculation of the time which is necessary to recover the energetic investments for the
construction of the plant (Figure 1.64).

a _
+ E Iy 1 =K
E % —E)
Ll & f;'_.

’ fime
Start aff S, 4
N constructian '
5= | -
a ¥ Start of Eneroy consiumption |
[ aperation for construction of EE, == plam '.-j Pdr
plant s recovered |—
Figure 1.63 Model to define a time of energetic amortization Figure 1.64 Model for the definition of

the exploitation factor

netto production during lifetime of plant N«Py-T
energy consumption for construction of plant’ ¢ EE

Cc

N corresponds to the number of years of operation of the plant, P, is the nominal power of the plant, T
is the time of full load operation during one year. For the special case EF, =1, one obtains
EF,=1—>LEE_ =P, T,
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T , is the static time of energetic amortization for the plant.
* Exploitation factor related to the total lifetime of the plant (EF| ) is a further definition, which

is helpful to characterize energetic demands during the whole life of the plant (Figure 1.65).

construction opreration dismpnitling
rd / -
f /
LE, EE, EEl
L 'l a2
L] L] L] L]

netto production daring lifetime of plam

curniilitive energy eopsumpion or constriotion, operition and dismaning of plam

EFy =88, + EFy v EFg = 1ol eumulative energy cansumption

Figure 1.65 Model for description of the plant life

Inserting some relations used before one gets
Ne+«Py+T N-«P,-T 1 _BF 1
EE, EE, _ EE, EE, ¢ 1+a+§
1+ +
EE. LE.
a = factor energy for operation related to energy for construction

EF, =

B =factor energy for dismantling related to energy for construction

* The substitution factor (SF) is important to valuate processes, if different fuels can be applied.
The substitution factor SF is the ratio between the primary energy consumption which can be
substituted and the primary energy consumption.

difference between netto energy production (primary equivalent) and cumulative energy consumption

SF = . .
cumulative energy consumption
1
SF:N.PO.T.;iEET:N.PO.T_leF.l.EEC_l
EE n e+ EE ¢ 9 EE;

The cumulative energy EE, during the operation of the plant requires the valuation of different
energy carriers. Fossil fuels are taken into account with their lower heating values; regenerative
primary energy sources and nuclear fuels with their conversion factors.
The factor SF allows as example an answer to the question, if a regenerative energy system
produces more energy than it consumes. SF>>0 fulfills the condition that there is a contribution
to the saving of fossil resources.

* The grade of substitution (SG) allows an overview on the influence of substitution over the whole
life of the plant:

SG = netto energy production (primary energy equivalent) — cumulative energy for plant
netto energy production of plant

1
Ne«Py«Te—EE; EE, L

SG: 77 - - - - @ = -
NeP,-T 7 NeP,-T =7 EF,

The grade of substitution corresponds to the ratio of the primary energy consumption which is

consumed and the energy production.
In the process analysisms‘%] many process units or components have to be analyzed (Table 1.19).
For each component balances for mass and energy can be estimated on the basis of available data of
working media. Characteristic parameters of technology can be sampled. Steam turbines are parts of all
processes and shall be elected here as an example.
Some examples of components, which are necessary in all processes are described in simplified form

in Figure 1.66, Figure 1.67 and Figure 1.68.
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Table 1.19 Overview on process units and special components of process heat plants

Components of processes(units)

Special process heat components

* heat exchangers
* chemical reactors
* pumps

* compressors

* steam turbine

* pipes

* valves

* storages

* columns

* cooling towers
e drives

* control units

* core region

* hot gas duct

* steam generator

» gasifier

* reformer

* waste heat utilization
* gas purification

* steam turbine cycle
* gas turbine process
* burning chamber

* gas separation unit
* clectrolysis plant

* synthesis plants

* diesel engines

I

mass balance

energy balance
Mghy +Py =m,h,
exergy balance
me, +P, =me, — AI:ZV

thermodynamic relation

mass balance

energy balance

exergy balance

thermodynamic relation

h

s el By
irfea! . g
T

Py

“y

Il
S.

my =m,

mehy =mjh, +P;

r;zeE :rheA +P; + AE,

dT dp ar dp
ds =c, 7~ R~ ds =c, -~ R >
dh =c,dT dh =c,dT
o1 61
7= 1. (24) " (ideald T, =1, (22)
Pe Pe
k=1 -
1 I —
T, = TE{1+7[<’)J) 71] } (real) T, =T, [1_,7T+,,T(LA> }
Tv Pe Pe
inner efficiency inner efficiency
Th - Ty Ty T4
WoE 7=
Ty-Ts Tr Ty
88 RO
= 87 =
=3 4
E‘ RO % BB
= 85 B oar
= [+
Do &
B
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Figure 1.66 Simplified description of important process unit

(a) Compressor; (b) Gas turbine

—

=1
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mass balance
5
my = Zmi
energy balance
5
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exergy balance
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i=2

thermodynamic relation
h=nh(s,p.T>,s=s(T.p)
inner efficiency
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= f(application, p, T, P, technical
concept, age, operation conditions)

values of 7,: 0.8~0.9
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energy balance
He +Wiote " Wikine =Ha *Wioa *Wiina Qv

mhp +mgzp + 77125 =mh, +mgz, + 7712/\ +0y

exergy balance
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pressure loss

incompressible media
A ;
&P = <Dl + 2¢) ad

compressible media

-
opvpAl 1+ D T,

Ap =pp|l- |1 - ————

p=pe J peDT

T, = middle temperature, a = DZ&,/(U) . A= f(Re)

pump power

incompressible media

e

compressible media

P = ﬂT,; [(&) R 1:|
np Pe

heat loss

QV =mc,(T-T,) [exp(ri(? ) - l]

(b)

Figure 1.67 Simplified description of important process unit

(a) Steam turbine; (b) Pipe

Gas turbines, compressors, steam turbines or pipes are applied in all plants and shall be discussed
here in more detail using some characteristic balances and valuations.

Naturally, firstly the parameters of the working fluid have to be sampled as a basis for all
calculations. Technical examples from many fields of technology are helpful to analyze those

components and work out technical concepts in detail.
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T T
Tk,
) T ' ATy
i i T
Ay
= wlh Vs — it
1 LT T, |
mass balanee counter ow parallel Mow
My, = m H, =My
m Kp = }’.Vl K, = Mg

energy balance

th(hHL —hu ) :n'q,<<h,<A —hy )
exergy balance
mlen, —en ) =mylex, —ex, )+ AE,

characteristic equations
Cy = MpyCpy s Cg = MgC

Tu, = Tu, — Ty~ Ty)

A

C
Ty, = Tk, — ¢é—”<T,,E - Tk,)
K

l—exp—(li- )*
Cel e
K H

counter flow

¢ =
CH l: (1 — & k:l
1 - —exp
Ck Cxl ey
_ (1 + & kA
1 - exp .
. Cx Cy
$ = - parallel flow
1+ En
Ck

characteristic values for heat transfer cocfficients

1 1 1 1
= — + — + — (for flat geometry)

k- a, Als  a,

Medium in Medium outside Value a, / Value a,/ Value k/
tubes (1) tubes (2) [W/(m* « K)] [W/(m* « K)] [W/(m* « K)]
air flue gas’ 20 20 10~15
water air’ 1000 20 10~15
oil water 1000 500 100~300
water water 2000 500 500~1000
water steam (condense(d)) 2000 10 000 2000~3000

equation for dimensioning of heat exchanger
Q=mycy(Ty — Ty > =myc,(Tg — Tk D

) = kAAT AT, = ST 8Tu
Q= e ? “ T In(AT /ATy

Figure 1.68 Equations characteristic for heat exchangers

* ; normal pressure

=1
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