µÚ5Õ ÏßÐÔϵͳµÄ·´À¡¿ØÖÆ ×ÛºÏÊÇÓë·ÖÎöÏà·´µÄÒ»¸ö¸ÅÄî¡£·ÖÎöÎÊÌâʱ£¬ËùÃæ¶ÔµÄÊÇÒÑÖªµÄϵͳ½á¹¹ºÍ²ÎÊý¼°ÒÑÖªµÄÍâÊäÈë×÷Ó㬶øÓдýÑо¿µÄÊÇϵͳÔ˶¯µÄ¶¨ÐÔÐÐΪ(ÈçÄÜ¿ØÐÔ¡¢Äܹ۲âÐÔ¡¢Îȶ¨ÐÔµÈ)ºÍ¶¨Á¿µÄ±ä»¯¹æÂÉ¡£µ«ÔÚ×ÛºÏÎÊÌâÖУ¬Çé¿öÇ¡ºÃÏà·´£¬ÕâÀïÒÑÖªµÄÊÇϵͳµÄ½á¹¹ºÍ²ÎÊý£¬ÒÔ¼°ËùÆÚÍûµÄϵͳÔ˶¯ÐÎʽ»òÆäÄ³Ð©ÌØÕ÷£¬ËùҪȷ¶¨µÄÊÇÐèҪʩ¼ÓÓÚϵͳµÄÍâÊäÈë×÷Óü´¿ØÖÆ×÷ÓõĹæÂÉ¡£Í¨³££¬ÕâÖÖ¹æÂɳ£È¡Îª·´À¡µÄÐÎʽ¡£ÎÞÂÛÔÚ¿¹ÈŶ¯»ò¿¹²ÎÊý±ä¶¯·½Ã棬·´À¡ÏµÍ³µÄÐÔÄܶ¼Ô¶ÓÅÔ½ÓÚ·Ç·´À¡ÏµÍ³¡£ ±¾Õ½«ÒÔ״̬¿Õ¼äÃèÊöºÍ״̬¿Õ¼ä·½·¨Îª»ù´¡£¬Ö±½ÓÔÚʱ¼äÓòÄÚÀ´ÌÖÂÛÏßÐÔ·´À¡ÏµÍ³µÄ×ÛºÏÎÊÌ⣻ ²¢ÇÒ½«Ö÷ÒªÌÖÂÛÔÚ²»Í¬ÐÎʽµÄÐÔÄÜÖ¸±êÏÂÏßÐÔ¶¨³£ÏµÍ³µÄ·´À¡¿ØÖƹæÂɵÄ×ۺϷ½·¨¡£ÏÔÈ»£¬¶Ô×ÛºÏÎÊÌâµÄÕû¸öÑо¿£¬¶¼Êǽ¨Á¢ÔÚϵͳ·ÖÎöµÄ»ù´¡Ö®Éϵ쬯äÖÐÐèÒªÓõ½ÔÚϵͳµÄ·ÖÎöÖÐÒýÈëµÄÐí¶à¸ÅÄî¼°Òýµ¼³öµÄÏàÓ¦µÄ½á¹ûÓë·½·¨¡£ ÖØÒªÖªÊ¶µã 1£® Ñ­»·¾ØÕó£º Èç¹ûn½×ʵÊý·½ÕóAµÄ×îС¶àÏîʽ¾ÍÊÇÆäÌØÕ÷¶àÏîʽ£¬Ôò³ÆAΪѭ»·¾ØÕó¡£ Ñ­»·¾ØÕó¾ßÓÐÒÔÏÂÐÔÖÊ£º ¢Ù ÔÚÑ­»·¾ØÕóµÄÈôµ±±ê×¼ÐÍÖУ¬Ã¿¸öÌØÕ÷ÖµÖ»¶ÔÓ¦Ò»¸öÈôµ±¿é(º¬±êÁ¿×÷ÎªÌØÀý)£» »òÕß˵£¬Ã¿¸öÌØÕ÷ÖµµÄ¼¸ºÎÖØÊý¶¼ÊÇ1¡£ ¢Ú Èç¹û¾ØÕóAµÄÌØÕ÷ÖµÁ½Á½»¥Ò죬ÔòA±ØÎªÑ­»·¾ØÕó¡£ ¢Û n½×¾ØÕóAµÄÑ­»·ÐÔÊÇÖ¸£¬´æÔÚÏòÁ¿b£¬Ê¹µÃrank{b,Ab,¡­,An-1b}=n£¬¼´ÏµÍ³(A,b)Äܿء£ ¢Ü Èô¶àÊäÈëϵͳ(A,B)Äܿأ¬ÆäÖÐBÊÇn¡ÁpµÄp¡Ý2£¬Ôò¶Ô¼¸ºõÈÎÒâµÄpάÁÐÏòÁ¿¦Ñ£¬¹¹ÔìµÄµ¥ÊäÈëϵͳ(A,B¦Ñ)Äܿء£ ¢Ý Èô¶àÊäÈëϵͳ(A,B)Äܿأ¬ÆäÖÐBÊÇn¡ÁpµÄp¡Ý2£¬µ«A²»ÊÇÑ­»·¾ØÕó£¬Ôò¶Ô¼¸ºõÈÎÒâµÄp¡Án³£Öµ¾ØÕóK£¬A-BKÊÇÑ­»·¾ØÕó¡£ 2£® ״̬·´À¡¼«µãÅäÖõÄÌõ¼þ£º µ±Ãæ¶Ô¼«µãÅäÖõÄÈÎÎñʱ£¬ÓÉÓÚ²»Í¬µÄÐÔÄÜÖ¸±êÍùÍù¶ÔÓ¦²»Í¬µÄ¼«µã£¬Òò´Ë£¬ÆÚÍûÄܹ»¶Ô±Õ»·¼«µã½øÐÐÈÎÒâÅäÖÃÊÇ×ÔÈ»µÄÒªÇó¡£ÕâÀïµÄ¡°ÈÎÒ⡱£¬Ò²²»ÊǾø¶ÔµÄ£¬¾ßÌ庬ÒåÈçÏ£º ¢Ù ÆÚÍû¼«µãÖеĸ´Êý±ØÐëÒÔ¹²éîµÄÐÎʽ³É¶Ô³öÏÖ¡£ ¢Ú ¼«µãµÄʵ²¿ºÍÐ鲿µÄÊýÖµÈÎÒâ¡£ ¢Û ¼«µãµÄ´úÊýÖØÊýÈÎÒâ¡£ ¢Ü ÈÎºÎÆÚÍû¼«µãµÄ¼¸ºÎÖØÊý²»µÃ³¬¹ý¿ØÖÆÊäÈëµÄάÊý£¬·ñÔò±Õ»·ÏµÍ³²»Äܿأ¬¿ª»·ÏµÍ³×ÔȻҲ¾Í²»Äܿء£ÀýÈç°ÑÒ»¸öÄܿصĵ¥ÊäÈën(n¡Ý2)½×ϵͳµÄ¼«µãÅäÖÃΪ1£¬¼¸ºÎÖØÊýÊÇn£¬ÕâÊÇ×ö²»µ½µÄ¡£ ϵͳx¡¤(t)=Ax(t)+Bu(t) y(t)=Cx(t)¿ÉÓÉ״̬·´À¡u(t)=-Kx(t)+ÿðþ½›(t)ÈÎÒâÅäÖü«µãµÄ³ä·Ö±ØÒªÌõ¼þÊÇ£º ¸ÃϵͳÄܿء£ 3£® ״̬·´À¡¼«µãÅäÖÃËã·¨Ò»£º ±ê×¼ÐÍ·¨¡£Õâ¸öËã·¨µÄǰÌáÌõ¼þÊÇ£¬ÏµÍ³ÍêÈ«Äܿأ» ºËÐÄ˼ÏëÊÇ£¬ÏµÍ³¼«µãºÍÌØÕ÷¶àÏîʽ(¼°ÆäϵÊý)Ò»Ò»¶ÔÓ¦£¬´Ó¶ø£¬¿ÉÒÔͨ¹ýÅäÖÃÌØÕ÷¶àÏîʽϵÊýÀ´ÅäÖü«µã¡£ ÏÖ´ú¿ØÖÆÀíÂÛϰÌâÏê½âÓëÆÀ×¢ µÚ5ÕÂÏßÐÔϵͳµÄ·´À¡¿ØÖÆ ¼«µãÅäÖÃËã·¨£º µÚ1²½£¬¼ìÑéϵͳx¡¤(t)=Ax(t)+Bu(t)ÊÇ·ñÄܿء£ÈôÊÇ£¬½øÐÐÏÂÒ»²½£» Èô·ñËã·¨ÖÕÖ¹¡£ µÚ2²½£¬Çó½â±ä»»¾ØÕóP£¬ÒÔ¼°=01 ¦óª÷ 01 -a0-a1¡­-an-1,b¡¤=0 ¦ó 0 1¡£ µÚ3²½£¬°´ÕÕʽ fª³(s)=(s-¦Ëª³1)¡Á(S-¦Ë*2)¡Á¡­¡Á(s-¦Ëª³n) =sn+aª³n-1sn-1+¡­+aª³1s+aª³0 ¼ÆËãÆÚÍû¼«µã¶ÔÓ¦µÄÌØÕ÷¶àÏîʽ¡£ µÚ4²½£¬°´ÕÕʽ k-=£Ûaª³0-a0aª³1-a1¡­aª³n-1-an-1£Ý ¼ÆËãµÃµ½ÐÐÏòÁ¿k-¡£ µÚ5²½£¬¼ÆËãk=k-P£¬µÃËùÇóµÄ״̬·´À¡ÔöÒæÏòÁ¿¡£ ¶ÔÓÚÄܿصĶàÊäÈëϵͳ£¬¸ù¾ÝÑ­»·¾ØÕóµÄÐÔÖʢݺ͢ܣ¬×Ü¿ÉÒÔ°Ñ״̬·´À¡¼«µãÅäÖÃÎÊÌâת»¯Îªµ¥ÊäÈëµÄÇéÐΣ¬µÃµ½·´À¡ÔöÒæ¾ØÕóK¡£ 4£® ״̬·´À¡¼«µãÅäÖÃËã·¨¶þ£º ÌØÕ÷¶àÏîʽ·¨¡£Õâ¸öËã·¨µÄǰÌáÌõ¼þºÍ±ê×¼ÐÍ·¨Ïàͬ£¬Ò²ÊÇϵͳÍêÈ«Äܿأ» ºËÐÄ˼ÏëÊÇ£¬½è¼ø±ê×¼ÐÍ·¨²¢ÀûÓÃCayleyª²Hamilton¶¨Àí½øÐиĽø£¬×îÖÕÓÃÄÜ¿ØÐÔÅбð¾ØÕóºÍÆÚÍû±Õ»·¶àÏîʽ¹¹Ôì³ö״̬·´À¡ÔöÒæ¡£ ¼«µãÅäÖÃËã·¨£º µÚ1²½£¬¼ìÑéϵͳx¡¤(t)=Ax(t)+bu(t)ÊÇ·ñÄܿء£ÈôÊÇ£¬Ôò½øÐÐÏÂÒ»²½£» Èô·ñ£¬ÔòËã·¨ÖÕÖ¹¡£ µÚ2²½£¬°´ÕÕʽp1=£Û0¡­01£Ý£ÛbAb¡­An-1b£Ý-1¼ÆËãµÃµ½ÐÐÏòÁ¿p1¡£ µÚ3²½£¬°´ÕÕʽ fª³(s)=(s-¦Ëª³1)¡Á¡­¡Á(s-¦Ëª³n) =sn+aª³n-1sn-1+¡­+aª³1s+aª³0 ¼ÆËãÆÚÍû¼«µã¶ÔÓ¦µÄÌØÕ÷¶àÏîʽfª³(s)¡£ µÚ4²½£¬°´ÕÕʽ k=p1£Û(aª³0En+aª³1A+¡­+aª³n-1An-1+An)- (a0En+a1A+¡­+an-1An-1+An)£Ý =p1fª³(A) ¼ÆËãµÃÐÐÏòÁ¿k-¡£ 5£® ״̬·´À¡¼«µãÅäÖÃËã·¨Èý£º ¾ØÕ󷽳̷¨¡£Õâ¸öË㷨ͬʱÊÊÓÃÓÚµ¥ÊäÈëºÍ¶àÊäÈëϵͳ¡£Ç°ÌáÌõ¼þÊÇ£º µÚÒ»£¬ÏµÍ³Äܿأ» µÚ¶þ£¬ÆÚÍûµÄ±Õ»·¼«µãºÍ¿ª»·¼«µãûÓÐÖØ¸´¡£ºËÐÄ˼ÏëÊÇ£º ÀûÓÃÏàËÆ¾ØÕóÌØÕ÷ֵϵͳµÄÔ­Àí½¨Á¢¾ØÕó·½³Ì(±¾ÖÊÊÇÏßÐÔ·½³Ì×é)£¬ÔÙÓÉ·½³ÌµÄ½â¹¹Ôì³ö״̬·´À¡ÔöÒæ¾ØÕó¡£ Ëã·¨²½ÖèÈçÏ£º µÚ1²½£¬¼ìÑéϵͳx¡¤(t)=Ax(t)+Bu(t)ÊÇ·ñÄܿء£ÈôÊÇ£¬Ôò½øÐÐÏÂÒ»²½£» Èô·ñ£¬ÔòËã·¨ÖÕÖ¹¡£ µÚ2²½£¬¼ìÑé¦Ëª³1,¦Ëª³2£¬¡­,¦Ëª³nÊÇ·ñΪ¾ØÕóAµÄÌØÕ÷Öµ¡£¿Éͨ¹ýÅжÏA-¦Ëª³iEnµÄÖÈÊÇ·ñµÈÓÚnÀ´½øÐС£Èô¦Ëª³1,¦Ëª³2£¬¡­,¦Ëª³n¶¼²»ÊÇAµÄÌØÕ÷Öµ£¬Ôò½øÐÐÏÂÒ»²½£» Èô·ñ£¬ÔòËã·¨ÖÕÖ¹¡£ µÚ3²½£¬Ñ¡È¡n½×ʵÊý¾ØÕóH£¬Ê¹ÆäÌØÕ÷ֵΪÆÚÍû¼«µã¦Ëª³1,¦Ëª³2£¬¡­,¦Ëª³n¡£Èç¿É°´ÕÕ fª³(s)=(s-¦Ëª³1)¡Á¡­¡Á(s-¦Ëª³n) =sn+aª³n-1sn-1+¡­+aª³1s+aª³0 ¼ÆËãÆÚÍûÌØÕ÷¶àÏîʽ£¬ÔÙ½¨Á¢°é¾ØÕóÐÎʽµÄH¡£ µÚ4²½£¬Ñ¡È¡p¡Án¾ØÕó£¬Ê¹µÃϵͳ(,H)Äܹ۲⡣ µÚ5²½£¬Çó½â¹ØÓÚδ֪n¡Án¾ØÕóTµÄ¾ØÕó·½³Ì AT-TH=B µÚ6²½£¬ÈôϵͳΪµ¥ÊäÈ룬½øÐÐÏÂÒ»²½£» ÈôϵͳΪ¶àÊäÈ룬µ«T¿ÉÄæ£¬½øÐÐÏÂÒ»²½£» ·ñÔò£¬·µ»ØµÚ4²½£¬Ñ¡È¡ÁíÒ»¸öÂú×ã(,H)Äܹ۲âµÄ¡£ µÚ7²½£¬¼ÆËãK= T-1£¬¼´ËùÇóµÄ״̬·´À¡ÔöÒæ¾ØÕó¡£ 6£® ״̬·´À¡¼«µãÅäÖÃËã·¨ËÄ£º ´ý¶¨²ÎÊý·¨¡£Õâ¸öËã·¨µÄǰÌáÌõ¼þÊÇ£º ¿ØÖƾØÕóµÄÖÈÊÇ1£¬Òò´ËÖ÷ÒªÕë¶Ôµ¥ÊäÈëϵͳ£» ºËÐÄ˼ÏëÊÇ£º °Ñ״̬·´À¡ÔöÒæÏòÁ¿µÄ·ÖÁ¿ÊÓΪ´ý¶¨²ÎÊý£¬¼ÆËãϵͳµÄÌØÕ÷¶àÏîʽ¡£Õâ¸ö¶àÏîʽµÄϵÊý±ØÈ»ÒÀÀµ¿ØÖƲÎÊý¡£°ÑÕâ¸ö¶àÏîʽºÍÆÚÍû¼«µã¶ÔÓ¦µÄÌØÕ÷¶àÏîʽ×÷±È½Ï£¬¼´¶ÔÓ¦ÏîϵÊýÏàµÈ£¬½¨Á¢¹ØÓÚ¿ØÖƲÎÊýµÄ·½³Ì×飬½ø¶ø½âµÃ¿ØÖƲÎÊý¡£ ¿¼Âǵ¥ÊäÈëÏßÐÔ¶¨³£¿ØÖÆÏµÍ³ x¡¤(t)=Ax(t)+bu(t) x(t)ÊÇnά״̬ÏòÁ¿£¬u(t)ÊDZêÁ¿¿ØÖÆÊäÈë¡£¸ø¶¨n¸öÆÚÍûµÄ±Õ»·ÏµÍ³¼«µã {¦Ëª³1,¦Ëª³2£¬¡­,¦Ëª³n} Çó·´À¡ÔöÒæÏòÁ¿k=£Ûk1k2¡­kn£Ý¶ÔÓ¦µÄ״̬·´À¡¿ØÖÆÂÉ u(t)=-kx(t)+ÿðþ½›(t) ʹµÃÏàÓ¦µÄ±Õ»·ÏµÍ³ x¡¤(t)=(A-bk)x(t)+bÿðþ½›(t) ¾ßÓм«µã{¦Ëª³1,¦Ëª³2,¡­,¦Ëª³n}¡£ ±Õ»·ÏµÍ³¾ØÕó(A-bk)µÄÌØÕ÷¶àÏîʽΪ f(s,k)=det£ÛsE-(A-bk)£Ý=sn+an-1(k)sn-1+¡­+a1(k)s+a0(k) ÆäÖÐa0(k),a1(k),¡­,an-1(k)¶¼ÊǹØÓÚk1,k2,¡­,knµÄº¯Êý¡£ ÆÚÍûµÄ±Õ»·ÏµÍ³¼«µã{¦Ëª³1,¦Ëª³2,¡­,¦Ëª³n}¶ÔÓ¦µÄÆÚÍûÌØÕ÷¶àÏîʽΪ fª³(s)=(s-¦Ëª³1)¡Á(s-¦Ëª³2)¡Á¡­¡Á(s-¦Ëª³n) =sn+aª³n-1sn-1+¡­+aª³1s+aª³0 {¦Ëª³1,¦Ëª³2,¡­,¦Ëª³n}Ϊ±Õ»·ÏµÍ³µÄ¼«µãµ±ÇÒ½öµ±f(s,k)=fª³(s)£¬¼´¶ÔÓ¦ÏîϵÊýÏàͬ¡£ÓÚÊǵ÷½³Ì×é a0(k)=aª³0,a1(k)=aª³1,¡­,an-1(k)=aª³n-1 Çó½âÕâ¸ö¹ØÓÚk1,k2,¡­,kn·½³Ì×飬½ø¶øµÃµ½¿ØÖƲÎÊý¡£ Õâ¸ö·½·¨²»ÐèҪϵͳÄܿصÄǰÌᣬ¶ÔÆÚÍû¼«µãºÍ¿ª»·¼«µãҲûÓÐÒªÇ󣬷´À¡ÔöÒæÎ¨Ò»È¡¾öÓÚ·½³Ì×é½âµÄÇé¿ö£¬¼´Î¨Ò»½â¡¢ÎÞ½âºÍÎÞÇî¶à½âµÈÇé¿ö¡£ ÓÉʽf(s,k)µÄÐÐÁÐʽ¼ÆËã¿ÉÖª£¬a0(k),a1(k),¡­,an-1(k)¶¼ÊǹØÓÚk1,k2,¡­,knµÄ¶àÏîʽ£¬¶ø¶àÏîʽµÄ×î¸ß´ÎÊýµÈÓÚ¿ØÖƾØÕóµÄÖÈ¡£Òò´Ë£¬Ö»Óе±ÏµÍ³Îªµ¥ÊäÈë»ò¿ØÖƾØÕóÖÈΪ1µÄʱºò£¬ËùµÃ·½³Ì×é²ÅÊÇÏßÐԵġ£·ñÔò£¬¶àÏîʽϵÊý¶Ô±Èºó£¬±ØÈ»µÃµ½¶àÔª¸ß´Î·½³Ì×飬ÀíÂÛÉÏ¿ÉÒÔ²ÉÓýáʽ£¨resultant£©ÏûÔª·¨µÃµ½¾«È·½â£¬µ«¼ÆË㸴ÔӶȷdz£¸ß¡£×ܵÄ˵À´£¬¶àÔª¸ß´Î·½³Ì×éûÓÐÓÐЧ½â·¨¡£ 7£® »ùÓÚ״̬·´À¡ºÍÊäÈë·ÇÆæÒì±ä»»µÄÊäÈëÊä³ö½âñî¡£¿¼ÂǶàÊäÈ몲¶àÊä³öÏßÐÔ¶¨³£¿ØÖÆÏµÍ³ x¡¤(t)=Ax(t)+Bu(t) y(t)=Cx(t) x(t)ÊÇnά״̬ÏòÁ¿£¬u(t)ÊÇlά¿ØÖÆÏòÁ¿£¬y(t)ÊÇmά¿ØÖÆÏòÁ¿¡£ ҪʵÏÖϵͳ½âñÐèÒª¶Ôϵͳ¸½¼ÓÒÔÏÂÈý¸öÌõ¼þ¡£ (1) ϵͳÊäÈëÊä³öάÊýÏàµÈ£¬¼´l=m£¬ÇÒrankB=rankC=m£¬¼´ÊäÈë¾ØÕóºÍÊä³ö¾ØÕó·Ö±ðÊÇÁÐÏßÐÔÎ޹غÍÐÐÏßÐÔÎ޹ء£ Èç¹ûÊäÈë¾ØÕóÁÐÏßÐÔÏà¹Ø£¬Ôò˵Ã÷¸öÊäÈë·ÖÁ¿Ö®¼ä²»ÊÇÏßÐÔ¶ÀÁ¢µÄ£¬Òò´ËÓÐЩÊäÈë·ÖÁ¿¿ÉÒÔÓÉÆäÓà·ÖÁ¿µÄÏßÐÔ×éºÏ´úÌæ¡£ (2) ¿ØÖÆÂɲÉÓÃÕûÌå·´À¡ºÍÊäÈë±ä»»Ïà½áºÏµÄ·½Ê½£¬¼´ u(t)=-Fx(t)+Rÿðþ½›(t) ÆäÖÐÿðþ½›(t)ÊÇеÄmά¿ØÖÆÊäÈëÏòÁ¿£¬RÊÇm¡ÁmµÄÊäÈë±ä»»¾ØÕó£¬FÊÇm¡ÁnµÄ״̬·´À¡ÔöÒæ¾ØÕ󡣿ØÖÆÂɼò¼ÇΪ{F,R}£¬Óë±»¿ØÏµÍ³¹¹³ÉµÄ±Õ»·ÏµÍ³Îª x¡¤(t)=(A-BF)x(t)+BRÿðþ½›(t) y(t)=Cx(t) (3) ÊäÈë±ä»»¾ØÕóR¿ÉÄæ¡£·ñÔòÊäÈë¾ØÕóBR²»ÊÇÁÐÏßÐÔÎ޹ص쬲»·ûºÏ(1)£¬µ¼ÖÂÉè¼ÆÎÞ·¨½øÐС£ ±Õ»·ÏµÍ³µÄ´«µÝº¯Êý¾ØÕóÊÇ GC(s)=C(sEn-A+BF)-1BR Èô´æÔÚ¿ØÖÆÂɼ´¾ØÕó¶Ô{F,R}£¬Ê¹µÃ GC(s)=g11(s) ª÷ gmm(s) ¼´Îª¶Ô½Ç¾ØÕó£¬ÇÒgmm(s)¡Ù0£¬Ôò³ÆÏµÍ³ÊǿɽâñîµÄ¡£ 8£® ¿É½âñîÌõ¼þºÍ¿ØÖÆÂÉÉè¼Æ¡£²½ÖèÈçÏ£º µÚ1²½£¬°´ÕÕ ¦Ái=min{kciAk-1B¡Ù0,1¡Ük¡Ün} n,ciArB¡Ù0,r=0,1,¡­,n-1 ¼ÆËã½âñî½×³£Êý{¦Á1,¦Á2,¡­,¦Ám}£» µÚ2²½£¬¼ÆËã½âñîÅбð¾ØÕó D=c1A¦Á1-1B ¦ó cmA¦Ám-1B µÚ3²½£¬Èô¾ØÕóD²»¿ÉÄæ£¬Ôò²»ÄÜʵÏÖ½âñ Èô¾ØÕóD¿ÉÄæ£¬Ôò¿ÉÒÔʵÏÖ½âñÇÒ½âñî¿ØÖÆÂÉΪ u(t)=-D-1c1A¦Á1 ¦ó cmA¦Ámx(t)+D-1ÿðþ½›(t) ÇÒ½âñîºóµÄϵͳ´«µÝº¯ÊýΪ GC(s)=1s¦Á1 ª÷ 1s¦Ám ÔÚʵÏÖ½âñî¿ØÖÆµÄͬʱ£¬Ê¹µÃÿ¸öÊä³ö·ÖÁ¿yi(t)ÊǶÔÓ¦ÊäÈë·ÖÁ¿vi(t)µÄ¦Ái½×»ý·Ö¡£Òò´Ë³ÆÎª»ý·ÖÐͽâñîϵͳ¡£ 9£® ½áºÏ¼«µãÅäÖõĽâñî¿ØÖÆ¡£»ý·ÖÐͽâñîϵͳËäȻʵÏÖÁËÊäÈëÊä³öµÄ½âñµ«ÓÉÓÚϵͳ¼«µãΪ0£¬ÏÔÈ»²»ÄÜÂú×㶯̬ÐÔÄÜÒªÇó¡£ ÔÚ»ý·ÖÐͽâñîϵͳµÄ»ù´¡ÉÏ£¬½øÒ»²½¿¼ÂǼ«µãÅäÖ㬱ÈÈçÒªÇóµÚi¸öÊäÈ몲Êä³öÂú×ã yi(s)=1s¦Ái+¦Âi,¦Ái-1s¦Ái-1+¡­+¦Âi,1s+¦Âi,0vi(s) ÆäÖÐ fi(s)=s¦Ái+¦Âi,¦Ái-1s¦Ái-1+¡­+¦Âi,1s+¦Âi,0 ΪÆÚÍû¼«µã¶ÔÓ¦µÄÌØÕ÷¶àÏîʽ¡£Ò༴£¬ÒªÇó±Õ»·´«µÝº¯Êý¾ØÕóΪ C(s)=1f1(s) ª÷ 1fm(s) Éè¼Æ²½ÖèÈçÏ£º µÚ1²½£¬°´ÕÕ ¦Ái=min{k|ciAk-1B¡Ù0,1¡Ük¡Ün} n,ciArB¡Ù0,r=0,1,¡­,n-1 ¼ÆËã½âñî½×³£Êý{¦Á1,¦Á2,¡­,¦Ám}£» µÚ2²½£¬¼ÆËã½âñîÅбð¾ØÕó D=c1A¦Á1-1B ¦ó cmA¦Ám-1B µÚ3²½£¬Èô¾ØÕóD²»¿ÉÄæ£¬Ôò²»ÄÜʵÏÖ½âñ Èô¾ØÕóD¿ÉÄæ£¬Ôò¿ÉÒÔʵÏÖ½âñÇÒ½âñî¿ØÖÆÂÉΪ u(t)=-D-1=c1f1(A) c2f2(A) ¦ó cmfm(A)x(t)+D-1ÿðþ½›(t) ÇÒ½âñîºóµÄϵͳ´«µÝº¯ÊýΪ GC(s)=1f1(s) ª÷ 1fm(s) ÐèҪעÒâµÄÊÇ£¬ÆÚÍû¼«µãµÄÊýĿҪÊܵ½½âñî½×³£Êý{¦Á1,¦Á2,¡­,¦Ám}µÄÏÞÖÆ£¬ÕâÒ»µãÌåÏÖÔÚ yi(s)=1s¦Ái+¦Âi,¦Ái-1s¦Ái-1+¡­+¦Âi,1s+¦Âi,0vi(s) »òÕß fi(s)=s¦Ái+¦Âi,¦Ái-1s¦Ái-1+¡­+¦Âi,1s+¦Âi,0 ÖС£ 10£® ¿ª»·×´Ì¬¹Û²âÆ÷£º ÔÚϵͳ x¡¤(t)=Ax(t)+Bu(t),t¡Ý0 y(t)=Cx(t)ÖУ¬¼ÙÉèϵͳ¾ØÕóAµÄÌØÕ÷Öµ¶¼¾ßÓиºÊµ²¿¡£ÀûÓÃÆä²ÎÊýºÍÐźŹ¹ÔìÈçÏÂϵͳ x(t)=Ax-(t)+Bu(t) y-(t)=x-(t) ÆäÖÐx-(t)ÊÇ״̬ÏòÁ¿£¬Ô­ÏµÍ³µÄÊäÈëu(t)Êǹ۲âÆ÷ϵͳµÄÊäÈëÏòÁ¿£¬y-(t)Ϊ¿É²âÊä³öÏòÁ¿¡£ ¶ÔÓÚ¹Û²âÆ÷ϵͳµÄ״̬·½³ÌÀ´Ëµ£¬ËäÈ»Æäϵͳ¾ØÕó¡¢ÊäÈë¾ØÕóºÍԭϵͳÏàͬ£¬µ«ÏµÍ³³õ̬δ±ØÏàͬ£¬Òò´Ë¾Í״̬ÏòÁ¿¶øÑÔ²»ÄÜ˵ÊÇͬһϵͳ£» ÕâÀïÊä³öÏòÁ¿Ò²¾ÍÊÇ״̬ÏòÁ¿¡£×´Ì¬ÏòÁ¿Í¨¹ý¶Ô״̬·½³ÌµÄ»ý·Ö»ñµÃ£¬³õÖµ¿ÉÒÔÈËΪÉ趨¡£ ¿ª»·¹Û²âÆ÷ÒªÇóԭϵͳ¾ØÕóAµÄÌØÕ÷Öµ¶¼¾ßÓиºÊµ²¿£¬ÓÐʱ²¢²»Âú×㣻 ¼´±ãÂú×㣬״̬½¥½ü¹Û²âµÄ¶¯Ì¬¹ý³Ì(Ò²ÓпìËÙÐÔºÍÆ½ÎÈÐÔµÈÒªÇó)ÍêÈ«ÓɾØÕóA¾ö¶¨£¬ÏÔÈ»ÎÞ·¨µ÷½Ú¡£ 11£® ϵͳx¡¤(t)=Ax(t)+Bu(t),t¡Ý0 y(t)=Cx(t)µÄ±Õ»·¹Û²âÆ÷ÊÇ x(t)=Ax-(t)+Bu(t)-L£ÛCx-(t)-y(t)£Ý y-(t)=x-(t) »òÕߵȼ۵ÄÐÎʽ x(t)=(A-LC)x-(t)+Bu(t)+Ly(t) y-(t)=x-(t) ÆäÖÐx-(t)ÊÇ״̬ÏòÁ¿£¬Ô­ÏµÍ³µÄÊäÈëu(t)¡¢Êä³öy(t)¶¼Êǹ۲âÆ÷ϵͳµÄÊäÈëÏòÁ¿£¬y-(t)Ϊ¿É²âÊä³öÏòÁ¿¡£ ´ý¶¨¾ØÕóL³ÆÎª¹Û²âÆ÷ÔöÒæ¾ØÕ󣬾ØÕó(A-LC)Êǹ۲âÆ÷µÄϵͳ¾ØÕ󣬯äÌØÕ÷Öµ³ÆÎª¹Û²âÆ÷¼«µã¡£ ¹Û²âÆ÷ϵͳµÄ״̬ÏòÁ¿Í¨¹ý¶Ô״̬·½³ÌµÄ»ý·Ö»ñµÃ£¬³õʼ״̬ͨ³£È¡Îªx-(0)=0¡£ Ó뿪»·¹Û²âÆ÷Ïàͬ£¬Êä³ö·½³Ìͨ³£²¢²»Ã÷È·Áгö¡£µ«±ØÐë×¢Ò⣬Êä³ö·½³ÌÖÐx-(t)Ç°ÃæÃ»ÓоØÕóC£¬·ñÔòy-(t)=Cx-(t)£¬²»¿ÉÄÜÊÇx(t)µÄ½¥½ü¹Û²â£¬ÒòΪάÊý¶¼²»Ò»Ñù¡£ ¿ÉÒÔͨ¹ýѡȡ¹Û²âÆ÷ÔöÒæ¾ØÕóLÈÎÒâÅäÖù۲âÆ÷¼«µãµÄ³ä·Ö±ØÒªÌõ¼þÊÇ£º ԭϵͳÄܹ۲⡣ ͬʱ£¬¾ØÕó(A-LC)µÄ¼«µãÅäÖ㬿ÉÒÔ²ÎÕÕϵͳ(AT,CT)µÄ״̬·´À¡¼«µãÅäÖÃÀ´½øÐд¦Àí£» ¶ÔÓÚµ¥Êä³öϵͳ£¬ÈôÑ¡Óôý¶¨²ÎÊý·¨£¬Ôò²»Óÿ¼ÂǶÔżºÍ¾ØÕó¡¢ÏòÁ¿µÄתÖᣠҪעÒ⣬¹Û²âÆ÷¼«µã±ØÐëÈ«²¿¾ßÓиºÊµ²¿¡£¾ßÌåµÄ¼«µãλÖã¬Òª¿¼Âǽ¥½ü¹Û²âµÄ¿ìËÙÐÔ¡¢Æ½ÎÈÐÔµÈÒªÇó¡£ ±Õ»·¹Û²âÆ÷Ò²³ÆÎª»ù±¾¹Û²âÆ÷¡£ÏÔÈ»£¬Óëϵͳ´úÊýµÈ¼ÛµÄϵͳ¶¼¿ÉÒÔ×÷Ϊ¹Û²âÆ÷¡£ 12£® ½µÎ¬±Õ»·×´Ì¬¹Û²âÆ÷Ç°Ãæ½²µÄ¿ª»·¹Û²âÆ÷ºÍ±Õ»·¹Û²âÆ÷£¬×÷Ϊ¶¯Ì¬ÏµÍ³Æä½×´Î¶¼ÓëԭϵͳÏàͬ£¬³ÆÎªÈ«Î¬(full order)״̬¹Û²âÆ÷¡£ÕýÈçÔÚ¹Û²âÆ÷Ò»°ã¸ÅÄîÖÐÌáµ½µÄ£¬Ä³Ð©×´Ì¬±äÁ¿¿ÉÒÔͨ¹ýÊä³öÖ±½ÓµÃµ½¡£ÀýÈ磬ÈçÊä³ö·½³ÌÊÇy(t)=x1(t)£¬Ôò״̬±äÁ¿x1(t)¾Í²»±ØÍ¨¹ý½¥½ü¹À¼Æ»ñÈ¡ÁË£¬Ö»ÐèÒª°ÑÊä³ö·½³Ì²»ÄÜÖ±½ÓÌṩµÄ״̬±äÁ¿¹À¼Æ³öÀ´¾Í¿ÉÒÔÁË¡£Õâ¾ÍÊÇËùν½µÎ¬(reduced order)״̬¹Û²âÆ÷µÄ»ù±¾Ë¼Ïë¡£ ½µÎ¬×´Ì¬¹Û²âÆ÷¼õÉÙÁ˹۲âÆ÷Öлý·ÖÆ÷µÄÊýÄ¿£¬½µµÍÁ˸´ÔӶȺͳɱ¾£¬Ìá¸ßÁ˿ɿ¿ÐÔ¡£ 13£® ·ÖÀëÔ­Àí£º ¿¼ÂÇÏßÐÔ¶¨³£¿ØÖÆÏµÍ³ x¡¤(t)=Ax(t)+Bu(t) y(t)=Cx(t) ºÍ״̬·´À¡¿ØÖÆÂÉ u(t)=-Kx(t)+ÿðþ½›(t) x(t)ÊÇnά״̬ÏòÁ¿£¬u(t)ÊÇpά¿ØÖÆÏòÁ¿£¬y(t)ÊÇqάÊä³öÏòÁ¿£¬ÿðþ½›(t)ÊÇеÄpά¿ØÖÆÏòÁ¿£¬KÊÇ״̬·´À¡ÔöÒæ¡£±Õ»·ÏµÍ³ÊÇ x¡¤(t)=(A-BK)x(t)+Bÿðþ½›(t) y(t)=Cx(t) Èô״̬ÏòÁ¿x(t)²»ÄÜ»ñȡʱ£¬¿¼Âǽ¨Á¢Æä»ù±¾×´Ì¬½¥½ü¹Û²âÆ÷ x(t)=(A-LC) x-(t)+Bu(t)+Ly(t) È»ºó¿ØÖÆÂɵ÷ÕûΪ u(t)=-Kx-(t)+ÿðþ½›(t) ¼´Óù۲âÆ÷x-(t)´úÌæÔ­ÏµÍ³×´Ì¬x(t)¡£ ¿ØÖÆÂÉu(t)=-Kx-(t)+ÿðþ½›(t)ºÍ±»¿ØÏµÍ³µÄ±Õ»·ÏµÍ³ÊÇ x¡¤(t) x(t)= A-BK LCA-BK-LCx(t) x-(t)+B Bv(t) y(t)=C0x(t) x-(t) ÒýÈë״̬µÄ¿ÉÄæ±ä»» x(t) x¡«(t)=En0 En-Enx(t) x-(t)=x(t) x(t)-x-(t) µÄ±ä»»ºóµÄ±Õ»·ÏµÍ³×´Ì¬¿Õ¼äÃèÊöΪ x¡¤(t) x(t)=A-BKBK 0A-LCx(t) x¡«(t)+B 0v(t) y(t)=C0x(t) x¡«(t) ±ä»»ºóµÄ״̬·½³Ì±íÃ÷£¬±Õ»·ÏµÍ³µÄ¼«µãÓÉϵͳx¡¤(t)=(A-BK)x(t)+Bv(t) y(t)=Cx(t)µÄ¼«µãºÍ¹Û²âÆ÷ x (t)=(A-LC)x-(t)+Bu(t)+Ly(t)µÄ¼«µã×é³É£¬¶øÇÒÕâÁ½×鼫µã»¥²»Ó°Ïì¡£Õâ¾ÍÊÇ·ÖÀëÔ­Àí¡£ ÀûÓ÷ÖÀëÔ­Àí¿ÉÒÔ·Ö±ðÉè¼ÆÏµÍ³µÄ¿ØÖÆÓû¹Û²âÎÊÌâ¡£ÏȰ´ÕÕ±Õ»·¶¯Ì¬ÒªÇó£¬È·¶¨A-BKµÄ¼«µãºÍK£¬ÔÙ°´ÕÕ״̬¹Û²âµÄ¶¯Ì¬ÒªÇóÈ·¶¨A-LCµÄ¼«µãºÍ¹Û²âÆ÷ÔöÒæ¾ØÕóL¡£ ÕâÀï·ÖÀëÔ­ÀíÊÇ´Ó»ù±¾¹Û²âÆ÷ÍÆµ¼µÄ¡£Êµ¼ÊÉÏ£¬¶ÔÓÚ½µÎ¬µÈÈκÎÒ»ÖÖ״̬¹Û²âÆ÷£¬·ÖÀëÔ­Àí¶¼³ÉÁ¢¡£ 14£® »ùÓÚ¹Û²âÆ÷·´À¡ÏµÍ³µÄ´«µÝº¯Êý¾ØÕó¿¼ÂǾ­¿ÉÄæ×´Ì¬±ä»»ºóµÄ±Õ»·ÏµÍ³×´Ì¬¿Õ¼äÃèÊö£¬Æä´«µÝº¯Êý¾ØÕóΪ GB(s)=C0sEn0 0En-A-BKBK 0A-LC-1B 0 =C£ÛsEn-(A-BK)£Ý-1B ÕâÒ²ÕýÊDZջ·ÏµÍ³ x¡¤(t)=(A-BK)x(t)+Bÿðþ½›(t) y(t)=Cx(t)µÄ´«µÝº¯Êý¾ØÕó¡£ Ï°Ìâ¡¢½â´ðÓëÆÀ×¢ 5£®1ÅжÏÏÂÁÐϵͳÄÜ·ñÓÃ״̬·´À¡ÈÎÒâµÄÅäÖÃÌØÕ÷Öµ¡£ (1) x¡¤=12 31x+1 0u (2) x¡¤=100 0-21 00-2x+10 01 00u ½â(1) UC=bAb=11 03£¬rankUC=2£¬ÏµÍ³ÍêÈ«Äܿأ¬ËùÒÔ¿ÉÒÔÓÃ״̬·´À¡ÈÎÒâÅäÖÃÌØÕ÷Öµ¡£ (2) UC=bAbA2b=101010 010-204 000000£¬rankUC=2<3£¬ÏµÍ³²»ÍêÈ«Äܿأ¬ËùÒÔ²»ÄÜͨ¹ý״̬·´À¡ÈÎÒâÅäÖÃÌØÕ÷Öµ¡£ ÆÀעϵͳµÄÍêÈ«ÄÜ¿ØÐÔÊÇͨ¹ý״̬·´À¡ÈÎÒâÅäÖü«µãµÄ³äÒªÌõ¼þ¡£ 5£®2ÒÑ֪ϵͳ x¡¤1=x2 x¡¤2=x3 x¡¤3=-x1-x2-x3+3u ÊÔÈ·¶¨ÏßÐÔ״̬·´À¡¿ØÖÆÂÉ£¬Ê¹±Õ»·¼«µã¶¼ÊÇ-3£¬²¢»­³ö±Õ»·ÏµÍ³µÄ½á¹¹Í¼¡£ ½â¸ù¾ÝÌâÒ⣬ÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+3)3=s3+9s2+27s+27 °Ñ״̬·½³ÌдΪ x¡¤= 010 001 -1-1-1x+ 0 0 3 u Áîu=-£Ûk1k2k3£Ýx£¬²¢´úÈëϵͳµÄ״̬·½³Ì£¬¿ÉµÃ x¡¤=010 001 -1-3k1-1-3k2-1-3k3x ÌØÕ÷¶àÏîʽΪ¦Á(s)=s3+(1+3k3)s2+(1+3k2)s+(1+3k1)£¬Í¨¹ý±È½ÏϵÊýµÃ 1+3k3=9,1+3k2=27,1+3k3=27 ½âµÃ k1=263£¬k2=263£¬k1=83 ÓÚÊÇ u=-26326383x ±Õ»·ÏµÍ³µÄ½á¹¹Í¼ÈçÏ ͼ5£®1״̬·´À¡Ïà¹ØÅäÖýṹͼ 5£®3¸ø¶¨ÏµÍ³µÄ´«µÝº¯ÊýΪ G(s)=1s(s+4)(s+8) ÊÔÈ·¶¨ÏßÐÔ״̬·´À¡ÂÉ£¬Ê¹±Õ»·¼«µãΪ-2£¬-4£¬-7¡£ ½â¸ù¾ÝÌâÒ⣬ÀíÏëÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+2)(s+4)(s+8)=s3+13s2+50s+56 ÓÉ´«µÝº¯Êý G(s)=1s(s+4)(s+8)=1s3+12s2+32s ¿Éд³öԭϵͳµÄÄܿرê×¼ÐÍ x¡¤= 010 001 0-32-12x+ 0 0 1 u Áîu=-k1k2k3x£¬²¢´úÈëԭϵͳµÄ״̬·½³Ì£¬¿ÉµÃ x¡¤=010 001 -k1-32-k2-12-k3x ÆäÌØÕ÷¶àÏîʽΪ ¦Á(s)=s3+(12+k3)s2+(32+k2)s+3k1 ͨ¹ý±È½ÏϵÊýµÃ k1=56,32+k2=50,12+k3=13 ÓÚÊǵõ½¿ØÖÆÂÉ u=-56181x ÆÀ×¢ÌâÄ¿¸ø¶¨´«µÝº¯ÊýÒªÇó״̬·´À¡ÅäÖü«µã¡£ÎªÁ˽â¾ö״̬±äÁ¿µÄ´æÔÚÎÊÌ⣬Ϊ´Ë¿ÉÒÔ½¨Á¢ÈÎÒâÓë´«µÝº¯Êý¶ÔÓ¦µÄ״̬·½³Ì¡£ÓÉÓÚ²»Éæ¼°Êä³ö£¬Òò´ËÊä³ö·½³ÌûÓÐÁгö¡£ 5£®4¸ø¶¨µ¥ÊäÈëÏßÐÔ¶¨³£ÏµÍ³Îª£º x¡¤=000 1-60 01-12x+1 0 0u ÊÔÇó³ö״̬·´À¡u=-kx£¬Ê¹µÃ±Õ»·ÏµÍ³µÄÌØÕ÷ֵΪ¦Ë*1=-2,¦Ë*2=-1+j,¦Ë*3=-1-j¡£ ½âÒ×֪ϵͳΪÍêÈ«Äܿأ¬¹ÊÂú×ã¿ÉÅäÖÃÌõ¼þ¡£ÏµÍ³µÄÌØÕ÷¶àÏîʽΪ det(sE-A)=dets00 -1s+60 0-1s+12=s2+18s2+72s ½ø¶ø¼ÆËãÆÚÍûÌØÕ÷¶àÏîʽ ¦Á*(s)=¡Çsi=1(s-¦Ë*i)=(s+2)(s+1-j)(s+1+j)=s3+4s2+6s+4 ÓÚÊÇ£¬¿ÉÇóµÃ k-=£Û¦Á*0-¦Á0¦Á*1-¦Á1¦Á*2-¦Á2£Ý=£Û4-66-14£Ý ÔÙÀ´¼ÆËã±ä»»Õó P=bAbA2b¦Á1¦Á21 ¦Á210 100 =100 01-6 00172181 1810 100=72181 1210 100 ÆäÄæ¾ØÕó Q=P-1=001 01-12 1-18144 ´Ó¶ø£¬ËùҪȷ¶¨µÄ·´À¡ÔöÒæÕók¼´Îª k=k-Q=4-66-14001 01-12 1-18144=-14186-1220 ÆÀ×¢Èô±»¿ØÏµÍ³²»ÊÇÄܿرê×¼ÐÍ£¬¾ÍÒªÒýÈë±ä»»k=k-Q¡£ 5£®5¸ø¶¨ÏµÍ³µÄ´«µÝº¯ÊýΪ G(s)=(s-1)(s+2)(s+1)(s-2)(s+3) ÊÔÎÊÄÜ·ñÓÃ״̬·´À¡½«´«µÝº¯Êý±äΪ Gk(s)=s-1(s+2)(s+3)ºÍGk(s)=s+2(s+1)(s+3) ÈôÓпÉÄÜ£¬ÊÔ·Ö±ðÇó³ö״̬·´À¡ÔöÒæÕók£¬²¢»­³ö½á¹¹Í¼¡£ ½âµ±¸ø¶¨ÈÎÒâÒ»¸öÓÐÀíÕæ·Öʽ´«µÝº¯ÊýG(s)ʱ£¬¶¼¿ÉÒԵõ½ËüµÄÒ»¸öÄܿرê×¼ÐÍʵÏÖ£¬ÀûÓÃÕâ¸öÄܿرê×¼ÐÍ¿ÉÈÎÒâÅäÖñջ·ÏµÍ³µÄ¼«µã¡£ ¶ÔÓÚ´«µÝº¯ÊýG(s)=(s-1)(s+2)(s+1)(s-2)(s+3)£¬Ëù¶ÔÓ¦Äܿرê×¼ÐÍΪ x¡¤=010 001 65-2x+0 0 1u ÀûÓÃǰÊö¼«µãÅäÖ÷½·¨£¬Í¨¹ý״̬·´À¡u=-18215xÄܽ«¼«µãÅäÖÃΪ-2,-2,-3£¬´ËʱÁ㼫¶ÔÏûºó£¬Ëù¶ÔÓ¦µÄ±Õ»·´«µÝÊýΪGk(s)=s-1(s+2)(s+3)¡£Í¬Àí£¬Í¨¹ý״̬·´À¡u=-341xÄܽ«¼«µãÅäÖÃΪ1,-1,-3£¬´ËʱËù¶ÔÓ¦µÄ±Õ»·´«µÝº¯Êý¼´ÎªGk(s)=s-2(s+1)(s+3)¡£ ÆÀ×¢ÔÚϵͳÍêÈ«ÄܿصÄǰÌáÏ£¬×´Ì¬·´À¡¿ÉÒÔÈÎÒâ¸Ä±äϵͳµÄ¼«µã¡£Òò´Ë£¬Èôϵͳͬʱ¾ßÓÐÓÐÏÞÁãµã£¬Ôò״̬·´À¡¿ÉÒÔ¶ÔÈκÎÒÑÓÐÁãµãÔì³É¶ÔÏû£¬´Ó¶øÊÇϵͳ½µÎ¬¡£×´Ì¬·´À¡²»Ö±½Ó¸Ä±äÁãµã£¬µ«ÄÜͨ¹ý¸Ä±ä¼«µãÔì³ÉÁ㼫¶ÔÏû£¬»òÕß˵£¬×´Ì¬·´À¡Äܹ»¼ä½Ó¸Ä±äÁãµã¡£×´Ì¬·´À¡ÏÔÈ»²»ÄÜÔö¼ÓϵͳµÄÁãµã¡£ ¶ÔÓ¦µÄ±Õ»·ÏµÍ³½á¹¹Í¼·Ö±ðÈçͼ5.2ºÍͼ5.3Ëùʾ¡£ ͼ5£®2±Õ»·¼«µãΪ-2,-2,-3µÄ״̬·´À¡½á¹¹Í¼ ͼ5£®3±Õ»·¼«µãΪ1,-1,-3µÄ״̬·´À¡½á¹¹Í¼ 5£®6ÅжÏÏÂÁÐϵͳÄÜ·ñÓÃ״̬·´À¡ºÍÊäÈë±ä»»ÊµÏÖ½âñî¿ØÖÆ¡£ £¨1) G(s)=3s2+22s2+s+1 4s+1s2+2s+11s £¨2) x¡¤=310 00-1 01-1x+00 10 01u y=2-11 021x ½â (1) d1=min{2,2}-1=1£¬E1=32£¬d2=min{1,1}-1=0£¬E2=41£¬ E=E1 E2=32 41·ÇÆæÒ죬ËùÒÔÄÜÓÃ״̬·´À¡ºÍÊäÈë±ä»»ÊµÏÖ½âñî¿ØÖÆ¡£ (2) ÒòΪ c1B=2-1100 10 01=-11£¬c2B=02100 10 01=21 ËùÒÔd1=d2=0£¬E=E1 E2=-11 21¡£ÓÖÒòΪE·ÇÆæÒ죬ËùÒÔÄÜÓÃ״̬·´À¡ºÍÊäÈë±ä»»ÊµÏÖ½âñî¿ØÖÆ¡£ ÆÀ×¢ÅжÏÄÜ·ñʵÏÖÊäÈëÊä³ö½âñ¼È¿ÉÒÔ´Ó´«µÝº¯Êý³ö·¢Åжϣ¬Ò²¿ÉÒÔ´Ó״̬¿Õ¼äÃèÊö³ö·¢Åжϡ£ 5£®7¸ø¶¨ÏµÍ³µÄ״̬¿Õ¼ä±í´ïʽΪ x¡¤=010 230 111x+00 10 01u y=110 001x ϵͳÄÜ·ñÓÃ״̬·´À¡ºÍÊäÈë±ä»»ÊµÏÖ½âñÈôÄÜ£¬ÊÔ¶¨³öʵÏÖ»ý·ÖÐͽâñîµÄKºÍL¡£ ½âc1B=11000 10 01=10¡Ù00£¬d1=0£» c2B=00100 10 01=01¡Ù00£¬d2=0£» E=E1 E2=10 01 ËùÒÔ F1=c1A=110010 230 111=240 F2=c2A=001010 230 111=111 k=E-1F=240 111£¬L=E-1=10 01 ½âñî¿ØÖÆÂÉΪ u=-kx+Lÿðþ½›=-240 111x+ÿðþ½› 5£®8¸ø¶¨Ë«ÊäÈ몲˫Êä³öµÄÏßÐÔ¶¨³£ÊÜ¿ØÏµÍ³Îª x¡¤=0100 3002 0001 0-200x+00 10 00 01u y=1000 0010x ÊÔÅж¨¸ÃϵͳÓÃ״̬·´À¡ºÍÊäÈë±ä»»ÊµÏÖ½âñÈôÄÜ£¬ÊÔ¶¨³öʵÏÖ»ý·ÖÐͽâñîµÄºÍ¡£×îºó½«½âñîºó×ÓϵͳµÄ¼«µã·Ö±ðÅäÖõ½¦Ë*11=-2,¦Ë*12=-4ºÍ¦Ë*21=-2+j,¦Ë*22=-2-j¡£ ½âÒ×Öª£¬¸ÃϵͳÍêÈ«ÄÜ¿ØÄÜ¡£ (1) Åж¨ÄÜ·ñ½âñî¡£ÒòΪ c1B=100000 10 00 01=00 c1AB=10000100 3002 0001 0-200 00 10 00 01=10 c2B=0010 00 10 00 01=00 c2AB=00100100 3002 0001 0-20000 10 00 01=01 ÓÚÊÇ¿ÉÖªd1=1,d2=1£» E1=10,E2=01¡£ÒòΪE=E1 E2=10 01·ÇÆæÒ죬Òò´Ë¿É½øÐнâñî¡£ (2) µ¼³ö»ý·ÖÐͽâñîϵͳ¡£¼ÆËã E-1=10 01,F=c1A2 c2A2=3002 0-200 È¡ =E-1=10 01,=E-1F=3002 0-200 =A-BE-1F= 0100 0000 0001 0000,=BE-1=00 10 00 01 =C=1000 0010 £¨3) È·¶¨×´Ì¬·´À¡ÔöÒæ¾ØÕóK¡«¡£Áî K¡«=k10k1100 00k20k21 Ôò¿ÉµÃ -K¡«=01 -k10-k11 01 -k20-k21 ¶Ô½âñîºóµÄÁ½¸ö×Óϵͳ·Ö±ðÇó³öÆÚÍûÌØÕ÷¶àÏîʽ f*1(s)=(s+2)(s+4)=s2+6s+8 f*2(s)=(s+2-j)(s+2+j)=s2+4s+5 ½ø¶ø£¬¿ÉÇó³ök10=8,k11=6,k20=8,k21=4£¬´Ó¶ø K¡«=8600 0054 £¨4) È·¶¨ÊÜ¿ØÏµÍ³ÊµÏÖ½âñî¿ØÖÆºÍ¼«µãÅäÖõĿØÖƾØÕó¶Ô{L,K} x¡¤=Ax+Bu =Ax+B(Lv-Kx) =Ax-BKx+BLv =Ax-BKx+BL(v--K¡«x) =Ax+B(Lv--Kx-LK¡«x) =Ax+B(Lv--(K+LK¡«)x) =L=E-1=10 01 =E-1F+E-1K¡«=F+K¡«=11602 0-254 £¨5) È·¶¨³ö½âñîºó±Õ»·ÏµÍ³µÄ״̬¿Õ¼ä·½³ÌºÍ´«µÝº¯Êý¾ØÕó x¡¤=(A-B)x+Bÿðþ½›=0100 -8-600 0001 00-5-4x+00 10 00 01ÿðþ½› y=Cx=1000 0010x ´«µÝº¯Êý¾ØÕóΪ GKL(s)=C(sE-A+B)-1B=1s2+6s+80 01s2+4s+5 5£®9¸ø¶¨ÏµÍ³µÄ״̬¿Õ¼ä±í´ïʽΪ x¡¤=-1-2-3 0-11 10-1x+2 0 1u y=110x (1) Éè¼ÆÒ»¸ö¾ßÓÐÌØÕ÷ֵΪ-3£¬-4£¬-5µÄȫά״̬¹Û²âÆ÷£» (2) Éè¼ÆÒ»¸ö¾ßÓÐÌØÕ÷ֵΪ-3£¬-4µÄ½µÎ¬×´Ì¬¹Û²âÆ÷£» (3) »­³ö½á¹¹Í¼¡£ ½â(1) ·½·¨1 det(sE-AT)=s+10-1 2s+10 3-1s+1=s3+3s2+6s+6 a1=3,a2=6£¬a3=6 ¹Û²âÆ÷µÄÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+3)(s+4)(s+5)=s3+12s2+47s+60 a*1=12£¬a*2=47£¬a*3=60 E¡«T=a*3-a3a*2-a2a*1-a1=54419 Q=CTATCT(AT)2CTa2a11 a110 100 =1-1-1 1-35 0-22631 310 100= 221 201 -4-20 P=Q-1=-182-22 -440 -4-4-4=-1414-14 12-120 121212 ET=E¡«TP=232-52-9 ״̬¹Û²âÆ÷µÄ״̬·½³ÌΪ x=(A-EC)x¡«+Bu+Ey =-1-2-3 0-11 10-1-11£®5 -2£®5 -9110x^+2 0 1u+11£®5 -2£®5 -9y =-12£®5-13£®5-3 2£®51£®51 109-1x^+2 0 1u+11£®5 -2£®5 -9y ·½·¨2 det£Û¦ËE-(A-EC)£Ý=det¦Ë ¦Ë ¦Ë--1-2-3 0-11 10-1+E1 E2 E3110 =det¦Ë+1+E12+E23 E2¦Ë+1+E2-1 E3-1E3¦Ë+1 =¦Ë3+(E1+E2+3)¦Ë2+(2E1-2E3+6)¦Ë+(2E1+2E2-4E3+6) ÓëÆÚÍûÌØÕ÷¶àÏîʽ±È½ÏϵÊýµÃ E1+E2=12 2E1-2E3+6=47 2E1+2E2-4E3+6=60 ½â·½³Ì×éµÃ ET=232-52-9 £¨2) Áîx-=Px=D cx=001 010 110x£¬ÔòÓÐ x1 x2=PAP-1x+Pbu=1112 2122 x-1 x-2-1-11 1-10 -2-1-1x-1 x-2+1 0 2u£¬ y=cP-1x=001x-1 x-2 ½µÎ¬¹Û²âÆ÷µÄÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+3)(s+4)=s2+7s+12 Éè=e-1 e-2£¬ÔòÓÐ(11-21)=-1-1 1-1-e-1 e-2-2-1= 2e-1-1e-1-1 2e-2+1e-2-1 ÓÚÊÇ detsE-11-21=dets-2e-11-e-1 -2e-2-1s-e-2+1 =s2+(2-2e-1-e-2)s+e-2-3e-1+2 ±È½ÏϵÊýÖªe-1=7,e-2=1£¬ÓÚÊǽµÎ¬×´Ì¬¹Û²âÆ÷µÄ·½³ÌΪ W¡¤=(11-21)W+1- 2u+ 12-22+11- 21y =136 30W+ -13 -2 u+105 22y (3) ±Õ»·ÏµÍ³½á¹¹Í¼Èçͼ5.4ºÍͼ5.5Ëùʾ¡£ ͼ5£®4ȫά״̬¹Û²âÆ÷½á¹¹Í¼ ͼ5£®5½µÎ¬×´Ì¬¹Û²âÆ÷½á¹¹Í¼ 5£®10¸ø¶¨ÏµÍ³µÄ´«µÝº¯ÊýΪ G(s)=1s(s+1)(s+2) £¨1) È·¶¨Ò»¸ö״̬·´À¡ÔöÒæÕók£¬Ê¹±Õ»·ÏµÍ³µÄ¼«µãΪ-3ºÍ-12¡Àj32£» £¨2) È·¶¨Ò»¸öȫά״̬¹Û²âÆ÷£¬²¢Ê¹¹Û²âÆ÷µÄÌØÕ÷ֵΪ-5£» £¨3) È·¶¨Ò»¸ö½µÎ¬×´Ì¬¹Û²âÆ÷£¬²¢Ê¹ÆäÌØÕ÷ֵΪ-5£» £¨4) ·Ö±ð»­³ö±Õ»·ÏµÍ³µÄ½á¹¹Í¼£» £¨5) Çó³ö±Õ»·´«µÝº¯Êý¡£ ½â£¨1) ϵͳµÄÌØÕ÷¶àÏîʽΪ ¦Á(s)=s(s+1)(s+2)=s3+3s2+2s ½«ÏµÍ³°´Äܿرê×¼ÐÍʵÏÖ£¬µÃ x¡¤=010 001 0-2-3x+0 0 1u£¬y=100x ÒÀÌâÒâÖªÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+3)s+12-j32s+12+j32=s3+4s2+4s+3 ÒýÈë״̬·´À¡u=-£Ûk1k2k3£Ýx£¬ÔòÓ¦ÓÐ k1=3£¬k2+2=4£¬k3+3=4 ÓÚÊÇÇóµÃ״̬·´À¡u=-£Ûk1k2k3£Ýx=-£Û321£Ýx¡£ (2) ÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(x)=(s+5)3=s3+15s2+75s+125 det¦ËI-(A-EC)=det¦Ë ¦Ë ¦Ë-010 001 0-2-3+E1 E2 E3100 =det¦Ë+E1-10 E2¦Ë-1 E32¦Ë+3 =¦Ë3+(E1+3)¦Ë2+(3E1+E2+2)¦Ë+(2E1+3E2+E3) ÓëÆÚÍûÌØÕ÷¶àÏîʽ±È½ÏϵÊýµÃ E1+3=15 3E1+E2+2=75 2E1+3E2+E3=125 ½â·½³Ì×éµÃ ET=1237-10 ״̬¹Û²âÆ÷µÄ״̬·½³ÌΪ x =(A-EC)x^+Bu+Ey =010 001 0-2-3-12 37 -10100x^+0 0 1u+12 37 -10y =-1210 -3701 10-2-3x^+0 0 1u+12 37 -10y (3) Áîx-=Px=D cx=001 010 100x£¬ÔòÓÐ x1 x2 x3=PAP-1x+Pbu=1112 2122x-1 x-2 x-3=-3-20 100 010x-1 x-2 x-3+1 0 0u£¬ y=cP-1x=001x-1 x-2 x-3 ÒÀÌâÒâ¿ÉÖª½µÎ¬¹Û²âÆ÷µÄÆÚÍûÌØÕ÷¶àÏîʽΪ ¦Á*(s)=(s+5)2=s2+10s+25 Éè =e-1 e-2£¬ÔòÓÐ(11-21)=-3-2 10-e-1 e-201=-3-2-e-1 1-e-2 ÓÚÊÇ det£ÛsI-(11-21)£Ý=dets+32+e-1 -1s+e-2 =s2+(e-2+3)s+3e-2+e-1+2 ±È½ÏϵÊýÖªe-1=2,e-2=7£¬ÓÚÊǽµÎ¬×´Ì¬¹Û²âÆ÷µÄ·½³ÌΪ W¡¤=(11-21)W+( 1-2)u+£Û12-22+(11-21)£Ýy =-3-4 1-7W+1 0u+-34 -47y (4) ±Õ»·ÏµÍ³µÄ½á¹¹Í¼·Ö±ðÈçͼ5.6ºÍͼ5.7Ëùʾ¡£ ͼ5£®6´øÓÐȫά״̬¹Û²âÆ÷µÄ±Õ»·ÏµÍ³µÄ½á¹¹Í¼ ͼ5£®7´øÓнµÎ¬×´Ì¬¹Û²âÆ÷µÄ±Õ»·ÏµÍ³µÄ½á¹¹Í¼ (5) ±Õ»·´«µÝº¯Êý¡£ÓÉÓÚ¹Û²âÆ÷²»¸Ä±äÔ­±Õ»·ÏµÍ³µÄ´«µÝº¯Êý£¬ËùÒÔÆä´«µÝº¯ÊýÈÔΪ G(s)=c(sE-(A-kb))-1b=1s3+4s2+4s+3 5£®11¸ø¶¨ÊÜ¿ØÏµÍ³Îª x¡¤=0100 00-20 0001 0040x+0 1 0 -1u y=1000x (1) Éè¼Æ×´Ì¬·´À¡ÔöÒæÕóKʹµÃ±Õ»·ÌØÕ÷ֵΪ¦Ë*1=-1,¦Ë*2,3=-1¡Àj,¦Ë*4=-2£» (2) Éè¼Æ½µÎ¬×´Ì¬¹Û²âÆ÷ʹ¹Û²âÆ÷µÄÌØÕ÷ֵΪ¦Ë1=-3,¦Ë23=-3¡Àj2£» (3) È·¶¨Öع¹×´Ì¬x^ºÍÓÉx^¹¹³ÉµÄ״̬·´À¡¹æÂÉ¡£ ½â(1) ÆÚÍûµÄ±Õ»·ÌØÕ÷¶àÏîʽΪ£º f*(s)=(s+1)(s+1-j)(s+1+j)(s+2)=s4+5s3+10s2+10s+4 ÁîK=-£Ûk1k2k3k4£Ý£¬Ôò¿ÉµÃ A-bK=0100 k1k2k3-2k4 0001 -k1-k24-k3-k4 ºÍ f(s)=det(sE-A+bK)=s4+(k4-k2)s3+(k3-k1-4)s2+2k2s+2k1 ÓɱȽÏf(s)ºÍf*(s)£¬¼´¿É¶¨³ö K=-£Û251610£Ý (2) Éè¼Æ½µÎ¬×´Ì¬¹Û²âÆ÷ʹ¹Û²âÆ÷µÄÌØÕ÷ֵΪ¦Ë1=-3,¦Ë23=-3¡Àj2¡£ ÒÑÖªrankC=1£¬ÇÒ¶ÔÓÚ¸ø¶¨µÄ¶¯Ì¬·½³Ì²»ÐèÒªÒýÈë±ä»»¡£´ËʱÓÐ 11=0,12=100 21=0 0 0, 22=0-20 001 040 1=0, 2=1 0 -1 ÀíÏëÌØÕ÷¶àÏîʽΪ f-(s)=(s+3)(s+3-j2)(s+3+j2)=s3+9s2+31s+39 ÔÙÁîΪ =l1 l2 l3 Ôò¿ÉµÃµ½ 22-12=-l1-20 -l201 -l340 ºÍ fL(s)=det(sE-22+12)=s3+l1s2-(2l2+4)s-(2l3+4l1) ÓɱȽÏf-(s)ºÍfL(s)£¬¿ÉÒԵóö =9 -352 -752 ½øÒ»²½¿É¼ÆËãµÃµ½ 22-12=-9-20 35201 75240 (22-12)+(21-11)=(22-12)=-46 120 5352 2-1= 2=1 0 -1 ´Ó¶ø½µÎ¬×´Ì¬¹Û²âÆ÷Ϊ z¡¤ =-9-20 35201 75240z+-46 120 5352y+1 0 -1u (3) È·¶¨Öع¹×´Ì¬x^ºÍÓÉx^¹¹³ÉµÄ״̬·´À¡¹æÂÉ¡£ÆäÖУ¬¹À¼Æ×´Ì¬x^Ϊ x^=y z+y=10 E3y z=1000 9100 -17£®5010 -37£®5001y z1 z2 z3 ¶øÓÉx^¹¹³ÉµÄ״̬·´À¡Îª u=v+251610x^ ÕâÀïvΪ±êÁ¿²Î¿¼ÊäÈë¡£ 5£®12ÒÑÖªÊÜ¿ØÏµÍ³µÄϵÊý¾ØÕóΪ x¡¤=10-1 2-10 021x+1 1 0u ÀûÓÃMATLABÉè¼Æ×´Ì¬·´À¡¾ØÕóKʹ±Õ»·¼«µãΪ-1£¬-2¡Àj¡£ ½â³ÌÐòÈçÏ£º A=£Û1 0 -1;2 -1 0;0 2 1£Ý; B=£Û1 1 0£Ý'; P=£Û-1 -2+i -2-i£Ý; syms k1 k2 k3 s; K=£Ûk1 k2£Ý; eg=Simple(det(s*diag(diag(ones((size(A)))))-A+B*K)) f=1; for i=1:3 f=Simple(f*(s-P(i))); end f=f-eg; £Ûk1 k2 k3£Ý=solve(jacobian(f,'s'),subs(f,'s',0)) %ÔËÐнá¹û£º k1 = 2 k2 = 4 k3= 5 ÓÉÔËÐнá¹ûÏÔʾ¿É֪ϵͳ״̬·´À¡¾ØÕóΪK=£Û245£Ý¡£ 5£®13¸ø¶¨µÄ״̬·½³ÌÄ£ÐÍÈçÏ£º x¡¤=100-1 02-10 0201 1020x+1 0 1 0u ÀûÓÃMATLABÉè¼Æ×´Ì¬·´À¡¾ØÕóKʹϵͳ±Õ»·¼«µãΪ-1£¬-3£¬-1¡Àj¡£ ½âÖ±½ÓÔËÓÃAckermann¹«Ê½À´¼ÆËãϵͳ״̬·´À¡¾ØÕó¡£ ³ÌÐòÈçÏ£º A=£Û1 0 0 -1;0 2 -1 0;0 2 0 1;1 0 2 0£Ý; b=£Û1 0 1 0£Ý'; P=£Û-1 -3 -1-j -1+j£Ý; K=acker(A,b,P) A-b*K %ÔËÐнá¹û£º K =~ -4.0000 -38.8000 12.0000 -0.4000 5£®14ÒÑ֪ϵͳµÄϵÊý¾ØÕóÈçÏ£º A=01-101 0-20-10 -2-1001 301-10 20001£¬b=1 1 0 -3 0 ÀûÓÃMATLABÉè¼Æ×´Ì¬·´À¡¾ØÕóKʹ±Õ»·¼«µãΪ-1£¬-2£¬-5£¬-3¡À2j£¬²¢¼ÆËã±Õ»·ÏµÍ³×´Ì¬ÏµÊý¾ØÕó¡£ ½â³ÌÐòÈçÏ£º A=£Û0 1 -1 0 1;0 -2 0 -1 0;-2 -1 0 0 1;3 0 1 -1 0;2 0 0 01£Ý; B=£Û1 1 0 -3 0£Ý'; P=£Û-1 -2 -5 -3+2j -3-2j£Ý; K=acker(A,b,P) A-b*K %ÔËÐнá¹û£º K = 13.410.130.980.5122.66 ans = -13£®410£®87-1£®98-0£®51-21£®66 -13£®41-2£®13-0£®98-1£®51-22£®66 -2-1001 43£®220£®393£®930£®5467£®99 20001 ÓÉÔËÐнá¹û֪״̬·´À¡¾ØÕóΪ K=£Û13£®410£®130£®980£®5122£®66£Ý ±Õ»·ÏµÍ³×´Ì¬ÏµÊý¾ØÕóΪ A¡«=-13£®410£®87-1£®98-0£®51-21£®66 -13£®41-2£®13-0£®98-1£®51-22£®66 -2-1001 43£®220£®393£®930£®5467£®99 20001 5£®15ij¶àÊäÈ몲¶àÊä³öϵͳ״̬·½³ÌÈçÏ£º A=010 101 -1-12£¬B=10 00 01 C=100 011£¬D=00 00 ÀûÓÃMATLABÍê³ÉÏÂÃæ¹¤×÷£º £¨1) ÊÔÇó½âÆä´«µÝº¯Êý¾ØÕó£» £¨2) Éè¼Æ½âñî¿ØÖÆÆ÷£¬ÓпÉÄܵϰ½øÐм«µãÅäÖᣠ½â £¨1) Çó½âԭϵͳµÄ´«µÝº¯Êý¡£ A=£Û0 1 0;1 0 1;-1 -1 2£Ý; B=£Û1 0;0 0;0 1£Ý; C=£Û1 0 0;0 1 1£Ý; D=zeros(2,2); £Ûnum2,den2£Ý=ss2tf(A,B,C,D,2) £Ûnum1,den1£Ý=ss2tf(A,B,C,D,1) %ÔËÐнá¹û£º num2 = 0010 0100 den2 =1310 num1= 0130 01-10 den1=1310 ¼´ G(s)=1s3+3s2+ss2+3ss -ss2 (2) ½âñî¿ØÖÆÆ÷Éè¼Æ¡£ ³ÌÐòÈçÏ£º £Ûm,n£Ý=size(C); D0=C(1,:)*B; a(1)=0; for i=2:m for j=0:n-1 D0=£ÛD0;C(i,:)*A^j*B£Ý if rank(D0)==i a(i)=j break else D0=D0(1:i-1,:) end end end R=inv(D0); L=C(1,:)*A^(a(1)+1); for i=2:m L=£ÛL;C(i,:)*A^(a(i)+1)£Ý end F1=R*L B1=B*R A1=A-B*F1 £Ûnumd1,dend1£Ý=ss2tf(A1,B1,C,D,1) £Ûnumd2,dend2£Ý=ss2tf(A1,B1,C,D,2) %ÔËÐнá¹û£º D0 = 10 01 a =00 L = 001 -1-1-3 F1 = 001 -1-1-3 B1 = 10 00 01 00-1 A1 = 001 000 numd1 = 0100 0000 dend1 =1000 numd2 = 0000 0100 dend2 =1000 ¼´ G(s)=1s3s20 0s2=1s10 01 (3) ½âñîϵͳ¼«µãÅäÖᣠ³ÌÐòÈçÏ£º beta1=-2; beta2=-3; beta=£Ûbeta1,beta2£Ý; L=zeros(size(C)); for i=1:m L(i,:)=C(i,:)*A-beta(i)*C(i,:) end F2=R*L A2=A-B*F2 B2=B*R £Ûnumdp1,dendp1£Ý=ss2tf(A2,B2,C,D,1) £Ûnumdp2,dendp2£Ý=ss2tf(A2,B2,C,D,2) %ÔËÐнá¹û£º L = 221 000 L = 221 -1-10 F2 = 221 -1-10 A2 = -2-2-1 001 00-3 B2 = 10 00 01 numdp1 = 0130 0000 dendp1 = 1560 numdp2 = 0000 0120 dendp2 =1560 ¼´½âñîºóµÄ´«µÝº¯Êý¾ØÕóΪ G(s)=1s3+5s2+6ss2+3s0 0s2+2s=1s+20 01s+3 ´«µÝº¯Êý¾ØÕóΪ G(s)=1s3-2s2+3s2-2s+11 -4s2+s-1 ´«µÝº¯Êý¾ØÕóΪ G(s)=1s3+s2s2+s0 0s2+s=1s10 01 ½âñîºóµÄ´«µÝº¯Êý¾ØÕóΪ G(s)=1s3+6s2+11s+6s2+4s+30 0s2+3s+2=1s2+5s+61s+30 01s+2