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Electric Fields

3-1 Introduction

72

In Section 1-2 we mentioned that three essential steps are involved in constructing
a deductive theory for the study of a scientific subject. They are: the definition of
basic quantities, the development of rules of operation, and the postulation of funda-
mental relations. We have defined the source and field quantities for the electromag-
netic model in Chapter 1 and developed the fundamentals of vector algebra and
vector calculus in Chapter 2. We are now ready to introduce the fundamental postu-
lates for the study of source-field relationships in electrostatics.

A field is a spatial distribution of a scalar or vector quantity, which may or may
not be a function of time. An example of a scalar is the altitude of a location on a
mountain relative to the sea level. It is a scalar, which is not a function of time if
long-term erosion and earthquake effects are neglected. Various locations on the
mountain have different altitudes, constituting an altitude field. The gradient of altitude
is a vector that gives both the direction and the magnitude of the maximum rate of
increase (the upward slope) of altitude. On a flat mountaintop or flat land the altitude
is constant, and its gradient vanishes. The gravitational field of the earth, representing
the force of gravity on a unit mass, is a vector field directed toward the center of the
earth, having a magnitude depending on the altitude of the mass. Electric and mag-
netic field intensities are vector fields.

In electrostatics, electric charges (the sources) are at rest, and electric fields do
not change with time. There are no magnetic fields; hence we deal with a relatively
simple situation. After we have studied the behavior of static electric fields and
mastered the techniques for solving electrostatic boundary-value problems, we will go
on to the subject of magnetic fields and time-varying electromagnetic fields. Although
electrostatics is relatively simple in the electromagnetics scheme of things, its mastery
is fundamental to the understanding of more complicated electromagnetic models.
Moreover, the explanation of many natural phenomena (such as lightning, corona,
St. Elmo’s fire, and grain explosion) and the principles of some important industrial
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applications (such as oscilloscope, ink-jet printer, xerography, and electret micro-
phone) are based on electrostatics. Many articles on special applications of electro-
statics appear in the literature, and a number of books on this subject have also been
published.t

The development of electrostatics in elementary physics usually begins with the
experimental Coulomb’s law (formulated in 1785) for the force between two point
charges. This law states that the force between two charged bodies, ¢, and ¢q,, that
are very small in comparison with the distance of separation, R,,, is proportional
to the product of the charges and inversely proportional to the square of the distance,
the direction of the force being along the line connecting the charges. In addition,
Coulomb found that unlike charges attract and like charges repel each other. Using
vector notation, Coulomb’s law can be written mathematically as

49192

F12 = ar k s
2
12 R12

G-1

where F,, is the vector force exerted by g, on ¢,, ag,, is a unit vector in the direction
from ¢, to q,, and k is a proportionality constant depending on the medium and the
system of units. Note that if ¢, and g, are of the same sign (both positive or both
negative), F,, is positive (repulsive); and if ¢, and g, are of opposite signs, F, is
negative (attractive). Electrostatics can proceed from Coulomb’s law to define electric
field intensity E, electric scalar potential ¥, and electric flux density D, and then lead
to Gauss’s law and other relations. This approach has been accepted as “logical,”
perhaps because it begins with an experimental law observed in a laboratory and
not with some abstract postulates.

We maintain, however, that Coulomb’s law, though based on experimental evi-
dence, is in fact also a postulate. Consider the two stipulations of Coulomb’s law:
that the charged bodies be very small in comparison with the distance of separation
and that the force be inversely proportional to the square of the distance. The ques-
tion arises regarding the first stipulation: How smalil must the charged bodies be in
order to be considered “very small” in comparison with the distance? In practice the
charged bodies cannot be of vanishing sizes (ideal point charges), and there is diffi-
culty in determining the “true” distance between two bodies of finite dimensions. For
given body sizes, the relative accuracy in distance measurements is better when the
separation is larger. However, practical considerations (weakness of force, existence
of extraneous charged bodies, etc.) restrict the usable distance of separation in the
laboratory, and experimental inaccuracies cannot be entirely avoided. This leads to
a more important question concerning the inverse-square relation of the second

T A. Klinkenberg and J. L. van der Minne, Electrostatics in the Petroleum Industry, Elsevier, Amsterdam,
1958. J. H. Dessauer and H. E. Clark, Xerography and Related Processes, Focal Press, London, 1965. A. D.
Moore (Ed.), Electrostatics and Its Applications, John Wiley, New York, 1973. C. E. Jewett, Electrostatics
in the Electronics Environment, John Wiley, New York, 1976. J.C. Crowley, Fundamentals of Applied
Electrostatics, John Wiley, New York, 1986.
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stipulation. Even if the charged bodies are of vanishing sizes, experimental measure-
ments cannot be of infinite accuracy, no matter how skillful and careful an experi-
mentor is. How then was it possible for Coulomb to know that the force was exactly
inversely proportional to the square (not the 2.000001th or the 1.999999th power) of
the distance of separation? This question cannot be answered from an experimental
viewpoint because it is not likely that experiments could have been accurate to the
seventh place during Coulomb’s time.! We must therefore conclude that Coulomb’s
law is itself a postulate and that the exact relation stipulated by Eq. (3—1) is a law
of nature discovered and assumed by Coulomb on the basis of his experiments of
limited accuracy.

Instead of following the historical development of electrostatics, we introduce the
subject by postulating both the divergence and the curl of the electric field intensity
in free space. From Helmholtz’s theorem in Section 2—12 we know that a vector field
is determined if its divergence and curl are specified. We derive Gauss’s law and
Coulomb’s law from the divergence and curl relations, and we do not present them
as separate postulates. The concept of scalar potential follows naturally from a vector
identity. Field behaviors in material media will be studied and expressions for elec-
trostatic energy and forces will be developed.

3—=2 Fundamental Postulates of Electrostatics in Free Space

We start the study of electromagnetism with the consideration of electric fields due
to stationary (static) electric charges in free space. Electrostatics in free space is the
simplest special case of electromagnetics. We need to consider only one of the four
fundamental vector field quantities of the electromagnetic model discussed in Section
1-2, namely, the electric field intensity E. Furthermore, only the permittivity of free
space €, of the three universal constants mentioned in Section 1-3 enters into our
formulation.

Electric field intensity is defined as the force per unit charge that a very small
stationary test charge experiences when it is placed in a region where an electric field
exists. That is,

E—lm>  (V/m) (3-2)

q-0 (4

The electric field intensity E is, then, proportional to and in the direction of the force
F. If F is measured in newtons (N) and charge ¢ in coulombs (C), then E is in new-
tons per coulomb (N/C), which is the same as volts per meter (V/m). The test charge

 The exponent on the distance in Coulomb’s law has been verified by an indirect experiment to be 2 to
within one part in 10'%, (See E. R. Williams, J. E. Faller, and H. A. Hall, Phys. Rev. Letters, vol. 26, 1971,
p. 721)



3-2 Fundamental Postulates of Electrostatics in Free Space 75

g, of course, cannot be zero in practice; as a matter of fact, it cannot be less than the
charge on an electron. However, the finiteness of the test charge would not make the
measured E differ appreciably from its calculated value if the test charge is small
enough not to disturb the charge distribution of the source. An inverse relation of
Eq. (3-2) gives the force F on a stationary charge ¢ in an electric field E:

F=gqE (N) (3-3)

The two fundamental postulates of electrostatics in free space specify the diver-
gence and curl of E. They are

v.E=" (3-4)
€9
and
Vx E=0. (3-5)

In Eq. (3-4), p is the volume charge density of free charges (C/m?3), and €, 1s the
permittivity of free space, a universal constant.! Equation (3-5) asserts that static
electric fields are irrotational, whereas Eq. (3—4) implies that a static electric field is
not solenoidal unless p = 0. These two postulates are concise, simple, and independent
of any coordinate system; and they can be used to derive all other relations, laws,
and theorems in electrostatics! Such is the beauty of the deductive, axiomatic ap-
proach.

Equations (3-4) and (3-5) are point relations; that is, they hold at every point
in space. They are referred to as the differential form of the postulates of electro-
statics, since both divergence and curl operations involve spatial derivatives. In prac-
tical applications we are usually interested in the total field of an aggregate or a
distribution of charges. This is more conveniently obtained by an integral form of
Eq. (3-4). Taking the volume integral of both sides of Eq. (3—4) over an arbitrary
volume V, we have

1
fy V-Edvzgfvpdv. (3-6)
In view of the divergence theorem in Eq. (2-115), Eq. (3—6) becomes
95 E-ds= 2, (3-7)
S €o

1
t The permittivity of free space €, = on x 1072 (F/m). See Eq. (1-11).
n
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where Q is the total charge contained in volume V bounded by surface S. Equation
(3-7) is a form of Gauss’s law, which states that the total outward flux of the elec-
tric field intensity over any closed surface in free space is equal to the total charge
enclosed in the surface divided by €,. Gauss’s law is one of the most important re-
lations in electrostatics. We will discuss it further in Section 34, along with illustrative
examples.

An integral form can also be obtained for the curl relation in Eq. (3-5) by inte-
grating V x E over an open surface and invoking Stokes’s theorem as expressed in
Eq. (2-143). We have

gﬁc E-dé =0. (3-8)

The line integral is performed over a closed contour C bounding an arbitrary surface;
hence C is itself arbitrary. As a matter of fact, the surface does not even enter into
Eq. (3-8), which asserts that the scalar line integral of the static electric field intensity
around any closed path vanishes. The scalar product E - d¢ integrated over any path
is the voltage along that path. Thus Eq. (3-8) is an expression of Kirchhoff’s voltage
law in circuit theory that the algebraic sum of voltage drops around any closed circuit
is zero. This will be discussed again in Section 5-3.

Equation (3-8) is another way of saying that E is irrotational (conservative).
Referring to Fig. 3—1, we see that if the scalar line integral of E over the arbitrary
closed contour C,C, is zero, then

fClE-d€+fCZE-d€=O (3-9)
or
P> Py
fm E-dé = — fPZ E-df (3-10)
Along C, Along C,
or
P> P>
fz-, E-df = fpl E- de. (3-11)
Along C, Along C,
Cy
Py
FIGURE 3-1

&) An arbitrary contour.
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Equation (3-11) says that the scalar line integral of the irrotational E field is inde-
pendent of the path; it depends only on the end points. As we shall see in Section
3-5, the integrals in Eq. (3—-11) represent the work done by the electric field in
moving a unit charge from point P, to point P,; hence Egs. (3—8) and (3-9) imply
a statement of conservation of work or energy in an electrostatic field.

The two fundamental postulates of electrostatics in free space are repeated below
because they form the foundation upon which we build the structure of electrostatics.

Postulates of Electrostatics in Free Space
Differential Form Integral Form
A\ E = ﬁ § E-ds = ..Q_

€o s €o

VxE=0 ¢ E-de=0

We consider these postulates, like the principle of conservation of charge, to be repre-
sentations of laws of nature. In the following section we shall derive Coulomb’s law.

Coulomb’s Law

We consider the simplest possible electrostatic problem of a single point charge, g, at
rest in a boundless free space. In order to find the electric field intensity due to ¢,
we draw a hypothetical spherical surface of a radius R centered at g. Since a point
charge has no preferred directions, its electric field must be everywhere radial and
has the same intensity at all points on the spherical surface. Applying Eq. (3-7) to
Fig. 3-2(a), we have

q
gﬁsE-ds=§g(aRER)-aRds=g
or
q
— 2y . 1
Ep § ds = E(dnR?) = L
Therefore,
E=a.Eg=az—1—  (V/m). (3-12)
47e,R?

Equation (3-12) tells us that the electric field intensity of a positive point charge is
in the outward radial direction and has a magnitude proportional to the charge
and inversely proportional to the square of the distance from the charge. This is a
very important basic formula in electrostatics. Using Eq. (2-139), we can verify that
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(a) Point charge at the origin. (b) Point charge not at the origin.
FIGURE 3-2

Electric field iFIGUREdue to a point charge.

V x E = Ofor the E given in Eq. (3—12). A flux-line graph for the electric field intensity
of a positive point charge g will look like Fig. 2-25(b).

If the charge q is not located at the origin of a chosen coordinate system, suitable
changes should be made to the unit vector ap and the distance R to reflect the
locations of the charge and of the point at which E is to be determined. Let the
position vector of g be R’ and that of a field point P be R, as shown in Fig. 3-2(b).
Then, from Eq. (3-12),

Ep

q
=2, ————5 3-1
P 4meoR — R2 G-13)

where ap is the unit vector drawn from g to P. Since

R-R
= -14
Y =R —R| G-19
we have
gR —R)
ID e . —1
E, dne R —RT (V/m) (3-15)

EXAMPLE 3-1 Determine the electric field intensity at P(—0.2,0, —2.3) due to a
point charge of +5 (nC) at (0.2, 0.1, —2.5) in air. All dimensions are in meters.

Solution The position vector for the field point P
R=0P=—a02—a23.
The position vector for the point charge Q is

R =00 =2,02+2a0.1 —a25.
The difference is
R—-—R' =-2,04-2a01+2,0.2,
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which has a magnitude
R — R'| = [(—0.4)* + (—0.1)* + (0.2)*]*/% = 0.458 (m).
Substituting in Eq. (3—15), we obtain

E _< 1 )q(R——R')
P \4rne,) R —RJ?
5x107°
0.4583

= 214.5(—a,0.873 — a,0.218 + a,0.437) (V/m).

=9 x 109 (—2,04 —a,0.1 +2,0.2)

The quantity within the parentheses is the unit vector ay, = (R — R’)/|R — R’|, and
E, has a magnitude of 214.5 (V/m). -

Note: The permittivity of air is essentially the same as that of the free space. The
factor 1/(4ne,) appears very frequently in electrostatics. From Eq. (1-11) we know
that €, = 1/(c?uo). But yy = 4n x 1077 (H/m) in SI units; so

1 _ ﬂocz _
dne, 4n

1077 ¢? (m/F) (3-16)

exactly. If we use the approximate value ¢ =3 x 108 (m/s), then 1/(dne,) =9 x
10° (m/F).

When a point charge ¢, is placed in the field of another point charge g, at the
origin, a force F, is experienced by g, due to electric field intensity E,, of q, at q,.
Combining Egs. (3-3) and (3-12), we have

q.19
Fio=qE,=2a; 4n€1 }222 (N). (3-17)
0

Equation (3—17) is a mathematical form of Coulomb’s law already stated in Section
3-1 in conjunction with Eq. (3-1). Note that the exponent on R is exactly 2, which
is a consequence of the fundamental postulate Eq. (3—4). In SI units the propor-
tionality constant k equals 1/(4rne,), and the force is in newtons (N).

EXAMPLE 3-2 A total charge Q is put on a thin spherical shell of radius b. Determine
the electric field intensity at an arbitrary point inside the shell.

Solution We shali solve this problem in two ways.

a) At any point, such as P, inside the hollow shell shown in Fig. 3-3, an arbitrary
hypothetical closed surface (a Gaussian surface) may be drawn, over which we
apply Gauss’s law, Eq. (3-7). Since no charge exists inside the shell and the
surface is arbitrary, we conclude readily that E = 0 everywhere inside the shell.
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FIGURE 3-3
A charged shell (Example 3-2).

b) Let us now examine the problem in more detail. Draw a pair of elementary cones
of solid angle dQ with vertex at an arbitrary point P. The cones extend in both
directions, intersecting the shell in areas ds, and ds, at distances r, and r,, re-
spectively, from the point P. Since charge Q distributes uniformly over the spherical
shell, there is a uniform surface charge density

= Q .

4nb?
The magnitude of the electric field intensity at P due to charges on the ele-
mentary surfaces ds; and ds, is, from Eq. (3-12),

Ps (3-13)

ps (ds; ds,
dE=-21 {1 44, 3-19
4re, <rf 2 ) 3-19)
But the solid angle dQ equals
dQ = d% cos o = d% Cos 0. (3-20)
ri r2
Combining the expressions of dE and dQ, we find that
dE = -5 <dQ —dQ>=0. (3-21)
4mey, \cosa cosa

Since the above result applies to every pair of elementary cones, we conclude
that E = 0 everywhere inside the conducting shell, as before. e

It will be noted that if Coulomb’s law as expressed in Eq. (3—12) and used in
Eq. (3—19) was slightly different from an inverse-square relation, the substitution of
Eq. (3-20), which is a geometrical relation, in Eq. (3—19) would not yield the result
dE = 0. Consequently, the electric field intensity inside the shell would not vanish;
indeed, it would vary with the location of the point P. Coulomb originally used a
torsion balance to conduct his experiments, which were necessarily of limited accuracy.
Nevertheless, he was brilliant enough to postulate the inverse-square law. Many
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scientists subsequently made use of the vanishing field inside a spherical shell illus-
trated in this example to verify the inverse-square law. The field inside a charged
shell, if it existed, could be detected to a very high accuracy by a probe through a
small hole in the shell.

=msmmm EXAMPLE 3-3 The electrostatic deflection system of a cathode-ray oscilloscope is
depicted in Fig. 3—4. Electrons from a heated cathode are given an initial velocity
u, = a,u, by a positively charged anode (not shown). The electrons enter at z =0
into a region of deflection plates where a uniform electric field E;, = —a E, is main-
tained over a width w. Ignoring gravitational effects, find the vertical deflection of
the electrons on the fluorescent screen at z = L.

Solution Since there is no force in the z-direction in the z > 0 region, the horizontal
velocity u, is maintained. The field E; exerts a force on the electrons each carrying
a charge —e, causing a deflection in the y-direction:

F = (—e)E,; = a,eE,.
From Newton’s second law of motion in the vertical direction we have

du, E
m —* = ¢eE,,
dt d

where m is the mass of an electron. Integrating both sides, we obtain
_dy e
Y dt m

where the constant of integration is set to zero because u, = 0 at t = 0. Integrating
again, we have

u Egt,

y = % Et%.
y Screen
Deflection T
do
Yoo l >z
Caﬁode T):M\Ed ! i
—
I L
FIGURE 3-4

Electrostatic deflection system of a cathode-ray oscilloscope (Example 3-3)
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The constant of integration 1s again zero because y = 0 at t = 0. Note that the elec-
trons have a parabolic trajectory between the deflection plates. At the exit from the

deflection plates, t = w/u,,
g, = <K>
2m \u,

w eE; (w
uylzuy t=—)]=—{—1
Ug m Ug

When the electrons reach the screen, they have traveled a further horizontal distance
of (L — w) which takes (L — w)/u, seconds. During that time there is an additional

vertical deflection
L—w eE; w(L — w)
d2=uy1< >=—d_2 .
Ug m ug

and

Hence the deflection at the screen is

E
d0=d1+d2=:17dW<L—;)'

2
0

Ink-jet printers used in computer output, like cathode-ray oscilloscopes, are de-
vices based on the principle of electrostatic deflection of a stream of charged particles.
Minute droplets of ink are forced through a vibrating nozzle controlled by a piezo-
electric transducer. The output of the computer imparts variable amounts of charges
on the ink droplets, which then pass through a pair of deflection plates where a
uniform static electric field exists. The amount of droplet deflection depends on the
charge it carries, causing the ink jet to strike the print surface and form an image as
the print head moves in a horizontal direction.

3-3.1 ELECTRIC FIELD DUE TO A SYSTEM OF DISCRETE CHARGES

Suppose an electrostatic field is created by a group of n discrete point charges q,,
d,, - - - » 4, located at different positions. Since electric field intensity is a linear func-
tion of (proportional to) agq/R?, the principle of superposition applies, and the total
E field at a point is the vector sum of the fields caused by all the individual charges.
From Eq. (3-15) we can write the electric intensity at a field point whose position
vector is R as

_ L v gR-RY
dney £ [R - Rif?

(V/m). (3-22)

Although Eq. (3-22) is a succinct expression, it is somewhat inconvenient to use be-
cause of the need to add vectors of different magnitudes and directions.
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Let us consider the simple case of an electric dipole that consists of a pair of
equal and opposite charges +q¢ and —g, separated by a small distance, d, as shown
in Fig. 3-5. Let the center of the dipole coincide with the origin of a spherical coor-
dinate system. Then the E field at the point P is the sum of the contributions due to
+q and —q. Thus,

)
R-4 g4
E=-1 2 2 (3-23)
_4n€0 R-—ES R+E3 . —_
2 2

The first term on the right side of Eq. (3—23) can be simplified if d « R. We write

R

R—-
r 27-3/2
Roreasd]

2
| 4

F Reap (3-24)
=R 1 -

where the binomial expansion has been used and all terms containing the second
and higher powers of (d/R) have been neglected. Similarly, for the second term on
the right side of Eq. (3-23) we have

d|-3 -3 3R-d
Substitution of Eqgs. (3-24) and (3-25) in Eq. (3-23) leads to
- 4 R-d
Ex T, [3 = R d]. (3-26)
FIGURE 3-5

Electric field of a dipole.
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The derivation and interpretation of Eq. (3—26) require the manipulation of vec-
tor quantities. We can appreciate that determining the electric field caused by three
or more discrete charges will be even more tedious. In Section 3-5 we will introduce
the concept of a scalar electric potential, with which the electric field intensity caused
by a distribution of charges can be found more easily.

The electric dipole is an important entity in the study of the electric field in di-
electric media. We define the product of the charge ¢ and the vector d (going from
—g to +q) as the electric dipole moment, p:

p=gqd (3-27)

Equation (3—26) can then be rewritten as

1 R-p
E=-— |3 — _
4n60R3[ R? R p:|, (3-28)

where the approximate sign (~) over the equal sign has been left out for simplicity.
If the dipole lies along the z-axis as in Fig. 3—5, then (see Eq. 2—77)

p = a,p = p(ag cos 8 — a, sin 0), (3-29)
R-p=Rpcosf, (3-30)
and Eq. (3-28) becomes
= ﬁ (ag2 cos 0 + agsin 6) (V/m). (3-31)
0

Equation (3-31) gives the electric field intensity of an electric dipole in spherical co-
ordinates. We see that E of a dipole is inversely proportional to the cube of the dis-
tance R. This is reasonable because as R increases, the fields due to the closely spaced
+¢ and ~q tend to cancel each other more completely, thus decreasing more rapidly
than that of a single point charge.

3-3.2 ELECTRIC FIELD DUE TO A CONTINUOUS DISTRIBUTION OF CHARGE

The electric field caused by a continuous distribution of charge can be obtained by
integrating (superposing) the contribution of an element of charge over the charge
distribution. Refer to Fig. 3-6, where a volume charge distribution is shown. The
volume charge density p (C/m?) is a function of the coordinates. Since a differential
element of charge behaves like a point charge, the contribution of the charge p dv’
in a differential volume element dv' to the electric field intensity at the field point P is

pdv

=2 e R

(3-32)
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FIGURE 3-6
Electric field due to a continuous charge distribution.

We have

1 p
— T ! — 3
E prmy fy, ag gz v (V/m), (3-33)

or, since ag = R/R,

1 R
E= =
47e, fV' PR3

dv' (V/m). (3-34)

Except for some especially simple cases, the vector triple integral in Eq. (3-33) or
Eq. (3-34) is difficult to carry out because, in general, all three quantities in the inte-
grand (ag, p, and R) change with the location of the differential volume dv'.

If the charge is distributed on a surface with a surface charge density p, (C/m?),
then the integration is to be carried out over the surface (not necessarily flat). Thus,

1 Ps .,
E= e fs agpyds  (V/m). (3-35)

For a line charge we have

_ Pt ap g
- [, ax rpeds (V/m), (3-36)

where p, (C/m) is the line charge density, and L’ the line (not necessarily straight)
along which the charge is distributed.

ssmssm EXAMPLE 3-4 Determine the electric field intensity of an infinitely long, straight,
line charge of a uniform density p, in air.
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b dE,

dE,  dE

FIGURE 3-7
An infinitely long, straight, line charge.

Solution Let us assume that the line charge lies along the z’-axis as shown in Fig.
3-7. (We are perfectly free to do this because the field obviously does not depend
on how we designate the line. It is an accepted convention to use primed coordinates
for source points and unprimed coordinates for field points when there is a possibility
of confusion.) The problem asks us to find the electric field intensity at a point P,
which is at a distance r from the line. Since the problem has a cylindrical symmetry
(that is, the electric field is independent of the azimuth angle ¢), it would be most
convenient to work with cylindrical coordinates. We rewrite Eq. (3—36) as

1 R
E=fe fL, pegzdt  (V/m). (3-37)

For the problem at hand, p, is constant, and a line element d¢’ = dz’ is chosen to
be at an arbitrary distance z’ from the origin. It is most important to remember that
R is the distance vector directed from the source to the field point, not the other way
around. We have

R=ar—a,z. (3-38)

The electric field, dE, due to the differential line charge element p, d¢' = p,dz’ is

goPe dz ar—ayz
 dme, (r2 4 232 (3-39)
=a,dE, + a,dE_,

d

where

iE. - prdz

- 3-39a
" 4mey(r* + /%32 ( )
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and

—pzd7z B
dE, = P4 (3-39b)
T dmey(r? + z?)3?

In Eq. (3-39) we have decomposed dE into its components in the a, and a, directions.
It is easy to see that for every p,dz’ at + z' there is a charge element p,dz’ at —z/,

which will produce a dE with components dE, and —dE,. Hence the a, components
will cancel in the integration process, and we only need to integrate the dE, in Eq.

(3-39a):
P oo dz
E = E =
a.L, a, 47'[60 f_m (rz + Z/2)3/2
or
E=a, 2* s
=a, Smeqr (V/m). (3-40)

|
Equation (3—-40) is an important result for an infinite line charge. Of course, no phys-

ical line charge is infinitely long; nevertheless, Eq. (3—40) gives the approximate E
field of a long straight line charge at a point close to the line charge.

3-4 Gauss’s Law and Applications

Gauss’s law follows directly from the divergence postulate of electrostatics, Eq. (3-4),
by the application of the divergence theorem. It was derived in Section 3-2 as Eq.
(3-7) and is repeated here on account of its importance:

gSsE cds =2 (3-41)

€o

Gauss’s law asserts that the total outward flux of the E-field over any closed surface
in free space is equal to the total charge enclosed in the surface divided by €,. We note that
the surface S can be any hypothetical (mathematical) closed surface chosen for
convenience; it does not have to be, and usually is not, a physical surface.

Gauss’s law is particularly useful in determining the E-field of charge distributions
with some symmetry conditions, such that the normal component of the electric field
intensity is constant over an enclosed surface. In such cases the surface integral on the
left side of Eq. (3—41) would be very easy to evaluate, and Gauss’s law would be a
much more efficient way for finding the electric field intensity than Eqgs. (3-33) through
(3-37). On the other hand, when symmetry conditions do not exist, Gauss’s law
would not be of much help. The essence of applying Gauss’s law lies first in the rec-
ognition of symmetry conditions and second in the suitable choice of a surface over
which the normal component of E resulting from a given charge distribution is a
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constant. Such a surface is referred to as a Gaussian surface. This basic principle was
used to obtain Eq. (3—12) for a point charge that possesses spherical symmetry; con-
sequently, a proper Gaussian surface is the surface of a sphere centered at the point
charge. Gauss’s law could not help in the derivation of Eq. (3-26) or Eq. (3-31)
for an electric dipole, since a surface about a separated pair of equal and opposite
charges over which the normal component of E remains constant was not known.

EXAMPLE 3-5 Use Gauss’s law to determine the electric field intensity of an infi-
nitely long, straight, line charge of a uniform density p, in air.

Solution This problem was solved in Example 3—4 by using Eq. (3-36). Since the
line charge is infinitely long, the resultant E field must be radial and perpendicular
to the line charge (E = a,E,), and a component of E along the line cannot exist. With
the obvious cylindrical symmetry we construct a cylindrical Gaussian surface of a
radius r and an arbitrary length L with the line charge as its axis, as shown in Fig.
3-8. On this surface, E, is constant, and ds = a,rd¢ dz (from Eq. 2—53a). We have

L (*2n
$E-ds= [I [ Erdpdz = 2nrLE,

There is no contribution from the top or the bottom face of the cylinder because on
the top face ds = a_r dr d¢ but E has no z-component there, making E « ds = 0. Sim-
ilarly for the bottom face. The total charge enclosed in the cylinder is Q = p,L. Sub-
stitution into Eq. (3—41) gives us immediately

b

€o

2nrLE, =

Infinitely long
uniform line
charge, pp
FIGURE 3-8
Applying Gauss’s law to an infinitely long line charge (Example 3-5).
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or

Pe

E — E — .
4 B 2meqr

r=r

This result is, of course, the same as that given in Eq. (3—40), but it is obtained here
in a much simpler way. We note that the length L of the cylindrical Gaussian surface
does not appear in the final expression; hence we could have chosen a cylinder of a
unit length. -

mmmms EXAMPLE 3-6 Determine the electric field intensity of an infinite planar charge
with a uniform surface charge density p;.

Solution It is clear that the E field caused by a charged sheet of an infinite extent
is normal to the sheet. Equation (3—35) could be used to find E, but this would in-
volve a double integration between infinite limits of a general expression of 1/R?.
Gauss’s law can be used to much advantage here.

We choose as the Gaussian surface a rectangular box with top and bottom faces
of an arbitrary area A equidistant from the planar charge, as shown in Fig. 3-9. The
sides of the box are perpendicular to the charged sheet. If the charged sheet coincides
with the xy-plane, then on the top face,

E-ds =(a,E,)(a,ds) = E,ds.
On the bottom face,

E-ds =(—a,E,) (—a,ds) = E,ds.
Since there is no contribution from the side faces, we have
gﬁ E-ds=2E, [ ds=2E.A
S A
The total charge enclosed in the box is Q = p,A. Therefore,

2E.4 =P,
€o

Area A
Gaussian = Iaz
surface \/‘ - 1
Area A —4; v

Infinite uniform
surface charge, p;

FIGURE 3-9
Applying Gauss’s law to an infinite planar charge (Example 3-6).
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from which we obtain

Ps
E=a,E =a,—, >0, -
2, z>0 (3-42a)
and
E= —akFE, = —a, Ps , z < 0. (3—-42b)
2¢,

Of course, the charged sheet may not coincide with the xy-plane (in which case we
do not speak in terms of above and below the plane), but the E field always points
away from the sheet if p; is ‘positive. It is obvious that the Gaussian surface could
have been a pillbox of any shape, not necessarily rectangular. -

The lighting scheme of an office or a classroom may consist of incandescent
bulbs, long fluorescent tubes, or ceiling panel lights. These correspond roughly to
point sources, line sources, and planar sources, respectively. From Egs. (3—12), (3—40),
and (3-42) we can estimate that light intensity will fall off rapidly as the square of
the distance from the source in the case of incandescent bulbs, less rapidly as the
first power of the distance for long fluorescent tubes, and not at all for ceiling panel
lights.

EXAMPLE 3-7 Determine the E field caused by a spherical cloud of electrons with
a volume charge density p = —p, for 0 < R < b (both p, and b are positive) and
p=0for R>bh.

Solution First we recognize that the given source condition has spherical symmetry.
The proper Gaussian surfaces must therefore be concentric spherical surfaces. We
must find the E field in two regions. Refer to Fig. 3-10.

a) 0<R<b
A hypothetical spherical Gaussian surface S; with R < b is constructed within
the electron cloud. On this surface, E is radial and has a constant magnitude:

E = a kg, ds = agds.
The total outward E flux is
. —_ — 2
gﬁsiE ds = Ey [ ds = ExdnR?.

The total charge enclosed within the Gaussian surface is

0= v
47

=—p, [ dv=—p, 5 R
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/ “Electron
cloud

FIGURE 3-10
Electric field intensity of a spherical electron cloud (Example 3-7).

b)

Substitution into Eq. (3-7) yields

E= -2, R 0<R<b
3¢,

We see that within the uniform electron cloud the E field is directed toward the
center and has a magnitude proportional to the distance from the center.
R=>b
For this case we construct a spherical Gaussian surface S, with R > b outside
the electron cloud. We obtain the same expression for §so E - ds as in case (a).
The total charge enclosed is

47
Q = —Po ? b3'
Consequently,
pob’
E=—a; ", R>b,
a 3¢,R? = b

which follows the inverse square law and could have been obtained directly from
Eq. (3-12). We observe that outside the charged cloud the E field is exactly the
same as though the total charge is concentrated on a single point charge at the
center. This is true, in general, for a spherically symmetrical charged region even
though p is a function of R. -
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The variation of Eg versus R is plotted in Fig. 3—10. Note that the formal solution
of this problem requires only a few lines. If Gauss’s law is not used, it is necessary
(1) to choose a differential volume element arbitrarily located in the electron cloud,
(2) to express its vector distance R to a field point in a chosen coordinate system,
and (3) to perform a triple integration as indicated in Eq. (3—33). This is a hopelessly
involved process. The moral is: Try to apply Gauss’s law if symmetry conditions exist
for the given charge distribution.

Electric Potential

In connection with the null identity in Eq. (2—145) we noted that a curl-free vector
field could always be expressed as the gradient of a scalar field. This induces us to
define a scalar electric potential V such that

E=-VV (3-43)

because scalar quantities are easier to handle than vector quantities. If we can deter-
mine V more easily, then E can be found by a gradient operation, which is a straight-
forward process in an orthogonal coordinate system. The reason for the inclusion of
a negative sign in Eq. (3—43) will be explained presently.

Electric potential does have physical significance, and it is related to the work
done in carrying a charge from one point to another. In Section 3-2 we defined the
electric field intensity as the force acting on a unit test charge. Therefore in moving
a unit charge from point P; to point P, in an electric field, work must be done
against the field and is equal to

w__ f “E.-d¢e  (J/CorV). (3-44)
q P1
Many paths may be followed in going from P, to P,. Two such paths are drawn in
Fig. 3-11. Since the path between P; and P, is not specified in Eq. (3-44), the

FIGURE 3-11
Two paths leading from P, to P, in an electric field.
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question naturally arises, how does the work depend on the path taken? A little
thought will lead us to conclude that W/q in Eq. (3—44) should not depend on the
path; if it did, one would be able to go from P, to P, along a path for which W is
smaller and then to come back to P, along another path, achicving a net gain in
work or energy. This would be contrary to the principle of conservation of energy.
We have already alluded to the path-independent nature of the scalar line integral
of the irrotational (conservative) E field when we discussed Eq. (3—8).

Analogous to the concept of potential energy in mechanics, Eq. (3-44) represents
the difference in electric potential energy of a unit charge between point P, and point
P,. Denoting the electric potential energy per unit charge by V, the electric potential,
we have

V,—V, = — : E-df (V). (3-45)

Mathematically, Eq. (3-45) can be obtained by substituting Eq. (3-43) in Eq. (3-44).
Thus, in view of Eq. (2-88),

Py Py
‘fp. E-d¢ :fm (VV)-(a,d?)
= (Pav=v, -V,

What we have defined in Eq. (3-45) is a potential difference (electrostatic voltage)
between points P, and P,. It makes no more sense to talk about the absolute potential
of a point than about the absolute phase of a phasor or the absolute altitude of a
geographical location; a reference zero-potential point, a reference zero phase (usually
at t = 0), or a reference zero altitude (usually at sea level) must first be specified. In
most (but not all) cases the zero-potential point is taken at infinity. When the reference
zero-potential point is not at infinity, it should be specifically stated.

We want to make two more points about Eq. (3—43). First, the inclusion of the
negative sign is necessary in order to conform with the convention that in going
against the E field the electric potential V increases. For instance, when a d-c battery
of a voltage V, is connected between two parallel conducting plates, as in Fig. 3-12,
positive and negative charges cumulate on the top and bottom plates, respectively.
The E field is directed from positive to negative charges, while the potential increases
in the opposite direction. Second, we know from Section 2—6, when we defined the
gradient of a scalar field, that the direction of VV is normal to the surfaces of constant

|2 Z4
+ +TFF++++++ T

Vo =™ L} lE} | |pirectonor

- Yy ¥y v .r x increasing V
L__‘ 2 FIGURE 3-12
Relative directions of E and increasing V.
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V. Hence if we use directed field lines or streamlines to indicate the direction of the
E field, they are everywhere perpendicular to equipotential lines and equipotential
surfaces.

3-5.1 ELECTRIC POTENTIAL DUE TO A CHARGE DISTRIBUTION

The electric potential of a point at a distance R from a point charge g referred to
that at infinity can be obtained readily from Eq. (3-45):

_ _(® 9 ). _
V= fm (aR 4n€0R2> (ag dR), (3-46)
which gives
y=_1 V). (3-47)
4meyR

This is a scalar quantity and depends on, besides g, only the distance R. The potential
difference between any two points P, and P, at distances R, and R,, respectively,

from g is
V,y =V, v, =2 ! ! (3-48)
21 P2 P17 4nes \R, R,/

This result may appear a little surprising at first, since P, and P, may not liec on
the same radial line through g, as illustrated in Fig. 3—13. However, the concentric
circles (spheres) passing through P, and P, are equipotential lines (surfaces), and
Vp, — Vp, is the same as Vp, — Vp,. From the point of view of Eq. (3-45) we can
choose the path of integration from P, to P; and then from P, to P,. No work is
done from P, to P, because F is perpendicular to d€ = a,R, d¢ along the circular
path (E - d¢ = 0).

The electric potential at R due to a system of n discrete point charges q,, g5, - . . ,
q, located at R/, R, ..., R} is, by superposition, the sum of the potentials due to

— \\PZ
AN
Ry \
P, 3 \
/// \
K
g &
\ / /
\ / /
\\ // /
/
/
R 7 FIGURE 3-13

——— Path of integration about a point charge.
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the individual charges:

_ 1 C qx
V=i Z RoR] ). (3-49)
k=1

Since this is a scalar sum, it is, in general, easier to determine E by taking the negative
gradient of V than from the vector sum in Eq. (3-22) directly.

As an example, let us again consider an electric dipole consisting of charges +¢
and —q with a small separation d. The distances from the charges to a field point
P are designated R, and R_, as shown in Fig. 3-14. The potential at P can be
written down directly:

q 1 1
V= — ). 3-50
4re,, <R+ R_> ( )
If d < R, we have
1 d -t L d
—_ — = ~R Y1+ —— -
R. _(R 2cos 0) ~ R ( +2R cosH> (3-51)
and
1 d -1 ~1 d
R = (R + 3 cos 0) ~ R <1 - 2ARcos 0). (3-52)

Substitution of Egs. (3—51) and (3-52) in Eq. (3-50) gives

V_qdcos@

= 3-53
dme,R? (3-53a)
or
Pag
= V), 3-53b
4rme,R? V) ( )

where p = gd. (The “approximate” sign (~) has been dropped for simplicity.)

FIGURE 3-14
An electric dipole.
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The E field can be obtained from —VV. In spherical coordinates we have

ov ov

E=-VV= —aRﬁ—aem

(3-54)
p

= I R® (ag2 cos 0 + a, sin 6).
0

Equation (3-54) is the same as Eq. (3—31) but has been obtained by a simpler proce-
dure without manipulating position vectors.

EXAMPLE 3-8 Make a two-dimensional sketch of the equipotential lines and the
clectric field lines for an electric dipole.

Solution The equation of an equipotential surface of a charge distribution is ob-
tained by setting the expression for ¥ to equal a constant. Since ¢, d, and ¢, in Eq.
(3-53a) for an electric dipole are fixed quantities, a constant V requires a constant
ratio (cos #/R?). Hence the equation for an equipotential surface is

R = ¢cy+/cos 6, (3-55)

where ¢y, is a constant. By plotting R versus 8 for various values of ¢, we draw the
solid equipotential lines in Fig. 3—15. In the range 0 < § < w/2, V is positive; R is
maximum at § = 0 and zero at § = 90°. A mirror image is obtained in the range
n/2 < 6 < m where V is negative.
The electric field lines or streamlines represent the direction of the E field in
space. We set
d¢€ = kE, (3-56)

where k is a constant. In spherical coordinates, Eq. (3—56) becomes (see Eq. 2—66)
agdR + a,Rd0 + a R sin 0d¢ = k(agEg + a,E, + a,E,), (3-57)

which can be written
dR Rdf® Rsin6do

E. " E, (3-58)
For the electric dipole in Fig. 3—-15 there is no E, component, and
dR  Rdf
2cos sin0
or
gﬁ _ 2 d(sin 0). (3-59)

R sin 0
Integrating Eq. (3-59), we obtain
R = ¢y sin? 6, (3-60)
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V>0

FIGURE 3-15
Equipotential and electric field lines of an electric dipole (Example 3-8).

where cg is a constant. The electric field lines are drawn as dashed lines in Fig. 3-15.

They are rotationally symmetrical about the z-axis (independent of ¢) and are
everywhere normal to the equipotential lines.

-_—

The electric potential due to a continuous distribution of charge confined in a
given region is obtained by integrating the contribution of an element of charge over
the charged region. We have, for a volume charge distribution,

1 [
V= _4—;16—0 v E dv (V) (3—61)




98

3 Static Electric Fields

For a surface charge distribution,

fs, % ds’ (V) (3-62)

47e,

and for a line charge,

pl ’
4n€0 fL ). (3-63)

We note here again that the integrals in Egs. (3—61) and (3—-62) represent integrations
in three and two dimensions respectively.

EXAMPLE 3-9 Obtain a formula for the electric field intensity on the axis of a
circular disk of radius b that carries a uniform surface charge density p;.

Solution Although the disk has circular symmetry, we cannot visualize a surface
around it over which the normal component of E has a constant magnitude; hence
Gauss’s law is not useful for the solution of this problem. We use Eq. (3—62). Working
with cylindrical coordinates indicated in Fig. 3—16, we have

ds' =r'drd¢’
and

R=./z+7r2

The electric potential at the point P(0, 0, z) referring to the point at infinity is

2n
B 4n€0 f f (2% + r’z)l/2 4l

= [2l]-

(3-64)

- 260

FIGURE 3-16
A uniformly charged disk (Example 3-9)
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Therefore,
E=-VV = —a, 6—V
0z
a, P [1—z(z* + b?)~ /2], z>0 (3-65a)
_ 2¢,
—a, 2 (14222 + b))%, z<O. (3-65b)
2¢,

The determination of E field at an off-axis point would be a much more difficult
problem. Do you know why?

For very large z, it is convenient to expand the second term in Egs. (3-65a) and
{3-65b) into a binomial series and neglect the second and all higher powers of the
ratio (b?/z%). We have

b2 -1/2 bz
Substituting this into Egs. (3—65a) and (3-65b), we obtain
(nbp,)
? dmeyz?

Q

a, —
? dneyz?

Q

z 2
4me,z

z>0 (3-66a)

z<0, (3-66b)

where Q is the total charge on the disk. Hence, when the point of observation is very
far away from the charged disk, the E field approximately follows the inverse square
law as if the total charge were concentrated at a point. -

EXAMPLE 3-10 Obtain a formula for the electric field intensity along the axis of
a uniform line charge of length L. The uniform line-charge density is p,.

Solution For an infinitely long line charge, the E field can be determined readily by
applying Gauss’s law, as in the solution to Example 3—5. However, for a line charge
of finite length, as shown in Fig. 3—-17, we cannot construct a Gaussian surface over
which E - ds is constant. Gauss’s law is therefore not useful here.

Instead, we use Eq. (3—63) by taking an element of charge d/' = dz’' at z'. The
distance R from the charge element to the point P(0, 0, z) along the axis of the line
charge is

, L

R=(z-12), z> >

Here it is extremely important to distinguish the position of the field point (un-
primed coordinates) from the position of the source point (primed coordinates). We
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» A0, 0, 2)

L2 FIGURE 3-17
A finite line charge of a uniform line density p, (Example 3—10).

3-6

integrate over the source region:

V= Pe fL/Z dz'

- 4ne, v-Li2z — 7

2NN K (720N R
47e, z —(L/2) 2

The E field at P is the negative gradient of V with respect to the unprimed field
coordinates. For this problem,

a v =a peL >L (3-68
" T e T2 ~68)

(3-67)

E =

The preceding two examples illustrate the procedure for determining E by first
finding V when Gauss’s law cannot be conveniently applied. However, we emphasize
that if symmetry conditions exist such that a Gaussian surface can be constructed over
which E - ds is constant, it is always easier to determine E directly. The potential V,
if desired, may be obtained from E by integration.

Conductors in Static Electric Field

So far we have discussed only the electric field of stationary charge distributions in
free space or air. We now examine the field behavior in material media. In general,
we classify materials according to their electrical properties into three types: conduc-
tors, semiconductors, and insulators (or dielectrics). In terms of the crude atomic
model of an atom consisting of a positively charged nucleus with orbiting electrons,
the electrons in the outermost shells of the atoms of conductors are very loosely held
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and migrate easily from one atom to another. Most metals belong to this group. The
electrons in the atoms of insulators or dielectrics, however, are confined to their
orbits; they cannot be liberated in normal circumstances, even by the application of
an external electric field. The electrical properties of semiconductors fall between
those of conductors and insulators in that they possess a relatively small number of
freely movable charges.

In terms of the band theory of solids we find that there are allowed energy bands "
for electrons, each band consisting of many closely spaced, discrete energy states. Be-
tween these energy bands there may be forbidden regions or gaps where no electrons
of the solid’s atom can reside. Conductors have an upper energy band partially filled
with electrons or an upper pair of overlapping bands that are partially filled so that
the electrons in these bands can move from one to another with only a small change
in energy. Insulators or dielectrics are materials with a completely filled upper band,
so conduction could not normally occur because of the existence of a large energy
gap to the next higher band. If the energy gap of the forbidden region is relatively
small, small amounts of external energy may be sufficient to excite the electrons in
the filled upper band to jump into the next band, causing conduction. Such materials
are semiconductors.

The macroscopic electrical property of a material medium is characterized by a
constitutive parameter called conductivity, which we will define in Chapter 5. The
definition of conductivity is not important in this chapter because we are not dealing
with current flow and are now interested only in the behavior of static electric fields
in material media. In this section we examine the electric field and charge distri-
bution both inside the bulk and on the surface of a conductor.

Assume for the present that some positive (or negative) charges are introduced
in the interior of a conductor. An electric field will be set up in the conductor, the
field exerting a force on the charges and making them move away from one another.
This movement will continue until all the charges reach the conductor surface and
redistribute themselves in such a way that both the charge and the field inside vanish.
Hence,

Inside a Conductor
(Under Static Conditions)

p=0 (3-69)
E=0 (3-70)

When there is no charge in the interior of a conductor (p = 0), E must be zero be-
cause, according to Gauss’s law, the total outward electric flux through any closed
surface constructed inside the conductor must vanish.

The charge distribution on the surface of a conductor depends on the shape of
the surface. Obviously, the charges would not be in a state of equilibrium if there
were a tangential component of the electric field intensity that produces a tangential
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Free space

FIGURE 3-18
A conductor—free space interface.

force and moves the charges. Therefore, under static conditions the E field on a
conductor surface is everywhere normal to the surface. In other words, the surface of a
conductor is an equipotential surface under static conditions. As a matter of fact,
since E = 0 everywhere inside a conductor, the whole conductor has the same elec-
trostatic potential. A finite time is required for the charges to redistribute on a con-
ductor surface and reach the equilibrium state. This time depends on the conductivity
of the material. For a good conductor such as copper this time is of the order of
10719 (s), a very brief transient. (This point will be elaborated in Section 5—4.)

Figure 3-18 shows an interface between a conductor and free space. Consider
the contour abcda, which has width ab = cd = Aw and height bc = da = Ah. Sides
ab and cd are parallel to the interface. Applying Eq. (3-8),! letting Ah — 0, and
noting that E in a conductor is zero, we obtain immediately

gﬁ E-df=E,Aw=0
abcda
or
E, =0, (B-71)

which says that the tangential component of the E field on a conductor surface is zero.
In order to find E,, the normal component of E at the surface of the conductor,
we construct a Gaussian surface in the form of a thin pillbox with the top face in
free space and the bottom face in the conductor where E = 0. Using Eq. (3-7), we
obtain

95E-ds=E,,AS=ﬂs——A—S
S 60
or
B = (3-72)
€o

t We assume that Egs. (3—7) and (3-8) are valid for regions containing discontinuous media.
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Hence, the normal component of the E field at a conductor|[free space boundary is
equal to the surface charge density on the conductor divided by the permittivity of free
space. Summarizing the boundary conditions at the conductor surface, we have

Boundary Conditions
at a Conductor/Free Space Interface

E =0 (3-71)
E, =P (3-72)
€9

When an uncharged conductor is placed in a static electric field, the external
field will cause loosely held electrons inside the conductor to move in a direction
opposite to that of the field and cause net positive charges to move in the direction
of the field. These induced free charges will distribute on the conductor surface and
create an induced field in such a way that they cancel the external field both inside
the conductor and tangent to its surface. When the surface charge distribution reaches
an equilibrium, all four relations, Eqs. (3—69) through (3-72), will hold; and the
conductor is again an equipotential body.

EXAMPLE 3-11 A positive point charge Q is at the center of a spherical conducting
shell of an inner radius R; and an outer radius R,. Determine E and V as functions
of the radial distance R.

Solution The geometry of the problem is shown in Fig. 3--19(a). Since there is spheri-
cal symmetry, it is simplest to use Gauss’s law to determine E and then find V by in-
tegration. There are three distinct regions: (a) R > R,,(b)R; < R < R,,and(c)R < R,.
Suitable spherical Gaussian surfaces will be constructed in these regions. Obviously,
E = agzE; in all three regions.

a) R > R, (Gaussian surface S,):

é E - ds = Eg,4nR* = Q
S €5
or
0
Egj = —2—. 3-73
RU™ 4re,R? ( )

The E field is the same as that of a point charge Q without the presence of the
shell. The potential referring to the point at infinity is

R Q
V,=— Ex))dR = .
1 J‘w ( Rl) 47‘C€0R
b) R; < R < R, (Gaussian surface S,): Because of Eq. (3—70), we know that
Egy = 0. (3-75)

(3-74)
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Electric field intensity and potential variations of a point charge + Q at the center
of a conducting shell (Example 3-11).

Since p = 0 in the conducting shell and since the total charge enclosed in surface
S, must be zero, an amount of negative charge equal to —Q must be induced
on the inner shell surface at R = R;. (This also means that an amount of positive
charge equal to +Q is induced on the outer shell surface at R = R,.) The con-
ducting shell is an equipotential body. Hence,

0

R=R, 47mER,

V=W (3-76)

¢) R < R, (Gaussian surface S3): Application of Gauss’s law yields the same formula
for Eg; as Eg, in Eq. (3-73) for the first region:

90

=, 377
R3™ 4ne,R? B=17

The potential in this region is

Y
G
4meyR *

where the integration constant C is determined by requiring V; at R = R; to
equal V, in Eq. (3-76). We have

_Q (1 1
C_47t60 (R,,_Ri

Vi=—[EgsdR +C =
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and

v =2 <l+i—i> (3-78)
> 4ne,\R 'R, R,/

The variations of E; and V versus R in all three regions are plotted in Figs.
3-19(b) and 3-19(c). Note that while the electric intensity has discontinuous jumps,
the potential remains continuous. A discontinuous jump in potential would mean an
infinite electric field intensity. —

Dielectrics in Static Electric Field

Ideal dielectrics do not contain free charges. When a dielectric body is placed in an
external electric field, there are no induced free charges that move to the surface and
make the interior charge density and electric field vanish, as with conductors. How-
ever, since dielectrics contain bound charges, we cannot conclude that they have no
effect on the electric field in which they are placed.

All material media are composed of atoms with a positively charged nucleus
surrounded by negatively charged electrons. Although the molecules of dielectrics
are macroscopically neutral, the presence of an external electric field causes a force
to be exerted on each charged particle and results in small displacements of positive
and negative charges in opposite directions. These displacements, though small in
comparison to atomic dimensions, nevertheless polarize a dielectric material and
create electric dipoles. The situation is depicted in Fig. 3—20. Inasmuch as electric
dipoles do have nonvanishing electric potential and electric field intensity, we expect
that the induced electric dipoles will modify the electric field both inside and outside
the dielectric material.

The molecules of some dielectrics possess permanent dipole moments, even in
the absence of an external polarizing field. Such molecules usually consist of two or

FIGURE 3-20

External E A cross section of a polarized dielectric medium.
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more dissimilar atoms and are called pelar molecules, in contrast to nonpolar mole-
cules, which do not have permanent dipole moments. An example is the water molecule
H,O, which consists of two hydrogen atoms and one oxygen atom. The atoms do
not arrange themselves in a manner that makes the molecule have a zero dipole mo-
ment; that is, the hydrogen atoms do not lie exactly on diametrically opposite sides
of the oxygen atom.

The dipole moments of polar molecules are of the order of 1073° (C-m). When
there is no external field, the individual dipoles in a polar dielectric are randomly
oriented, producing no net dipole moment macroscopically. An applied electric field
will exert a torque on the individual dipoles and tend to align them with the field in
a manner similar to that shown in Fig. 3-20.

Some dielectric materials can exhibit a permanent dipole moment even in the
absence of an externally applied electric field. Such materials are called electrets.
Electrets can be made by heating (softening) certain waxes or plastics and placing
them in an electric field. The polarized molecules in these materials tend to align
with the applied field and to be frozen in their new positions after they return to
normal temperatures. Permanent polarization remains without an external electric
field. Electrets are the electrical equivalents of permanent magnets; they have found
important applications in high fidelity electret microphones.*

3-7.1 EQUIVALENT CHARGE DISTRIBUTIONS OF POLARIZED DIELECTRICS

To analyze the macroscopic effect of induced dipoles we define a polarization vector,
P, as

nAv
kzl P
P= lim = — C/m?), 3-79
Jim = (C/m?) (3-79)
where n is the number of molecules per unit volume and the numerator represents
the vector sum of the induced dipole moments contained in a very small volume Av.
The vector P, a smoothed point function, is the volume density of electric dipole
moment. The dipole moment dp of an elemental volume dv' is dp = P dv', which
produces an electrostatic potential (see Eq. 3~53b):

Prar 4 (3-80)

dV = ——=dv'.
4meyR?

Integrating over the volume V' of the dielectric, we obtain the potential due to the
polarized dielectric.

t See, for instance, J. M. Crowley, Fundamentals of Applied Electrostatics, Section 83, Wiley, New York,
1986.
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f P ~ IR gy, (3-81)"

where R is the distance from the elemental volume dv’ to a fixed field point. In
Cartesian coordinates,

47re0

=(x—=xP+ -y} +(-z2)? (3-82)
and it is readily verified that the gradient of 1/R with respect to the primed coordi-
nates is

1 ag
"y =22, 3-83
o(l)-2 -
Hence Eq. (3—81) can be written as
1 1
V= P-V{—-]dv. 3-84
4re, fV' <R> v ( )
Recalling the vector identity (Problem 2-28),
V-(fA=fV-A+A-V/f (3-85)

and letting A = P and f = 1/R, we can rewrite Eq. (3-84) as

1 (P V.-p
V= e UV,V (E)dv—fy, - dv:|~ (3-86)

The first volume integral on the right side of Eq. (3—86) can be converted into a
closed surface integral by the divergence theorem. We have

1 Eﬁ'P B f (— V’ P) . 87

- 4re, R 47!360

where a;, is the outward normal from the surface element ds’ of the dielectric. Com-
parison of the two integrals on the right side of Eq. (3—-87) with Egs. (3-62) and
(3—61), respectively, reveals that the electric potential (and therefore the electric field
intensity also) due to a polarized dielectric may be calculated from the contributions
of surface and volume charge distributions having, respectively, densities

Pps=P-a, (3-88)¢

and

p,= —V-P. (3-89)*

t We note here that V on the left side of Eq. (3~81) represents the electric potential at a field point, and
V' on the right side is the volume of the polarized dielectric.

* The prime sign on a, and V has been dropped for simplicity, since Eqs. (3—88) and (3—-89) involve only
source coordinates and no confusion will result.
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These are referred to as polarization charge densities or bound-charge densities. In
other words, a polarized dielectric may be replaced by an equivalent polarization surface
charge density p,, and an equivalent polarization volume charge density p, for field
calculations:

1

V =
4ne,

Qdf 1 Bed/ _
ﬁ’R s+4n€0 v R v. (3-90)

Although Eqgs. (3—88) and (3-89) were derived mathematically with the aid of a
vector identity, a physical interpretation can be provided for the charge distributions.
The sketch in Fig. 3-20 clearly indicates that charges from the ends of similarly
oriented dipoles exist on surfaces not parallel to the direction of polarization. Con-
sider an imaginary elemental surface As of a nonpolar dielectric. The application of
an external electric field normal to As causes a separation d of the bound charges:
positive charges +¢ move a distance d/2 in the direction of the field, and negative
charges —q move an equal distance against the direction of the field. The net total
charge AQ that crosses the surface As in the direction of the field is nq d(As), where
n is the number of molecules per unit volume. If the external field is not normal to
As, the separation of the bound charges in the direction of a, will be d - a, and

AQ = ng(d - a,)(As). (3-91)

But ngd, the dipole moment per unit volume, is by definition the polarization vector
P. We have

AQ = P - a,(As) (3-92)
and
AQ
Pps = E =P- a,,

as given in Eq. (3—88). Remember that a, is always the outward normal. This relation
correctly gives a positive surface charge on the right-hand surface in Fig. 3-20 and
a negative surface charge on the left-hand surface.

For a surface S bounding a volume V, the net total charge flowing out of V as
a result of polarization is obtained by integrating Eq. (3—-92). The net charge remaining
within the volume V is the negative of this integral:

Q=—ﬁPmﬂs

(3-93)

= [, (=v-Pyav={ p,av,
which leads to the expression for the volume charge density in Eq. (3-89). Hence,
when the divergence of P does not vanish, the bulk of the polarized dielectric appears
to be charged. However, since we started with an electrically neutral dielectric body,
the total charge of the body after polarization must remain zero. This can be readily
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verified by noting that
Total charge = gﬁ Ppsds + fV ppdv

=§ﬁsP'ands_fVV'Pdv:0, (3-94)

where the divergence theorem has again been applied.

3-8 Electric Flux Density and Dielectric Constant

Because a polarized dielectric gives rise to an equivalent volume charge density p,,
we expect the electric field intensity due to a given source distribution in a dielectric
to be different from that in free space. In particular, the divergence postulated in Eq.
(3-4) must be modified to include the effect of p,; that is,

1
V-E = . (p + pp) (3-95)
0
Using Eq. (3-89), we have
V- (eE+ P)=p. (3-96)

We now define a new fundamental field quantity, the electric flux density, or electric
displacement, D, such that

D=¢E+P (C/m?). (3-97)

The use of the vector D enables us to write a divergence relation between the electric
field and the distribution of free charges in any medium without the necessity of
dealing explicitly with the polarization vector P or the polarization charge density p,,.
Combining Egs. (3-96) and (3-97), we obtain the new equation

V:D=p (C/m?), (3-98)

where p is the volume density of free charges. Equations (3-98) and (3-5) are the
two fundamental governing differential equations for electrostatics in any medium.
Note that the permittivity of free space, €,, does not appear explicitly in these two
equations.

The corresponding integral form of Eq. (3-98) is obtained by taking the volume
integral of both sides. We have

fV V:-Ddv= fV pdv (3-99)
or

?ﬁs D-ds=Q (O). (3-100)
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Equation (3-100), another form of Gauss’s law, states that the total outward flux of
the electric displacement (or, simply, the total outward electric flux) over any closed
surface is equal to the total free charge enclosed in the surface. As was indicated in
Section 3—4, Gauss’s law is most useful in determining the electric field due to charge
distributions under symmetry conditions.

When the dielectric properties of the medium are linear and isotropic, the polar-
ization is directly proportional to the electric field intensity, and the proportionality
constant is independent of the direction of the field. We write

P = ¢1.E, (3-101)

where y, is a dimensionless quantity called electric susceptibility. A dielectric medium
is linear if y, is independent of E and homogeneous if yx, is independent of space
coordinates. Substitution of Eq. (3—-101) in Eq. (3-97) yields

D = &1 + B

3-102
= ¢y6,E = ¢E (C/m?), ( )

where

=147z =— (3-103)
€o

is a dimensionless quantity known as the relative permittivity or the dielectric constant
of the medium. The coeflicient ¢ = ¢,¢, is the absolute permittivity (often called
simply permittivity) of the medium and is measured in farads per meter (F/m). Air
has a dielectric constant of 1.00059; hence its permittivity is usually taken as that of
free space. The dielectric constants of some common materials are included in Table
3-1 on p. 114 and Appendix B-3.

Note that €, can be a function of space coordinates. If ¢, is independent of posi-
tion, the medium is said to be homogenous. A linear, homogeneous, and isotropic
medium is called a simple medium. The relative permittivity of a simple medium is a
constant.

Later in the book we will learn that the effects of a lossy medium can be rep-
resented by a complex dielectric constant, whose imaginary part provides a mea-
sure of power loss in the medium and is, in general, frequency-dependent. For
anisotropic materials the dielectric constant is different for different directions of the
electric field, and D and E vectors generally have different directions; permittivity is
a tensor. In matrix form we may write

D, €11 €12 €13|[Es
Dy == 621 622 623 Ey . (3_104)
D, €31 €3, €33]|E,

For crystals the reference coordinates can be chosen to be along the principal axes
of the crystal so that the off-diagonal terms of the permittivity matrix in Eq. (3—104)
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are zero. We have

D, e, 0 O]|E,
D,[=]0 ¢ OI|E| (3-105)
D 0 0 e]|E,

z

Media having the property represented by Eq. (3—105) are said to be biaxial. We
may write

D, = ¢ E,, (3-106a)
D, = &,E,, (3-106b)
D, = e,E,. (3-106¢)

If further, €, = €,, then the medium is said to be uniaxial. Of course, if €, = €, = €3,
we have an isotropic medium. We shall deal only with isotropic media in this book.

EXAMPLE 3-12 A positive point charge Q is at the center of a spherical dielectric
shell of an inner radius R; and an outer radius R,. The dielectric constant of the shell
is €,. Determine E, V, D, and P as functions of the radial distance R.

Solution The geometry of this problem is the same as that of Example 3-11. The
conducting shell has now been replaced by a dielectric shell, but the procedure of
solution is similar. Because of the spherical symmetry, we apply Gauss’s law to find
E and D in three regions: (a) R > R,; (b) R; < R < R,; and (¢) R < R;. Potential V
is found from the negative line integral of E, and polarization P is determined by the
relation

P =D — ¢,E = ¢4(¢, — 1)E. (3-107)

The E, D, and P vectors have only radial components. Refer to Fig. 3-21(a), where
the Gaussian surfaces are not shown in order to avoid cluttering up the figure.

a) R>R,
The situation in this region is exactly the same as that in Example 3-11. We
have, from Eqgs. (3—-73) and (3-74),
Y
Epy = 5
RU™ 4ne,R?
Y
V, = .
' 4ne,R
From Egs. (3—102) and (3-107) we obtain

2
47R?

Dpy = €oEg, = (3-108)

and
Pg, = 0. (3-109)
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FIGURE 3-21

Field variations of a point charge + Q at the center of a dielectric shell (Example 3-12).

b) R, <R <R,
The application of Gauss’s law in this region gives us directly
Ero = 47r€0Q€,R2 - 47{8R2 ’ =110
Dp2 = =7 (3-111)
Pg, = (1 — é) 4nQRZ' (3-112)

Note that Dy, has the same. expression as Dy, and that both Eg and Py have a
discontinuity at R = R,. In this region,

v, = —f: EpydR — f: Ex,dR

0 1
R=R.  4me JRo R2 (3-113)

0) 1\1 1
= 1——|— :
4re, €, R,,+e,R
¢) R<R;

Since the medium in this region is the same as that in the region R > R,, the
application of Gauss’s law yields the same expressions for E, Dy, and Py in

= V1|
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both regions:

Q

Eps=—"—>
R3 ™ 47e,R2
Y
Dgy = ——»
R3 ™ 4zR?
Pps=0.
To find V;, we must add to V, at R = R, the negative line integral of Eg;:
R
v, = VZ‘R:Ri - fR‘_ EpsdR

(3-114)
&0 -Di]
4re, €/ R, «)R; R

The variations of €,E and Dy versus R are plotted in Fig. 3-21(b). The difference
(Dr — €oEg) is Py and is shown in Fig. 3-21(c). The plot for V in Fig. 3-21(d) is a
composite graph for V;, V,, and Vj in the three regions. We note that Dy is a con-
tinuous curve exhibiting no sudden changes in going from one medium to another
and that Py exists only in the dielectric region. -

It is instructive to compare Figs. 3-21(b) and 3-21(d) with Figs. 3-19(b) and
3—19(c), respectively, of Example 3—11. From Eqgs. (3-88) and (3-89) we find

'DPSR=R,-:P.(_aR)lR:Rl-: ~PRZR:R,- 5
3-11
-(1-2)mm
on the inner shell surface,
ppSR=RoZP.aR\R=Ro=PR2\R=Ru o116
(-0
on the outer shell surface, and
pp=—V-P
_ % aiR (R?P.) = 0. (3-117)

Equations (3-115), (3-116), and (3-117) indicate that there is no net polarization
volume charge inside the dielectric shell. However, negative polarization surface
charges exist on the inner surface and positive polarization surface charges on the
outer surface. These surface charges produce an electric field intensity that is directed
radially inward, thus reducing the E field in region 2 due to the point charge + @ at
the center.
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TABLE 3-1
Dielectric Constants and Dielectric Strengths of Some Common Materials
Dielectric
Material Constant Dielectric Strength (V/m)

Air (atmospheric pressure) 1.0 3 x 10°
Mineral oil 23 15 x 108
Paper 2~4 15 x 10°
Polystyrene 2.6 20 x 108
Rubber 2.3~4.0 25 x 10°
Glass 4~10 30 x 106
Mica 6.0 200 x 10°

3-8.1 DIELECTRIC STRENGTH

We have explained that an electric field causes small displacements of the bound
charges in a dielectric material, resulting in polarization. If the electric field is very
strong, it will pull electrons completely out of the molecules. The electrons will
accelerate under the influence of the electric field, collide violently with the molecular
lattice structure, and cause permanent dislocations and damage in the material.
Avalanche effect of ionization due to collisions may occur. The material will become
conducting, and large currents may result. This phenomenon is called a dielectric
breakdown. The maximum electric field intensity that a dielectric material can with-
stand without breakdown is the dielectric strength of the material. The approxi-
mate dielectric strengths of some common substances are given in Table 3—1. The
dielectric strength of a material must not be confused with its dielectric constant.

A convenient number to remember is that the dielectric strength of air at the
atmospheric pressure is 3 kV/mm. When the electric field intensity exceeds this value,
air breaks down. Massive ionization takes place, and sparking (corona discharge)
follows. Charge tends to concentrate at sharp points. In view of Eq. (3-72), the
electric field intensity in the immediate vicinity of sharp points is much higher than
that at points on a relatively flat surface with a small curvature. This is the principle
upon which a lightning arrester with a sharp metal lightning rod on top of tall
buildings works. When a cloud containing an abundance of electric charges ap-
proaches a tall building equipped with a lightning rod connected to the ground,
charges of an opposite sign are attracted from the ground to the tip of the rod,
where the electric field intensity is the strongest. As the electric field intensity ex-
ceeds the dielectric strength of the wet air, breakdown occurs, and the air near the
tip is ionized and becomes conducting. The electric charges in the cloud are then
discharged safely to the ground through the conducting path.

The fact that the electric field intensity tends to be higher at a point near the
surface of a charged conductor with a larger curvature is illustrated quantitatively
in the following example.
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EXAMPLE 3-13 Consider two spherical conductors with radii b, and b, (b, > b,)
that are connected by a conducting wire. The distance of separation between the
conductors is assumed to be very large in comparison to b, so that the charges on
the spherical conductors may be considered as uniformly distributed. A total charge
Q is deposited on the spheres. Find (a) the charges on the two spheres, and (b) the
electric field intensities at the sphere surfaces.

Solution

a) Refer to Fig. 3-22. Since the spherical conductors are at the same potential,

we have
0, _ 0,
dmegh,  4meyh,
or
0. _b
QZ b2
Hence the charges on the spheres are directly proportional to their radii. But,
since
0:+0,=0,
we find that
__b 4 o __ b
Ql_b1+b2Q an Qz—b1+b2Q'

b) The electric field intensities at the surfaces of the two conducting spheres are

Q1 0,

in = 2 2n = 9
4me b1 47€,b3

Eip _ (’Q)Z&:b_z.
E2n bl QZ b 1
The electric field intensities are therefore inversely proportional to the radii,

being higher at the surface of the smaller sphere which has a larger curvature.
L

and

SO

FIGURE 3-22
Two connected conducting spheres (Example 3-13).
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3-9 Boundary Conditions for Electrostatic Fields

Electromagnetic problems often involve media with different physical properties and
require the knowledge of the relations of the field quantities at an interface between
two media. For instance, we may wish to determine how the E and D vectors change
in crossing an interface. We already know the boundary conditions that must be
satisfied at a conductor/free space interface. These conditions have been given in
Egs. (3-71) and (3-72). We now consider an interface between two general media
shown in Fig. 3-23.

Let us construct a small path abcda with sides ab and cd in media 1 and 2,
respectively, both being parallel to the interface and equal to Aw. Equation (3-8)
is applied to this path. If we let sides bc = da = Ah approach zero, their contribu-
tions to the line integral of E around the path can be neglected. We have

¢ E-df=E,-Aw+E;-(~Aw) = Ey Aw— Ey Aw =0,

Therefore

E\ = Ej (V/m), (3-118)

which states that the tangential component of an E field is continuous across an inter-
face. Eq. (3—118) simplifies to Eq. (3—71) if one of the media is a conductor. When
media 1 and 2 are dielectrics with permittivities €, and e,, respectively, we have
D D
e 22 (3-119)
€1 €
In order to find a relation between the normal components of the fields at a
boundary, we construct a small pillbox with its top face in medium 1 and bottom

\I‘_~
.

Ah -
Ps 3;1-:’ ‘DZ
E; Medium 1
e

Ah)/b

FIGURE 3-23 )
An interface between two media.
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face in medium 2, as illustrated in Fig. 3-23. The faces have an area AS, and the
height of the pillbox Ah is vanishingly small. Applying Gauss’s law, Eq. (3-100),
to the pillbox," we have

$D-ds=(D, a, + D,-a,)AS

=a,, (D, —D,)AS (3-120)
= p;AS,
where we have used the relation a,, = —a,,. Unit vectors a,; and a,, are, respec-

tively, outward unit normals from media 1 and 2. From Eq. (3-120) we obtain

a,,° (D, — D,) = p, (3-121a)

or

Dy, —Dy=p, (C/m?), (3-121b)

where the reference unit normal is outward from medium 2.

Eq. (3-121b) states that the normal component of D field is discontinuous across
an interface where a surface charge exists—the amount of discontinuity being
equal to the surface charge density. If medium 2 is a conductor, D, =0 and Eq.
(3—-121b) becomes

Dln = 61E1n = Ps» (3—122)

which simplifies to Eq. (3-72) when medium 1 is free space.
When two dielectrics are in contact with no free charges at the interface, p, = 0,
we have
D,,=D,, (3-123)
or
€,E,, = &,E,,. (3-124)

Recapitulating, we find that the boundary conditions that must be satisfied for static
electric fields are as follows:

Tangential components, E,=E,; (3-125)
Normal components, a, (D, -D,)=p.. (3-126)

EXAMPLE 3-14 A lucite sheet (¢, = 3.2) is introduced perpendicularly in a uniform
electric field E, = a,E, in free space. Determine E,, D;, and P, inside the lucite.

" Equations (3-8) and (3—100) are assumed to hold for regions containing discontinuous media. See C. T.
Tai, “On the presentation of Maxwell’s theory,” Proceedings of the IEEE, vol. 60, pp. 936-945, August
1972.



118 3 Static Electric Fields

=

E, = ayE E
0 xLo %
o = Ax€QLx 2

Free Lucite Free
space | € = 3.2 | space FIGURE 3-24
P A lucite sheet in a uniform electric field (Example 3-14).

Solution We assume that the introduction of the lucite sheet does not disturb the
original uniform electric field E,. The situation is depicted in Fig. 3—24. Since the
interfaces are perpendicular to the electric field, only the normal field components
need be considered. No free charges exist.

Boundary condition Eq. (3—123) at the left interface gives

Di = axDi = axDo
or
D; = a € E,.

There is no change in electric flux density across the interface. The electric field
intensity inside the lucite sheet is
1 1 E
Ei =—D =_Di — ax—o.

€ ' €6 3.2

The polarization vector is zero outside the lucite sheet (P, = 0). Inside the sheet,

1
Pi = Di — eoEi — ax<1 = 3._2> EOEO

=2,06875¢,E, (C/m?). —

Clearly, a similar application of the boundary condition Eq. (3—123) on the right
interface will yield the original E, and D, in the free space on the right of the lucite
sheet. Does the solution of this problem change if the original electric field is not
uniform; that is, if E, = a, E(y)?

mmsmss EXAMPLE 3-15 Two dielectric media with permittivities €, and €, are separated
by a charge-free boundary as shown in Fig. 3-25. The electric field intensity in medium
1 at the point P, has a magnitude E, and makes an angle «, with the normal
Determine the magnitude and direction of the electric field intensity at point P, in
medium 2.
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FIGURE 3-25
Boundary conditions at the interface between two dielectric
media (Example 3-15).

Solution Two equations are needed to solve for two unknowns E,, and E,,. After
E,, and E,, have been found, E, and «, will follow directly. Using Eqgs. (3-118) and
(3—123), we have
E,sinoa, = E{ sin o (3-127)
and
€,E, cosa, =¢€,E, cosay. (3-128)

Division of Eq. (3—127) by Eq. (3—128) gives

taney & (3-129)
tana; €

The magnitude of E, is
E, = \JE% + E%, = JJ(E, sin a,)? + (E, cos a,)>

€ 2711/2
= li(E1 sin a;)? + (-e— E, cos a1> :|
2

€ 2711/2
E,=E, |:sin2 oy + <€—1 cos cx1> ] . (3-130)

2

or

By examining Fig. 3-25, can you tell whether €, is larger or smaller than €,? mm

=sssmm EXAMPLE 3-16 When a coaxial cable is used to carry electric power, the radius of
the inner conductor is determined by the load current, and the overall size by the
voltage and the type of insulating material used. Assume that the radius of the inner
conductor is 0.4 (cm) and that concentric layers of rubber (€,, = 3.2) and polystyrene
(€,, = 2.6) are used as insulating materials. Design a cable that is to work at a voltage
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rating of 20 (kV). In order to avoid breakdown due to voltage surges caused by
lightning and other abnormal external conditions, the maximum electric field inten-
sities in the insulating materials are not to exceed 25% of their dielectric strengths.

Solution From Table 3-1, p. 114, we find the dielectric strengths of rubber and
polystyrene to be 25 x 10° (V/m) and 20 x 10° (V/m), respectively. Using Eq. (3—40)
for specified 25% of dielectric strengths, we have the following.

1
In rubber: Max E, = 0.25 x 25 x 10° = Pe < ) (3-131a)

"~ 2me, \3.2r;
: _ 6 _ Pe 1 _
In polystyrene: Max E, = 0.25 x 20 x 10 e, ( 7 6rp>' (3-131b)
Combination of Egs. (3—131a) and (3—131b) yields
r, = 1.54r; = 0.616 (cm). (3-132)

Equation (3-132) indicates that the insulating layer of polystyrene should be placed
outside of that of rubber, as shown in Fig. 3—26(a). (It would be interesting to deter-
mine what would happen if the polystyrene layer were placed inside the rubber layer.)

A
2 6.25F——
> 5.00F-- 4
2 4.06|-— =
z 3N E
S =
K IpEmes
0 I =3 0 L >
0 r, rp ro r 0 r, rp ro r
(b) (©)
FIGURE 3-26

Cross section of coaxial cable with two different kinds of insulating material
(Example 3-16).
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The cable is to work at a potential difference of 20,000 (V) between the inner and
outer conductors. We set

- f " E,dr — [ E,dr = 20,000,
where both E, and E, have the form given in Eq. (3—40). The above relation leads to

1 1
Pe <—1nfi+—~1n’l> = 20,000

2reg \&, T

p €pr r;

or

Ds 1 T, 1
Ime. <2.6 In 154, + 313 In 1.54> = 20,000. (3-133)
Since r; = 0.4 (cm) is given, r, can be determined by finding the factor p,/2ne, from
Eq. (3-131a) and then using it in Eq. (3-133). We obtain p,/2ne, = 8 x 104, and
r, = 2.08r; = 0.832 (cm).

In Figs. 3-26(b) and 3-26(c) are plotted the variations of the radial electric field
intensity E and the potential V referred to that of the outer sheath. Note that E has
discontinuous jumps, while the V curve is continuous. The reader should verify all the
indicated numerical values. -

3-10 Capacitance and Capacitors

From Section 3-6 we understand that a conductor in a static electric field is an
equipotential body and that charges deposited on a conductor will distribute them-
selves on its surface in such a way that the electric field inside vanishes. Suppose the
potential due to a charge Q is V. Obviously, increasing the total charge by some factor
k would merely increase the surface charge density p, everywhere by the same factor
without affecting the charge distribution because the conductor remains an equipo-
tential body in a static situation. We may conclude from Eq. (3—62) that the potential
of an isolated conductor is directly proportional to the total charge on it. This may
also be seen from the fact that increasing V by a factor of k increases E = —VV by
a factor of k. But from Eq. (3-72), E = a,p//e,; it follows that p,, and consequently
the total charge Q will also increase by a factor of k. The ratio Q/V therefore remains
unchanged. We write

Q=CV, (3-134)

where the constant of proportionality C is called the capacitance of the isolated con-
ducting body. The capacitance is the electric charge that must be added to the body
per unit increase in its electric potential. Its SI unit is coulomb per volt, or farad (F).

Of considerable importance in practice is the capacitor, which consists of two
conductors separated by free space or a dielectric medium. The conductors may be
of arbitrary shapes as in Fig. 3-27. When a d-c voltage source is connected between
the conductors, a charge transfer occurs, resulting in a charge + @ on one conductor
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FIGURE 3-27
A two-conductor capacitor.

and —Q on the other. Several electric field lines originating from positive charges
and terminating on negative charges are shown in Fig. 3-27. Note that the field lines
are perpendicular to the conductor surfaces, which are equipotential surfaces. Equa-
tion (3—134) applies here if V is taken to mean the potential difference between the
two conductors, V;,. That is,

Q

O
V12

(F). (3-135)

The capacitance of a capacitor is a physical property of the two-conductor system.
It depends on the geometry of the conductors and on the permittivity of the medium
between them; it does not depend on either the charge Q or the potential difference
V,,. A capacitor has a capacitance even when no voltage is applied to it and no free
charges exist on its conductors. Capacitance C can be determined from Eq. (3-135)
by either (1) assuming a V;, and determining Q in terms of V;,, or (2) assuming a
0 and determining V;, in terms of Q. At this stage, since we have not yet studied
the methods for solving boundary-value problems (which will be taken up in Chapter
4), we find C by the second method. The procedure is as follows:

1. Choose an appropriate coordinate system for the given geometry.
2. Assume charges +Q and —Q on the conductors.
3. Find E from Q by Eq. (3-122), Gauss’s law, or other relations.
4. Find V;, by evaluating
Vio=— [ E-de
from the conductor carrying —Q to the other carrying + Q.
5. Find C by taking the ratio Q/V,,.
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EXAMPLE 3-17 A parallel-plate capacitor consists of two parallel conducting plates
of area S separated by a uniform distance d. The space between the plates is filled
with a dielectric of a constant permittivity €. Determine the capacitance.

Solution A cross section of the capacitor is shown in Fig. 3—28. It is obvious that
the appropriate coordinate system to use is the Cartesian coordinate system. Follow-
ing the procedure outlined above, we put charges +Q and —Q on the upper and
lower conducting plates, respectively. The charges are assumed to be uniformly dis-
tributed over the conducting plates with surface densities + p, and — p,, where

From Eq. (3—122) we have
Ps Y

E=—-a—=—-a =,
Ve YeS

which is constant within the dielectric if the fringing of the electric field at the edges
of the plates is neglected. Now

Vio=—[ " E-de = —f:(—ay%>-(aydy)=%d.

Therefore, for a parallel-plate capacitor,

S
C=g=em (3-136)

which is independent of Q or V;,. -

For this problem we could have started by assuming a potential difference V;,
between the upper and lower plates. The electric field intensity between the plates is
uniform and equals

E = Via
=
Dielectric
" (perrjlrlittivity €) Ar
o R i R FRa
| /
} E
: FIGURE 3-28
S e o, s Cross section of a parallel-plate capacitor

(Example 3-17).
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The surface charge densities at the upper and lower conducting plates are + p, and
— p,, respectively, where, in view of Eq. (3—-72),
Vg

ps=€Ey=€7

Therefore, Q = p,S = (S/d)V;, and C = Q/V;, = €S/d, as before.

EXAMPLE 3-18 A cylindrical capacitor consists of an inner conductor of radius a
and an outer conductor whose inner radius is b. The space between the conductors
is filled with a dielectric of permittivity €, and the length of the capacitor is L. Deter-
mine the capacitance of this capacitor.

Solution We use cylindrical coordinates for this problem. First we assume charges
+Q and —Q on the surface of the inner conductor and the inner surface of the outer
conductor, respectively. The E field in the dielectric can be obtained by applying
Gauss’s law to a cylindrical Gaussian surface within the dielectric a < r < b. (Note
that Eq. (3—122) gives only the normal component of the E field at a conductor surface.
Since the conductor surfaces are not planes here, the E field is not constant in the
dielectric and Eq. (3—122) cannot be used to find E in the a < r < b region.) Referring
to Fig. 3-29 and applying Gauss’s law, we have

E=akE Q

e 3-137
rr = 3 2nelr ( )

Again we neglect the fringing effect of the field near the edges of the conductors. The
potential difference between the inner and outer conductors is

_ r=a . _ a Q .
Vi=—[_'E-dt = —L ("T&E) (a, dr)

__ 9 b
" 2neL i (5)

(3-138)

FIGURE 3-29
A cylindrical capacitor (Example 3—18).
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Therefore, for a cylindrical capacitor,

2nel
e
In <~>
a
We could not solve this problem from an assumed V,, because the electric field
is not uniform between the inner and outer conductors. Thus we would not know how

to express E and Q in terms of V,, until we learned how to solve such a boundary-
value problem. -

_9 _ .
C_Vab_ (3-139)

EXAMPLE 3-19 A spherical capacitor consists of an inner conducting sphere of
radius R; and an outer conductor with a spherical inner wall of radius R,. The space
in between is filled with a dielectric of permittivity . Determine the capacitance.

Solution Assume charges +Q and —Q on the inner and outer conductors, respec-
tively, of the spherical capacitor in Fig. 3—-30. Applying Gauss’s law to a spherical
Gaussian surface with radius R(R; < R < R,), we have

E=apkr =2z 75

_ Ri _ R Q _ Q 1 1
F= —fRo B= () = fRo 4neR? dR = 4ne <Ri R,,>'

Therefore, for a spherical capacitor,

0 47e
C==
Vv

11 (3-140)
R, R, —

For an isolated conducting sphere of a radius R;, R, — o, C = 4neR,.

Dielectric, €

FIGURE 3-30
A spherical capacitor (Example 3-19).
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Cy Cy (o
|_+—Q”Q+Ql l—Q "_@4 -0 _+Q‘| -0
&g V

+

" g“—V—’ FIGURE 3-31
= + ~  Series connection of capacitors.

3-10.1 SERIES AND PARALLEL CONNECTIONS OF CAPACITORS

Capacitors are often combined in various ways in electric circuits. The two basic ways
are series and parallel connections. In the series, or head-to-tail, connection shown
in Fig. 3-31, the external terminals are from the first and last capacitors only. When
a potential difference or electrostatic voltage V is applied, charge cumulations on the
conductors connected to the external terminals are +Q and — Q. Charges will be
induced on the internally connected conductors such that +Q and —Q will appear
on each capacitor independently of its capacitance. The potential differences across
the individual capacitors are Q/C,, Q/C,, ..., Q/C,, and

g 0 0 Y

V=2 %2 4 % ... =,
¢, ¢ ¢ te,

where C,, is the equivalent capacitance of the series-connected capacitors. We have

= 44— (3-141)

In the parallel connection of capacitors the external terminals are connected to
the conductors of all the capacitors as in Fig. 3-32. When a potential difference V
is applied to the terminals, the charge cumulated on a capacitor depends on its
capacitance. The total charge is the sum of all the charges.

0=0,+Q,+ - +0,

Therefore, the equivalent capacitance of the parallel-connected capacitors is

t Capacitors, whatever their actual shape, are conventionally represented in circuits by pairs of parallel bars.
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-0 C

; ‘ +Q| -0
C,, E B je——— ) ———»
+in I“Qn f é -

y
[ 3 FIGURE 3-32

= Parallel connection of capacitors.

We note that the formula for the equivalent capacitance of series-connected capacitors
is similar to that for the equivalent resistance of parallel-connected resistors and that
the formula for the equivalent capacitance of parallel-connected capacitors is similar
to that for the equivalent resistance of series-connected resistors. Can you explain
this?

s EXAMPLE 3-20 Four capacitors C; = 1 (uF), C, = 2 (uF), C3 = 3 (uF), and C, =

I

4 (uF) are connected as in Fig. 3-33. A d-c voltage of 100 (V) is applied to the external
terminals a-b. Determine the following: (a) the total equivalent capacitance between
terminals a—b, (b) the charge on each capacitor, and (c) the potential difference across
each capacitor.

G
11 c 11
1t
Cy
4 Va—
+ o+ i ”
C3 v
11 + 4
i
—
||ll b
+ - FIGURE 3-33

100 (V) A combination of capacitors (Example 3-20).
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Solution

a) The equivalent capacitance C,, of C, and C, in series is

1 Cc,C 2
Cp, = =12 =2 (uF).
PU/C)+(1/C)  C+Cy 3
The combination of C,, in paraliel with C; gives
Ci23=Ciy+Cy=4 (uF)
The total equivalent capacitance C,, is then

Ci,5C, 44
Cp=—"—"=—=1913 (uF).
ab C123 + C4 23 (/’t )
b) Since the capacitances are given, the voltages can be found as soon as the charges
have been determined. We have four unknowns: Q,, @,, Q5, and Q,. Four equa-

tions are needed for their determination.

Series connection of C, and C,: Q. =0,
Kirchhoft’s voltage law, V; + V, = V;: 2 + & = &
¢, G G
: s - . Q3 Q4 _
Kirchhoff’s voltage law, V; + V, = 100: == + == = 100.
Series connection at d: 0,4+ Q=0
Using the given values of Cy, C,, C;, and C, and solving the equations, we
obtain
800
=Q,=-——-=348 (uC
Ql QZ 23 (l’t )’
3600
=—— = 156.
4400
= —— = 191]. .
Qs 73 3 (u0
¢) Dividing the charges by the capacitances, we find
9,
V, ==>=348 (V
1 C1 ( )7
9,
V,==22=174 (V
2 C2 ( )7
0,
V;===522 (V
3 C3 ( )a
o
V, =22 =47, .
=, 7.8 (V)

These results can be checked by verifying that V, + V, = V; and that V; + V, =
100 (V). —
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3-10.2 CAPACITANCES IN MULTICONDUCTOR SYSTEMS

We now consider the situation of more than two conducting bodies in an isolated
system, such as that shown in Fig. 3-34. The positions of the conductors are arbi-
trary, and one of the conductors may represent the ground. Obviously, the presence
of a charge on any one of the conductors will affect the potential of all the others.
Since the relation between potential and charge is linear, we may write the following
set of N equations relating the potentials Vi, V,, ..., Vy of the N conductors to the

charges Q,, Q,,..., Qy:
Vi =p11Q1 + P120Q; + -+ + P1aQn>
Va =D21Q1 + 2205+ + P2nQys (3-143)

Vv =pni1Q1 + Pn2@2 + - + PunQn-

In Eqs. (3-143) the p;;’s are called the coefficients of potential, which are constants
whose values depend on the shape and position of the conductors as well as the
permittivity of the surrounding medium. We note that in an isolated system,

0:+Q:4+Q3+ -+ Qy=0. (3-144)

The N linear equations in (3—143) can be inverted to express the charges as functions
of potentials as follows:

Qi =cuVi+eVot+ -+ cinn

=cy Vi +cpVo+ -+ NV,
22 2171 2272 2N'N (3_145)

On=cyiVi +cnaVa + - + ennViy,

where the c;;’s are constants whose values depend only on the p;;’s in Egs. (3-143).
The coefficients c;’s are called the coefficients of capacitance, which equal the ratios
of the charge Q; on and the potential V; of the ith conductor (i = 1,2,..., N) with
all other conductors grounded. The c;;’s (i # j) are called the coefficients of induction.
If a positive Q; exists on the ith conductor, V; will be positive, but the charge Q;

FIGURE 3-34
A multiconductor system.
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induced on the jth (j # i) conductor will be negative. Hence the coefficients of capac-
itance c;; are positive, and the coefficients of induction c;; are negative. The condition
of reciprocity guarantees that p;; = p; and ¢;; = c;;.

To establish a physical meaning to the coefficients of capacitance and the coef-
ficients of induction, let us consider a four-conductor system as depicted in Fig. 3—-34
with the stipulation that the conductor labeled N is now the conducting earth at
zero potential and is designated by the number 0. A schematic diagram of the four-
conductor system is shown in Fig. 3-35, in which the conductors 1, 2, and 3 have
been drawn as simple dots (nodes). Coupling capacitances have been shown between
pairs of nodes and between the three nodes and the ground. If Q,, 9,, Q5 and V,, V,,
V, denote the charges and the potentials, respectively, of conductors 1, 2, and 3, the
first three equations in (3—145) become

Q1 =c V1 + c2Va + ¢35V, (3—146a)
0, =c12V1 + ¢, Vo + €23Vs, (3-146b)
Q3 = c13V1 + 23V, + ¢33V, (3—146¢)

where we have used the symmetry relation c;; = c;;. On the other hand, we can write
another set of three Q ~ V relations based on the schematic diagram in Fig. 3-35:

Q1 = C10V1 + C12(V1 - Vz) g C13(V1 - Vs)a (3-147a)
0, = CyoVy + Cip(V, — V) + Cys(V, — Va), (3-147b)
03 =C30V5 + Ci3(V3 = V) + Cys(Vs = 1)), (3-147¢)

where C,g, Cyo, and C;, are self-partial capacitances and C;; (i #j) are mutual
partial capacitances.
Equations (3—147a), (3—147b), and (3—147c) can be rearranged as

0:1=(Cio+ Ci3 + C3)V; — CyuV;, — Ci3V3, (3-148a)
0, = —C,Vi +(Cyo + Cyp + Cy3)V, — Cy5Vs3, (3-148b)
Q3= —C3V1 — Cy3V, +(C30 + Cy3 + Cra)Vs. (3-148¢)

C3

Cis

//// // 0/ // //// %—l—:— IST(I:gt:rjrlltllzlcs _d?;zgram of three conductors

and the ground.
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Comparing Egs. (3—148) with Egs. (3—146), we obtain

¢11=Cio+ C12 + Cys, (3-1492)
€22 = Cy0+ C13 + Cy3, (3—149b)
C33 = C30 + C13 + C23, (3—1490)
and
¢i2=—Cyy, (3-150a)
€23 = —Cys, (3-150b)
¢13 = —Cys. (3-150c¢)

On the basis of Eq. (3—149a) we can interpret the coefficient of capacitance ¢y
as the total capacitance between conductor 1 and all the other conductors connected
together to ground; similarly for c¢,, and c;5. Equations (3—150) indicate that the
coefficients of inductances are the negative of the mutual partial capacitances. In-
verting Eqgs. (3—149), we can express the conductor-to-ground capacitances in terms
of the coefficients of capacitance and coefficients of induction:

Cio=c11 +¢1p + 43, (3-151a)
Cro=cy3 +¢13 + Ca3, (3-151b)
C30 = C33 + Ci3 + Cy3. (3‘1510)

EXAMPLE 3-21 Three horizontal parallel conducting wires, each of radius a and
isolated from the ground, are separated from one another as shown in Fig. 3-36. As-
suming d > a, determine the partial capacitances per unit length between the wires.

Solution We designate the wires as conductors 0, 1, and 2, as indicated in Fig. 3—36.
Choosing conductor 0 as the reference and using Eq. (3—138), we can write two equa-
tions for the potential differences V,, and V,, due to the three wires as follows:

Peo 4 Pn d | Pe 3d
=—In- In— In —
107 2ne, 1 + 2me, e 2ne, 2d

or

d 3
27{601/10 = Pso ln% + g1 In E + pso In 59 (3-152a)

FIGURE 3-36
Three parallel wires (Example 3-21).
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where p.o, ps1, and p,, denote the charges per unit length on wires 0, 1, and 2
respectively. Similarly,

a d 3d
27'560]/20 = plO ln g + p“ 11‘1 ﬂ + pIZ ln 7 (3—152b)

For the isolated system of three conductors we have p,, + p,; + ps» =0, or

Peo = —(Ps1 + Pr2)- (3-153)
Combination of Eqs. (3-152a), (3—152b), and (3—153) yields
d 3d
3d 3d
27[€0I/20 = p(l ln ’2'21‘ + p,22 ln ;' (3—154b)

Equations (3—154a) and (3—154b) can be used to solve for p,, and p,, as functions
of Vi, and V.

3d 3d
Pe1 = A0<V102 In ; - 1/20 In 5{;), (3—1553.)
3d d
Ppy = A0<— Violn 5a T V202In 5), (3-155b)
where
Ay = 2néo 3-156
Y 3d\* (3-156)
4dIn-In——{Iln—
a a 2a

Comparing Eqs. (3—155) with Eqgs. (3—146), (3—148), and (3—151), we obtain the fol-
lowing partial capacitances per unit length for the given three-wire system:

Cy,=— =A ey 3-157.

12 Ci2 oln 22 ( a)
3d 3d

== —_ . R -—1

Cio=C¢C11+ €42 A0<2 In . In 2a>’ (3-157b)
d 3d

Cyo = =Ag{2In-—In—). 3-157

20 = Ca3 + Cy2 0< na n2a> ( <)

3-10.3 ELECTROSTATIC SHIELDING

Electrostatic shielding, a technique for reducing capacitive coupling between con-
ducting bodies, is important in some practical applications. Let us consider the
situation shown in Fig. 3-37, in which a grounded conducting shell 2 completely
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FIGURE 3-37
Tllustrating electrostatic shielding.

encloses conducting body 1. Setting ¥, = 0 in Eq. (3—147a), we have
01 = CyoVy1 + CioVy + Cya(Vy — Vi) (3-158)

When Q, = 0, there is no field inside shell 2; hence body 1 and shell 2 have the same
potential, V; = V, = 0. From Eq. (3—158) we see that the coupling capacitance C, 5
must vanish, since V; is arbitrary. This means that a change in V; will not affect Q,,
and vice versa. We then have electrostatic shielding between conducting bodies 1
and 3. Obviously, the same shielding effectiveness is obtained if the grounded con-
ducting shell 2 encloses body 3 instead of body 1.

3-11 Electrostatic Energy and Forces

In Section 3-5 we indicated that electric potential at a point in an electric field is
the work required to bring a unit positive charge from infinity (at reference zero-
potential) to that point. To bring a charge Q, (slowly, so that kinetic energy and
radiation effects may be neglected) from infinity against the field of a charge Q, in
free space to a distance R, ,, the amount of work required is

Q
Wo=0,Vy=0Qyp—=p—
0 %12

(3-159)

Because electrostatic fields are conservative, W, is independent of the path followed
by Q,. Another form of Eq. (3—-159) is

2,
W, =0, ——=0,V. 3-160
> =0 4ne,R,, o ( )

This work is stored in the assembly of the two charges as potential energy. Combining
Egs. (3—-159) and (3—-160), we can write

Wz == %(Ql V1 + Qsz) (3-161)

Now suppose another charge Q5 is brought from infinity to a point that is R,
from Q, and R,; from Q,; an additional amount of work is required that equals

&y o)

4megR,;  4megR,;

AW = Q,V; = Q3< (3-162)
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The sum of AW in Eq. (3-162) and W, in Eq. (3—159) is the potential energy, W,
stored in the assembly of the three charges Q,, Q,, and Q5. That is,

1 (QIQZ Q1Q3+Q2Q3>.

+
4me,

W, =W, + AW =
? : Ry» Ry Ry

(3-163)

We can rewrite W, in the following form:
1 2, Qs 0, Qs
Wy ==
T2 |:Q1<47‘C€0R12 + 47eyR 4 +0: 4neyR, + 4meoR,5

Q4 Q, (3-164)
+ Q3<47‘C€0R13 + 4n€0R23)]

=3(Q,Vy + 0,V + Q3V3).

In Eq. (3-164), V;, the potential at the position of @, is caused by charges Q, and
Q5; it is different from the V, in Eq. (3-160) in the two-charge case. Similarly, V,
and V; are the potentials at Q, and Qj, respectively, in the three-charge assembly.

Extending this procedure of bringing in additional charges, we arrive at the
following general expression for the potential energy of a group of N discrete point
charges at rest. (The purpose of the subscript e on W, is to denote that the energy
is of an electric nature.) We have

N
1
W.=> ,; o¥ ) (3-165)

where V,, the electric potential at Q,, is caused by all the other charges and has the
following expression:

N
1 )

V. = =1 3-166

k 47, 21 Ry ( )

G#k0
Two remarks are in order here. First, W, can be negative. For instance, W, in Eq.
(3—159) will be negative if Q, and Q, are of opposite signs. In that case, work is done
by the field (not against the field) established by Q, in moving Q, from infinity.
Second, W, in Eq. (3—165) represents only the interaction energy (mutual energy) and
does not include the work required to assemble the individual point charges them-
selves (self-energy).

The SI unit for energy, joule (J), is too large a unit for work in physics of elemen-
tary particles, where energy is more conveniently measured in terms of a much smaller
unit called electron-volt (€V). An electron-volt is the energy or work required to move
an electron against a potential difference of one volt.

1 (€V)=(1.60x 10719 x 1 = 1.60 x 10-1°  (J). (3-167)

Energy in (eV) is essentially that in (J) per unit electronic charge. The proton beams
of the world’s most powerful high-energy particle accelerator collide with a kinetic
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energy of two trillion electron-volts (2 TeV), or (2 x 10'?) x (1.60 x 107%) = 3.20 x
10~7(J). A binding energy of W =5 x 107 (J) in an ionic crystal is equal to
Wie =5 x 10719/1.60 x 10~ 1% = 3.125 (eV), which is a more convenient number to
use than the one in terms of joules.

EXAMPLE 3-22 Find the energy required to assemble a uniform sphere of charge
of radius b and volume charge density p.

Solution Because of symmetry, it is simplest to assume that the sphere of charge is
assembled by bringing up a succession of spherical layers of thickness dR. At a radius
R shown in Fig. 3-38 the potential is

Or
V = )
R™ 47e,R

where Qp is the total charge contained in a sphere of radius R:
Qg = p3nR>.
The differential charge in a spherical layer of thickness dR is
dQr = pAnR*dR,

and the work or energy in bringing up dQj is
4
AW = VpdQg = -~ p>R*dR.
3¢,

Hence the total work or energy required to assemble a uniform sphere of charge of
radius b and charge density p is

4z b 4np?b®
W = dW =—p2 R4 dR — . -1
| e [; e O (3-168)
In terms of the total charge
4n

— — b3

Q=p3b%
FIGURE 3-38

Assembling a uniform sphere of charge (Example 3-22).
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we have
_ 3
"~ 20megh
Equation (3—-169) shows that the energy is directly proportional to the square of the

total charge and inversely proportional to the radius. The sphere of charge in Fig.
3-38 could be a cloud of electrons, for instance. L

1)) (3-169)

For a continuous charge distribution of density p the formula for W, in Eq.
(3—165) for discrete charges must be modified. Without going through a separate
proof we replace Q, by pdv and the summation by an integration and obtain

W, =1 fy, pVdv (). (3-170)

In Eq. (3-170), V is the potential at the point where the volume charge density is p,
and V' is the volume of the region where p exists.

EXAMPLE 3-23 Solve the problem in Example 3-22 by using Eq. (3—-170).

Solution In Example 3—-22 we solved the probiem of assembling a sphere of charge
by bringing up a succession of spherical layers of a differential thickness. Now we
assume that the sphere of charge is already in place. Since p is a constant, it can be
taken out of the integral sign. For a spherically symmetrical problem,

_P =P 2 _
W.=2 fy, Vo=~ {2 vanr2an, (3-171)

where V is the potential at a point R from the center. To find V at R, we must find
the negative of the line integral of E in two regions: (1) E; = agEgz, from R = o to
R =b,and (2) E, = agEg, from R =b to R = R. We have

3
pb R>b,

_ Qe _
Eri = ax 4me,R? R 3e,R?’ -

and

Or pR
Eg, = — <b.
R2 aR 4 R2 360 0 < R = b

Consequently, we obtain

V= _f:E.dR= _[L’; ERldR+LRER2dR:|
s pb? R pR
[ R dR + f ] (3-172)

2 2 2
_ P (e R =£_ 3 R\
3eq 2 2 3eq \2 2



3-11 Electrostatic Energy and Forces 137
Substituting Eq. (3-172) in Eq. (3-171), we get

pmp (3 R? 4rp?bd
w,=2 "L (2p2 — 5 )anr?dR = :
) 03eo<2 2) " 15¢

which is the same as the result in Eq. (3—-168). —

Note that W, in Eq. (3-170) includes the work (self-energy) required to assemble
the distribution of macroscopic charges, because it is the energy of interaction of
every infinitesimal charge element with all other infinitesimal charge elements. As a
matter of fact, we have used Eq. (3—-170) in Example 3-23 to find the self-energy of
a uniform spherical charge. As the radius b approaches zero, the self-energy of a
(mathematical) point charge of a given Q is infinite (see Eq. 3-169). The self-energies
of point charges Q, are not included in Eq. (3-165). Of course, there are, strictly, no
point charges, inasmuch as the smallest charge unit, the electron, is itself a distribution
of charge.

3-11.1 ELECTROSTATIC ENERGY IN TERMS OF FIELD QUANTITIES

In Eq. (3-170) the expression of electrostatic energy of a charge distribution contains
the source charge density p and the potential function V. We frequently find it more
convenient to have an expression of W, in terms of field quantities E and/or D,
without knowing p explicitly. To this end, we substitute V - D for p in Eq. (3—170):

W, =1 fy, (V - D)V dv. (3-173)
Now, using the vector identity (from Problem P.2--28),
V-(VD)=VV-D+D-VV, (3-174)
we can write Eq. (3—173) as

We-——%f,V-(VD)dv—%f,D-VVdv
14 4 (3-175)
=—;—§ﬁS, VD-a,ds+4 [, D-Ed,

where the divergence theorem has been used to change the first volume integral into
a closed surface integral and E has been substituted for —VV in the second volume
integral. Since V' can be any volume that includes all the charges, we may choose it
to be a very large sphere with radius R. As we let R — oo, electric potential ¥V and
the magnitude of electric displacement D fall off at least as fast as 1/R and 1/R?,
respectively.! The area of the bounding surface S’ increases as R?. Hence the surface
integral in Eq. (3—175) decreases at least as fast as 1/R and will vanish as R — oo.
We are then left with only the second integral on the right side of Eq. (3-175).

' For point charges V oc 1/R and D cc 1/R; for dipoles ¥ oc 1/R? and D o 1/R3.
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(3-176a)

Using the relation D = €E for a linear medium, Eq. (3—176a) can be written in

two other forms:

W=%[ a0 @)

and

D2
W, =1 fy, —dv ()

We can always define an electrostatic energy density w,
that its volume integral equals the total electrostatic energy:

W, = J;/I w, do.
We can therefore write
w,=3D-E  (J/m?

or
w, =%eE*  (J/m?)
or
2
w, = D— (J/m3).
2e

(3-176b)

(3-176¢)

mathematically, such

3-177)

(3-178a)

(3-178b)

(3-178c)

However, this definition of energy density is artificial because a physical justification
has not been found to localize energy with an electric field; all we know is that the
volume integrals in Eqgs. (3—176a, b, c) give the correct total electrostatic energy.

EXAMPLE 3-24 In Fig. 3-39 a parallel-plate capacitor of area S and separation d

is charged to a voltage V. The permittivity of the dielectric
electrostatic energy.

is €. Find the stored

Solution With the d-c source (batteries) connected as shown, the upper and lower
plates are charged positive and negative, respectively. If the fringing of the field at

I

Area S
M

+Q

’<—Q.—>|

FIGURE 3-39
A charged parallel-plate capacitor

(Example 3-24).
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the edges is neglected, the electric field in the dielectric is uniform (over the plate)
and constant (across the dielectric) and has a magnitude

4
E=—.
d
Using Eq. (3-176b), we have

A 2f ( ) dv--— <V>2(Sd)=%<e§)w. (3-179)

The quantity in the parentheses of the last expression, €S/d, is the capacitance of the
parallel-plate capacitor (see Eq. 3—136). So,

w,=1icv? (). (3-180a)

Since Q = CV, Eq. (3-180a) can be put in two other forms:

W, =30V () (3-180b)
and
_
W, = 3 ). (3-180c)
|

It so happens that Egs. (3—180a, b, ) hold true for any two-conductor capacitor
(see Problem P.3-43).

EXAMPLE 3-25 Use energy formulas (3—176) and (3—180) to find the capacitance
of a cylindrical capacitor having a length L, an inner conductor of radius a, an outer
conductor of inner radius b, and a dielectric of permittivity €, as shown in Fig. 3-29.

Solution By applying Gauss’s law, we know that

Q
A 2nelr’

E=aFE = a<r<b.

The electrostatic energy stored in the dielectric region is, from Eq. (3—-176b),

2
=3 G(Zn I > (L27r dr)

_ 0% dr 02 In b
" 4neLl Ja ~ 4nel

(3-181)
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On the other hand, W, can also be expressed in the form of Eq. (3—180c). Equating
(3-180c) and (3-181), we obtain

2 2
o _ 9 b
2C 4mel  a
or
C = 27!6; ’
In—
a
which is the same as that given in Eq. (3—-139). -

3-11.2 ELECTROSTATIC FORCES

Coulomb’s law governs the force between two point charges. In a more complex sys-
tem of charged bodies, using Coulomb’s law to determine the force on one of the
bodies that is caused by the charges on other bodies would be very tedious. This
would be so even in the simple case of finding the force between the plates of a charged
parallel-plate capacitor. We will now discuss a method for calculating the force on
an object in a charged system from the electrostatic energy of the system. This method
is based on the principle of virtual displacement. We will consider two cases: (1) that
of an isolated system of bodies with fixed charges, and (2) that of a system of conduct-
ing bodies with fixed potentials.

System of Bodies with Fixed Charges We consider an isolated system of charged
conducting, as well as dielectric, bodies separated from one another with no connec-
tion to the outside world. The charges on the bodies are constant. Imagine that the
electric forces have displaced one of the bodies by a differential distance d€ (a virtual
displacement). The mechanical work done by the system would be

dW =F, - de, (3-182)

where F,, is the total electric force acting on the body under the condition of constant
charges. Since we have an isolated system with no external supply of energy, this
mechanical work must be done at the expense of the stored electrostatic energy; that
is,

dW = —dW, = F, - de. (3-183)

Noting from Eq. (2-88) in Section 2—6 that the differential change of a scalar resulting
from a position change d¢ is the dot product of the gradient of the scalar, and d¢, we
write

dW, = (VW) - d¢. (3-184)

Since d¢€ is arbitrary, comparison of Eqs. (3—183) and (3—-184) leads to

Fo=—-VW, (N). (3-185)
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Equation (3-185) is a very simple formula for the calculation of F, from the electro-
static energy of the system. In Cartesian coordinates the component forces are

oW,

(FQ)x = T (3-186a)
oW,

(Fo)y = — ay (3-186b)
ow,

F = — €. _

(Fo), 3 (3-186¢)

If the body under consideration is constrained to rotate about an axis, say the
z-axis, the mechanical work done by the system for a virtual angular displacement
d¢ would be

dW = (T,),d¢, (3-187)

where (T), is the z-component of the torque acting on the body under the condition
of constant charges. The foregoing procedure will lead to

ow.
0

(Ty), = — (N-m). (3-188)

System of Conducting Bodies with Fixed Potentials Now consider a system in which
conducting bodies are held at fixed potentials through connections to such external
sources as batteries. Uncharged dielectric bodies may also be present. A displacement
dé by a conducting body would result in a change in total electrostatic energy and
would require the sources to transfer charges to the conductors in order to keep them
at their fixed potentials. If a charge dQ, (which may be positive or negative) is added
to the kth conductor that is maintained at potential V,, the work done or energy sup-
plied by the sources is V, dQ,. The total energy supplied by the sources to the system
is

dw, = Z ¥, dQ,. (3-189)
k

The mechanical work done by the system as a consequence of the virtual displace-
ment is
dW =F, - de, (3-190)

where F,, is the electric force on the conducting body under the condition of constant
potentials. The charge transfers also change the electrostatic energy of the system by
an amount dW,, which, in view of Eq. (3-165), is

1 1
aw, =§; VedQ, =5 dW,. (3-191)
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Conservation of energy demands that

AW + dW, = dW,. (3-192)
Substitution of Egs. (3-189), (3-190), and (3—191) in Eq. (3—-192) gives
F, -dé =dw,
= (VW,)- dt
or
F,=VW, (N (3-193)

Comparison of Egs. (3-193) and (3-185) reveals that the only difference between the
formulas for the electric forces in the two cases is in the sign. It is clear that if the con-
ducting body is constrained to rotate about the z-axis, the z-component of the electric
torque will be

oW,
(TV)z = ’55 (N ' m)’ (3_194)

which differs from Eq. (3—188) also only by a sign change.

EXAMPLE 3-26 Determine the force on the conducting plates of a charged parallel-
plate capacitor. The plates have an area S and are separated in air by a distance x.

Soiution We solve the problem in two ways: (a) by assuming fixed charges, and then
(b) by assuming fixed potentials. The fringing of field around the edges of the plates
will be neglected.

a) Fixed charges. With fixed charges +Q on the plates, an electric field intensity
E, = Q/(€,S) = V/x exists in the air between the plates regardiess of their separa-
tion (unchanged by a virtual displacement). From Eq. (3—180b),

W.=3QV = QE.x,
where Q and E, are constants. Using Eq. (3—186a), we obtain
= ¢ (3050) = S om = -2,
* ox\2°7°F 257% 2¢,S
where the negative signs indicate that the force is opposite to the direction of
increasing x. It is an attractive force.

(3-195)

b) Fixed potentials. With fixed potentials it is more convenient to use the expression
in Eq. (3-180a) for W,. Capacitance C for the parallel-plate air capacitor is €,S/x.
We have, from Eq. (3-193),

ow, o (1 ., V2 38 [(e€,S €,SV?
=== = [22 )= 02 ~196
v ox  0x <2 v > 2 ox ( x ) 2x? (3-19
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How different are (Fy), in Eq. (3-195) and (Fy), in Eq. (3-196)? Recalling the
relation

€SV
e CV = ]
Q X
we find
(FQ)x = (FV)x' (3-197)

The force is the same in both cases in spite of the apparent sign difference in the for-
mulas as expressed by Egs. (3-185) and (3-193). A littie reflection on the physical
problem will convince us that this must be true. Since the charged capacitor has fixed
dimensions, a given Q will result in a fixed V, and vice versa. Therefore there is a
unique force between the plates regardless of whether Q or V is given, and the force
certainly does not depend on virtual displacements. A change in the conceptual con-
straint (fixed Q or fixed V) cannot change the unique force between the plates.

The preceding discussion holds true for a general charged two-conductor capaci-
tor with capacitance C. The electrostatic force F, in the direction of a virtual displace-
ment df for fixed charges is

oW, a (0% @*acC
Foe==Z7=~% <§E> T2ct (3-198)
For fixed potentials,
ow, @ (1t .\ V*aC Q* acC
= — =1 — = —— = = ~19
Ee="37 = <2 v ) 2 8¢ 2C*of (-199)

It is clear that the forces calculated from the two procedures, which assumed different
constraints imposed on the same charged capacitor, are equal.

Questions

R.3-1 Write the differential form of the fundamental postulates of electrostatics in free
space.

R.3-2 Under what conditions will the electric field intensity be both solenoidal and
irrotational?

R.3-3 Write the integral form of the fundamental postulates of electrostatics in free space,
and state their meaning in words.

R.3—4 When the formula for the electric field intensity of a point charge, Eq. (3—12), was
derived,

a) why was it necessary to stipulate that ¢ is in a boundless free space?

b) why did we not construct a cubic or a cylindrical surface around g?

R.3-5 In what ways does the electric field intensity vary with distance for
a) a point charge? b) an electric dipole?
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R.3-6 State Coulomb’s law.
R.3-7 Explain the principle of operation of ink-jet printers.

R.3-8 State Gauss’s law. Under what conditions is Gauss’s law especially useful in
determining the electric field intensity of a charge distribution?

R.3-9 Describe the ways in which the electric field intensity of an infinitely long, straight
line charge of uniform density varies with distance.

R.3-10 Is Gauss’s law useful in finding the E field of a finite line charge? Explain.

R.3-11 See Example 3-6, Fig. 3-9. Could a cylindrical pillbox with circular top and
bottom faces be chosen as a Gaussian surface? Explain.

R.3-12 Make a two-dimensional sketch of the electric field lines and the equipotential lines
of a point charge.

R.3-13 At what value of 0 is the E field of a z-directed electric dipole pointed in the
negative z-direction?

R.3-14 Refer to Eq. (3-64). Explain why the absolute sign around z is required.

R.3-15 If the electric potential at a point is zero, does it follow that the electrical field
intensity is also zero at that point? Explain.

R.3-16 If the electric field intensity at a point is zero, does it follow that the electric
potential is also zero at that point? Explain.

R.3-17 If an uncharged spherical conducting shell of a finite thickness is placed in an
external electric field E,, what is the electric field intensity at the center of the shell? Describe
the charge distributions on both the outer and the inner surfaces of the shell.

R.3-18 What are electrets? How can they be made?

R.3-19 Can V'(1/R) in Eq. (3—84) be replaced by V(1/R)? Explain.

R.3-20 Define polarization vector. What is its SI unit?

R.3-21 What are polarization charge densities? What are the SI units for P-a, and V- P?
R.3-22 What do we mean by simple medium?

R.3-23 What properties do anisotropic materials have?

R.3-24 What characterizes a uniaxial medium?

R.3-25 Define electric displacement vector. What is its SI unit?

R.3-26 Define electric susceptibility. What is its unit?

R.3-27 What is the difference between the permittivity and the dielectric constant of a
medium?

R.3-28 Does the electric flux density due to a given charge distribution depend on the
properties of the medium? Does the electric field intensity? Explain.

R.3-29 What is the difference between the dielectric constant and the dielectric strength of a
dielectric material?

R.3-30 Explain the principle of operation of lightning arresters.

R.3-31 What are the general boundary conditions for electrostatic fields at an interface
between two different dielectric media?

R.3-32 What are the boundary conditions for electrostatic fields at an interface between a
conductor and a dielectric with permittivity €?
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R.3-33 What is the boundary condition for electrostatic potential at an interface between
two different dielectric media?

R.3-34 Does a force exist between a point charge and a dielectric body? Explain.
R.3-35 Define capacitance and capacitor.

R.3-36 Assume that the permittivity of the dielectric in a parallel-plate capacitor is not
constant. Will Eq. (3—136) hold if the average value of permittivity is used for € in the
formula? Explain.

R.3-37 Given three 1-uF capacitors, explain how they should be connected in order to
obtain a total capacitance of

a) 1 (uF), b) 3 (uF), ¢) 3 (uF), d) 3 (uF).
R.3-38 What are coefficients of potential, coefficients of capacitance, and coefficients of
induction?

R.3-39 What are partial capacitances? How are they different from coefficients of
capacitance?

R.3-40 Explain the principle of electrostatic shielding.
R.3-41 What is the definition of an electron-volt? How does it compare with a joule?

R.3-42 What is the expression for the electrostatic energy of an assembly of four discrete
point charges?

R.3-43 What is the expression for the electrostatic energy of a continuous distribution of
charge in a volume? on a surface? along a line?

R.3-44 Provide a mathematical expression for electrostatic energy in terms of E and/or D.
R.3-45 Discuss the meaning and use of the principle of virtual displacement.

R.3—-46 What is the relation between the force and the stored energy in a system of stationary
charged objects under the condition of constant charges? Under the condition of fixed
potentials?

Problems

P.3-1 Refer to Fig. 3-4.
a) Find the relation between the angle of arrival, «, of the electron beam at the screen
and the deflecting electric field intensity E,.
b) Find the relation between w and L such that d, = d,/20.

P.3-2 The cathode-ray oscilloscope (CRO) shown in Fig. 3-4 is used to measure the
voltage applied to the parallel deflection plates.
a) Assuming no breakdown in insulation, what is the maximum voltage that can be
measured if the distance of separation between the plates is h?
b) What is the restriction on L if the diameter of the screen is D?
¢) What can be done with a fixed geometry to double the CRO’s maximum
measurable voltage?

P.3-3 The deflection system of a cathode-ray oscilloscope usually consists of two pairs of
parallel plates producing orthogonal electric fields. Assume the presence of another set of
plates in Fig. 3—4 that establishes a uniform electric field E, = a E, in the deflection region.
Deflection voltages v,(t) and v,(t) are applied to produce E, and E,, respectively. Determine
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the types of waveforms that v,(t) and v,(z) should have if the electrons are to trace the
following graphs on the fluorescent screen:

a) a horizontal line,

b) a straight line having a negative unity slope,

¢) a circle,

d) two cycles of a sine wave.

P.3—4 Write a short article explaining the principle of operation of xerography. (Use library
resources if needed.)

P.3—5 Two point charges, Q, and Q,, are located at (1, 2, 0) and (2, 0, 0), respectively. Find
the relation between Q; and Q, such that the total force on a test charge at the point
P(—1, 1,0) will have

a) no x-component, b) no y-component.

P.3-6 Two very small conducting spheres, each of a mass 1.0 x 10~ * (kg), are suspended
at a common point by very thin nonconducting threads of a length 0.2 (m). A charge Q is
placed on each sphere. The electric force of repulsion separates the spheres, and an
equilibrium is reached when the suspending threads make an angle of 10°. Assuming a
gravitational force of 9.80 (N/kg) and a negligible mass for the threads, find Q.

P.3-7 Find the force between a charged circular loop of radius b and uniform charge
density p, and a point charge Q located on the loop axis at a distance & from the plane of
the loop. What is the force when h > b, and when h = 0? Plot the force as a function of h.

P.3-8 A line charge of uniform density p, in free space forms a semicircle of radius b.
Determine the magnitude and direction of the electric field intensity at the center of the
semicircle.

P.3-9 Three uniform line charges—p,;, p,,, and p,,, each of length L—form an equilateral
triangle. Assuming that p,, = 2p,, = 2p,5, determine the electric field intensity at the center
of the triangle.

P.3-10 Assuming that the electric field intensity is E = a,100x (V/m), find the total electric
charge contained inside
a) a cubical volume 100 (mm) on a side centered symmetrically at the origin,
b) a cylindrical volume around the z-axis having a radius 50 (mm) and a height 100 (mm)
centered at the origin.

P.3-11 A spherical distribution of charge p = pg[1 — (R?/b?)] exists in the region
0 < R < b. This charge distribution is concentrically surrounded by a conducting shell
with inner radius R; (>b) and outer radius R,. Determine E everywhere.

P.3-12 Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry
surface charge densities p,, and pg,, respectively.

a) Determine E everywhere.

b) What must be the relation between a and b in order that E vanishes for r > b?
P.3-13 Determine the work done in carrying a —2 (uC) charge from P,(2, 1, —1) to
P,(8,2, —1) in the field E = a,y + a,x

a) along the parabola x = 2)?,

b) along the straight line joining P, and P,.

P.3-14 At what values of 6 does the electric field intensity of a z-directed dipole have no
z-component?

P.3-15 Three charges (+g, —2q, and +gq) are arranged along the z-axis at z = d/2, z = 0,
and z = —d/2, respectively.
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a) Determine V and E at a distant point P(R, 8, ¢).
b) Find the equations for equipotential surfaces and streamlines.
¢) Sketch a family of equipotential lines and streamlines.
(Such an arrangement of three charges is called a linear electrostatic quadrupole.)

P.3-16 A finite line charge of length L carrying uniform line charge density p, is coincident
with the x-axis.

a) Determine V in the plane bisecting the line charge.

b) Determine E from p, directly by applying Coulomb’s law.

¢) Check the answer in part (b) with —VV.

P.3-17 In Example 3-5 we obtained the electric field intensity around an infinitely long
line charge of a uniform charge density in a very simple manner by applying Gauss’s law.
Since |E| is a function of r only, any coaxial cylinder around the infinite line charge is an
equipotential surface. In practice, all conductors are of finite length. A finite line charge
carrying a constant charge density p, along the axis, however, does not produce a constant
potential on a concentric cylindrical surface. Given the finite line charge p, of length L in
Fig. 3-40, find the potential on the cylindrical surface of radius b as a function of x and
plot it.

FIGURE 3-40
A finite line charge (Problem P.3-17).

(Hint: Find dV at P due to charge p,dx’ and integrate.)

P.3-18 A charge @ is distributed uniformly over an L x L square plate. Determine V and
E at a point on the axis perpendicular to the plate and through its center.

P.3-19 A charge Q is distributed uniformly over the wall of a circular tube of radius b
and height k. Determine V and E on its axis

a) at a point outside the tube, then

b) at a point inside the tube.

P.3-20 An early model of the atomic structure of a chemical element was that the atom
was a spherical cloud of uniformly distributed positive charge Ne, where N is the atomic
number and e is the magnitude of electronic charge. Electrons, each carrying a negative
charge —e, were considered to be imbedded in the cloud. Assuming the spherical charge
cloud to have a radius R, and neglecting collision effects,

a) find the force experienced by an imbedded electron at a distance r from the center;

b) describe the motion of the electron;

c) explain why this atomic model is unsatisfactory.
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P.3-21 A simple classical model of an atom consists of a nucleus of a positive charge Ne
surrounded by a spherical electron cloud of the same total negative charge. (N is the atomic
number and e is the magnitude of electronic charge.) An external electric field E, will cause
the nucleus to be displaced a distance r, from the center of the electron cloud, thus polarizing
the atom. Assuming a uniform charge distribution within the electron cloud of radius b, find

r,.

P.3-22 The polarization in a dielectric cube of side L centered at the origin is given by
P =P,a,x +a,y+ a,z)

a) Determine the surface and volume bound-charge densities.

b) Show that the total bound charge is zero.

P.3-23 Determine the electric field intensity at the center of a small spherical cavity cut
out of a large block of dielectric in which a polarization P exists.

P.3-24 Solve the following problems:

a) Find the breakdown voltage of a parallel-plate capacitor, assuming that conducting
plates are 50 (mm) apart and the medium between them is air.

b) Find the breakdown voltage if the entire space between the conducting plates is
filled with plexiglass, which has a dielectric constant 3 and a dielectric strength
20 (kV/mm).

¢) If a 10-(mm) thick plexiglass is inserted between the plates, what is the maximum
voltage that can be applied to the plates without a breakdown?

P.3-25 Assume that the z = 0 plane separates two lossless dielectric regions with €,; = 2
and €,, = 3. If we know that E, in region 1 is a,2y — a 3x + a.(5 + z), what do we also
know about E, and D, in region 2? Can we determine E, and D, at any point in region
2? Explain.

P.3-26 Determine the boundary conditions for the tangential and the normal components
of P at an interface between two perfect dielectric media with dielectric constants e,

and e,,.

P.3-27 What are the boundary conditions that must be satisfied by the electric potential
at an interface between two perfect dielectrics with dielectric constants €,; and ¢,,?

P.3-28 Dielectric lenses can be used to collimate electromagnetic fields. In Fig. 3—41 the
left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E,
at point P(r,, 45°, z) in region 1 is a,5 — a,3, what must be the dielectric constant of the
lens in order that E; in region 3 is parallel to the x-axis?

y
P
To,
45°
10) —p X
O, @

FIGURE 3-41
A dielectric lens (Problem P.3-28).
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P.3-29 Refer to Example 3—16. Assuming the same r; and r, and requiring the maximum
electric field intensities in the insulating materials not to exceed 259 of their dielectric
strengths, determine the voltage rating of the coaxial cable

a) if r, = 1.75r;

b) if r, = 1.35r,.

¢) Plot the variations of E, and V versus r for both part (a) and part (b).

P.3-30 The space between a parallel-plate capacitor of area S is filled with a dielectric
whose permittivity varies linearly from €, at one plate (y = 0) to €, at the other plate
(y = d). Neglecting fringing effect, find the capacitance.

P.3-31 Assume that the outer conductor of the cylindrical capacitor in Example 3-18 is
grounded and that the inner conductor is maintained at a potential V.
a) Find the electric field intensity, E(a), at the surface of the inner conductor.
b) With the inner radius, b, of the outer conductor fixed, find a so that E(a) is
minimized.
¢) Find this minimum E(a).
d) Determine the capacitance under the conditions of part (b).

P.3-32 The radius of the core and the inner radius of the outer conductor of a very long
coaxial transmission line are r; and r,, respectively. The space between the conductors is
filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are €,
for r;, <r < b and ¢,, for b < r < r,. Determine its capacitance per unit length.

P.3-33 A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii
r; and r,. Two dielectric media of different dielectric constants €,, and ¢,, fill the space
between the conducting surfaces as shown in Fig. 3-42. Determine its capacitance.

FIGURE 3-42
A cylindrical capacitor with two dielectric media
(Problem P.3-33).

P.3-34 A capacitor consists of two coaxial metallic cylindrical surfaces of a length 30 (mm)
and radii 5 (mm) and 7 (mm). The dielectric material between the surfaces has a relative
permittivity €, = 2 + (4/r), where r is measured in mm. Determine the capacitance of the
capacitor.

P.3-35 Assuming the earth to be a large conducting sphere (radius = 6.37 x 103 km)
surrounded by air, find

a) the capacitance of the earth; «

b) the maximum charge that can exist on the earth before the air breaks down.
P.3-36 Determine the capacitance of an isolated conducting sphere of radius b that is

coated with a dielectric layer of uniform thickness d. The dielectric has an electric
susceptibility y,.
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P.3-37 A capacitor consists of two concentric spherical shells of radii R; and R,. The space
between them is filled with a dielectric of relative permittivity €, from R; to b(R; < b < R,)
and another dielectric of relative permittivity 2¢, from b to R,.

a) Determine E and D everywhere in terms of an applied voltage V.

b) Determine the capacitance.

P.3-38 The two parallel conducting wires of a power transmission line have a radius a and
are spaced at a distance d apart. The wires are at a height h above the ground. Assuming
the ground to be perfectly conducting and both d and h to be much larger than a, find the
expressions for the mutual and self-partial capacitances per unit length.

P.3-39 An isolated system consists of three very long parallel conducting wires. The axes
of all three wires lie in a plane. The two outside wires are of a radius b and both are at a
distance d = 500b from a center wire of a radius 2b. Determine the partial capacitances per
unit length.

P.3-40 Calculate the amount of electrostatic energy of a uniform sphere of charge with
radius b and volume charge density p stored in the following regions:

a) inside the sphere,

b) outside the sphere.
Check your results with those in Example 3-22.

P.3-41 Einstein’s theory of relativity stipulates that the work required to assemble a
charge is stored as energy in the mass and is equal to mc?, where m is the mass and

c = 3 x 10® (m/s) is the velocity of light. Assuming the electron to be a perfect sphere, find
its radius from its charge and mass (9.1 x 103! kg).

P.3-42 Find the electrostatic energy stored in the region of space R > b around an electric
dipole of moment p.

P.3-43 Prove that Egs. (3—180) for stored electrostatic energy hold true for any
two-conductor capacitor.

P.3-44 A parallel-plate capacitor of width w, length L, and separation d is partially filled
with a dielectric medium of dielectric constant €,, as shown in Fig. 3—-43. A battery of ¥
volts is connected between the plates.

a) Find D, E, and p, in each region.

b) Find distance x such that the electrostatic energy stored in each region is the same.

_(Tj_ |+
€r
4 T
¢—x4o‘ ‘ FIGURE 3-43
- L — A parallel-plate capacitor (Problem P.3-44).

Vo

P.3-45 Using the principle of virtual displacement, derive an expression for the force
between two point charges +Q and —Q separated by a distance x in free space.

P.3-46 A constant voltage V, is applied to a partially filled parallel-plate capacitor shown
in Fig. 3-44. The permittivity of the dielectric is €, and the area of the plates is S. Find the
force on the upper plate.

P.3—47 The conductors of an isolated two-wire transmission line, each of radius b, are
spaced at a distance D apart. Assuming D > b and a voltage V, between the lines, find the
force per unit length on the lines.
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FIGURE 3-44
A parallel-plate capacitor (Problem P.3-46).

P.3-48 A parallel-plate capacitor of width w, length L, and separation d has a solid
dielectric slab of permittivity € in the space between the plates. The capacitor is charged to
a voltage ¥, by a battery, as indicated in Fig. 3—45. Assuming that the dielectric slab is
withdrawn to the position shown, determine the force acting on the slab

a) with the switch closed,

b) after the switch is first opened.

Switch
T el
d €
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FIGURE 3-45
A partially filled parallel-plate capacitor (Problem P.3-48).



