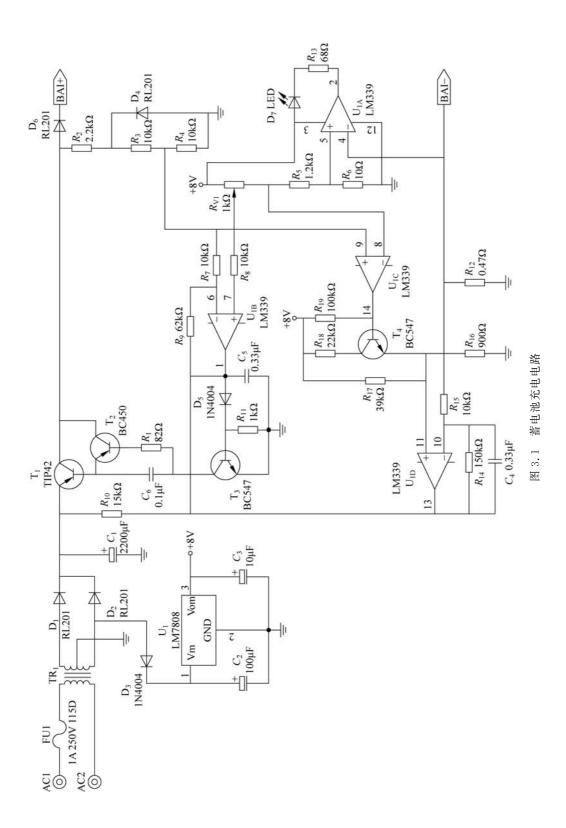
电源应用电路分析与设计

本章主要讲解电源应用电路的分析与设计,包括充电器、电压转换、限流源、开关电源和 线性电源,在原始电路分析透彻的基础上进行量程扩展,并对其保护功能、输入源效应和负 载效应进行详细测试。

3.1 铅酸蓄电池充电器设计


3.1.1 蓄电池充电电路工作原理分析

蓄电池充电电路具体如图 3.1 所示,工作原理如下。

- (1) U_{1A} 、 D_7 、 R_{13} 为充电指示电路,蓄电池充电时发光二极管 D_7 导通发光,充电停止时 D_7 截止、停止发光。 R_{V1} 、 R_5 、 R_6 提供正端参考电压,该电压值很小,采样电流电压提供负端电压;蓄电池充电时 U_{1A} 的引脚 2 输出低电平,二极管 D_7 发光工作;蓄电池充电停止时 U_{1A} 的引脚 2 悬空,二极管 D_7 停止工作、不发光。
- (2) U_{1B} 及附属电路实现充电电压控制。该电压值通过电阻 R_2 、 R_3 和 R_4 对充电电压进行采样,参考电压通过 R_{V1} 进行调节。当充电电压高于参考电压时 U_{1B} 输出低电压,蓄电池充电停止,反馈电压与输出电压关系为

$$V_{\text{FB}} = V_{\text{OUT}} \times \frac{R_4}{R_2 + R_3 + R_4} = V_{\text{OUT}} \times \frac{10}{22.2} = 0.45 V_{\text{OUT}}$$
 (3.1)

由于二极管 D_6 和采样电阻 R_{12} 的原因,反馈电压精度将受到影响。由于充电电流恒定, R_{12} 两端电压保持恒定,二极管 D_6 导通压降也保持恒定,所以通过调节 R_{V1} 可以保证充电电压的准确度。

(3) U_{1C} 和 T_4 及附属电路实现充电电流参考值设置。蓄电池电压低时 U_{1C} 的引脚 14 输出低电压, U_{1D} 的引脚 11 为低电压 V_L ,实现小电流充电;蓄电池电压高时 U_{1C} 的引脚 14 输出悬空, U_{1D} 的引脚 11 为高电压 V_H ,实现大电流充电。 R_{12} 为充电电流采样电阻。

$$V_{\rm L} = 8 \times \frac{0.9}{39.9} = 0.18 \text{V}, \quad V_{\rm H} = 8 \times \frac{0.9}{39 \text{ // } 22 \text{ // } 100 + 0.9} = 0.543 \text{V}$$
 (3.2)

(4) U_{1D} 及附属电路实现恒流充电控制电路, U_{1D} 的引脚 13 输出电压用于控制电流功放电路 T_1 、 T_2 、 T_3 实现电流放大及恒流控制,电流采样电阻 R_{12} =0.47 Ω 时,有:

$$I_{\rm L} = \frac{V_{\rm L}}{R_{12}} = \frac{0.18}{0.47} = 0.383 \,\text{A}, \quad I_{\rm H} = \frac{V_{\rm H}}{R_{12}} = \frac{0.543}{0.47} = 1.155 \,\text{A}$$
 (3.3)

(5) 变压器 T_{R1} 、 D_1 、 D_2 、 C_1 实现交流 220V 交流转直流功能,为蓄电池供电。 D_3 、 U_1 、 C_2 、 C_3 实现辅助 8V 电压源功能。

3.1.2 时域分析与测试

首先利用 PSpice 对充电电路进行瞬态仿真分析,加深对电路的理解,具体仿真电路如图 3.2 所示。具体瞬态仿真设置如下所述。

- (1) **仿真时间与最大步长**: 仿真时间设置取决于蓄电池充电电压设定及充电量大小,最大步长决定仿真精度及波形显示分辨率,具体设置如图 3,3 和图 3,4 所示。
 - (2) Options 设置:决定仿真精度、收敛性和仿真速度。
- (3) 波形显示窗口: 设置波形显示特性和内容,正确设置能够大大提高仿真速度和波形提取速度,非常实用,具体设置如图 3.5 所示。
- (4) 瞬态仿真波形复制设置: 仿真结果包括波形和数据,能够复制到 Office 软件进行后期应用和处理,具体设置如图 3.6 所示。

瞬态仿真波形如图 3.7 所示,图 3.7(a)为充电指示灯电流波形,电流为 10mA 时蓄电池充电,电流为 0 时充电截止;图 3.7(b)为蓄电池充电电压波形,从初始值 8.5V 充电至 16V,充电电压值通过电位器 R_{V1} 进行调节;图 3.7(c)为充电电流波形,蓄电池电压小于 9.5V 时采用小电流 253mA 充电,大于 9.5V 时采用 1.05A 充电,充电电流与计算值存在约 0.1A 的误差:

$$I_{\rm L} = \frac{V_{\rm L}}{R_{12}} = \frac{0.18}{0.47} = 0.383 \,\text{A}, I_{\rm H} = \frac{V_{\rm H}}{R_{12}} = \frac{0.543}{0.47} = 1.155 \,\text{A}$$

误差主要由比较器电路决定,尤其电阻 R_{15} ,但是通过系统调整参数值可以满足充电电流整体要求。

如图 3.8 所示, 蓄电池充电电流参考电压波形的低压为 180mV, 高压为 537mV, 与计算值基本一致:

$$V_{\rm L} = 8 \times \frac{0.9}{39.9} = 0.18 \text{ V}, V_{\rm H} = 8 \times \frac{0.9}{39 \text{ // } 22 \text{ // } 100 + 0.9} = 0.543 \text{ V}$$

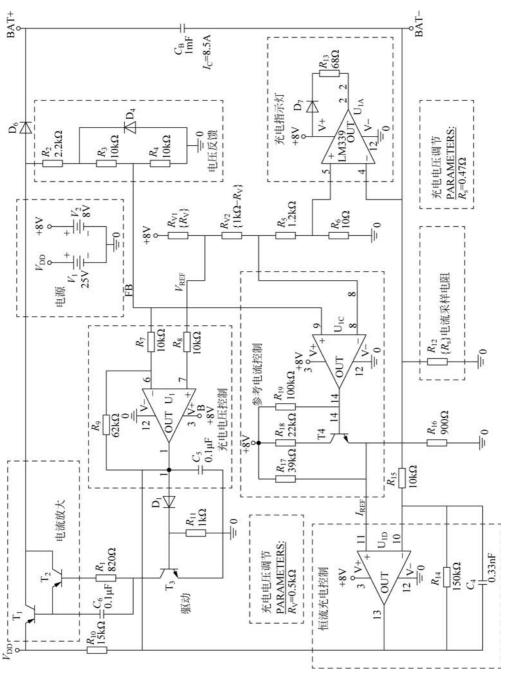


图 3.2 蓄电池充电仿真测试电路

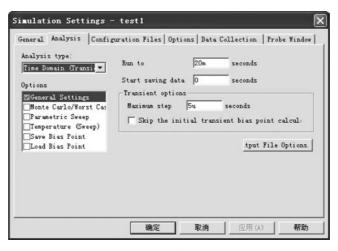


图 3.3 瞬态仿真设置

Category				(. OPTION	
Analog Simulation	Relative accuracy of V's	0.001		(RELTOL)	
Gate-level Simulation	Best accuracy of	1.0u	volt	(VNTOL)	
Output file	Best accuracy of	1.0p	amps	(ABSTOL)	
	Best accuracy of	0.01p	coulombs	(CHGTOL)	
	Minimum conductance for any	1.0E-12	1/ohm	(GMIN)	
	DC and bias "blind" iteration	150		CITL1	
	DC and bias "best guess"	200		CITL2	
	Transient time point iteration	100		CITL4	
	Default nominal temperature:	27.0	•	(TNOM)	
	Use GMIN stepping to improve converge (STEPG				
	Use preordering to reduce matri (PREORDER				
	MOSFET Options dvan		- 6	Reset	

图 3.4 Options 设置



图 3.5 波形显示窗口设置

图 3.6 瞬态仿真波形复制设置

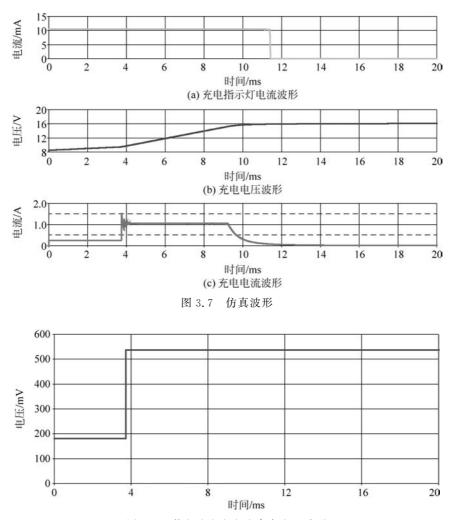


图 3.8 蓄电池充电电流参考电压波形

3.1.3 参数分析与测试

充电瞬态仿真分析设置和电阻参数设置具体如图 3.9 和图 3.10 所示,时长为 20ms、最大步长为 5μ s,当电阻参数值 $R_{\rm V}$ 分别为 0.3k Ω 、0.4k Ω 、0.5k Ω 时对电路进行仿真分析。

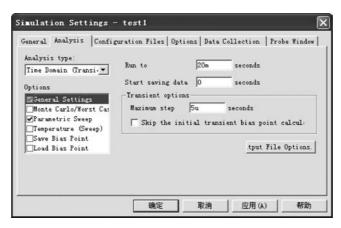


图 3.9 瞬态仿真分析设置

CONTRACTOR CONTRACTOR	guration Files Options Dat	a Collection Probe Windo
nalysis type: Time Domain (Transi.▼	Sweep variable C Voltage sourc Name	
ptions	Current source Model	
☑General Settings ☐Monte Carlo/Worst Cas	C Model parameter Model C Temperature Param	meter RV
✓ Parametric Sweep ☐ Temperature (Sweep) ☐ Save Bias Point ☐ Load Bias Point	Sweep type C Linear	Start End
	C Logarithmi Decade 💌	Increment:
	Value 1i 0.3k 0.4k 0.	5k

图 3.10 参数 R_V 设置

充电电压和充电电流波形具体如图 3.11 所示,图 3.11(a)为充电电压波形,图 3.11(b)为充电电流波形,通过设置 $R_{\rm V}$ 参数值调节蓄电池充电电压值,使得调节非常方便。

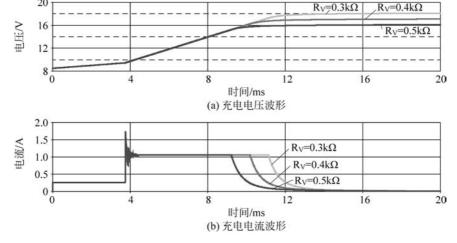


图 3.11 充电电压和充电电流波形

充电电流参数仿真设置及测试波形如图 3.12~图 3.14 所示,充电电流与电阻 R_s 近似成 $V_{\rm H}/R_s$ 比例关系。

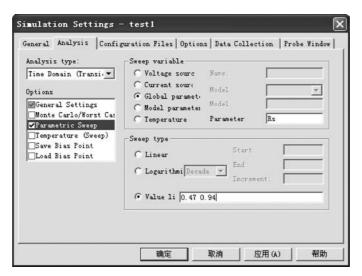


图 3.12 充电电流参数设置:通过设置采样电阻值调节充电电流

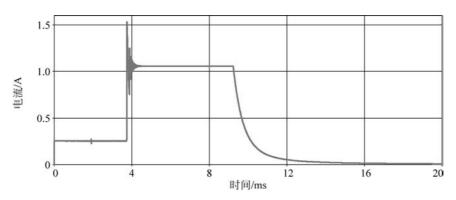


图 3.13 $R_s = 0.47\Omega$ 时充电电流约为 1A

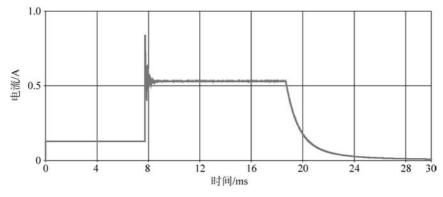


图 3.14 $R_s = 0.94\Omega$ 时充电电流约为 0.5A

3.2 可充电 LED 台灯电路工作原理仿真分析和实际测试

3.2.1 可充电 LED 台灯工作原理分析

LED 台灯电路如图 3.15 所示,具体工作原理如下所述。

1. 点亮过程

平常灯不亮时 C_1 由+B(+B为铅蓄电池正极)通过 R_1 、 R_2 、 R_3 充电至+B,此时灯不亮为待机状态。使用时当按下 SW 然后松开, C_1 的正极被短接到 Q_1 的 b 极,而 C_1 的负极连接 Q_1 的 e 极,由于 C_1 两端电压为+B且不能突变,故 Q_1 因 U_{bel} 电压足够大进而很快进入饱和状态, Q_1 饱和后其 c 极电位几乎为 0V,+B则通过 R_1 、 R_2 分压加至 Q_4 的 b 极, Q_2 也迅速饱和导通,使 Q_4 的 c 极电位几乎为+B,该电路产生两个作用。

- (1) 使稳压管 ZD_1 (稳压值约为 2.5V)反向击穿、 D_3 正向导通,之后剩余电压加至 Q_1 的 b 极,使 Q_1 维持饱和,实现自保。
- (2) 此十B 电压经 R_6 和 R_5 分压加至 Q_3 的 b 极,使 Q_3 也饱和导通,于是高亮度 LED 有电流流过而发光,电灯开始照明。 Q_1 由于自保维持饱和导通,其 c 极电位几乎为 0,则 C_1 通过 R_3 、 U_{cel} 放电而使其两端电压为 0V。

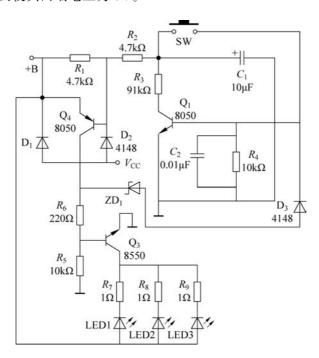


图 3.15 可充电 LED 台灯电路

2. 关闭过程

如果在照明状态下再按一下 SW 并松开,由于 C_1 两端电压为 0V,使 Q_1 的 b-e 结电压为 0V 而截止, Q_1 的 c极因 Q_1 截止变为+B电位, Q_4 的 b极也因 R_1 、 R_2 分压为+B电位, Q_4 的 b-e 结电压因 0V 偏置而截止。 Q_4 的 c极失去+B电压使 Q_3 截止,3 个 LED 无电流通过而熄灭(电灯被关闭),此时 C_1 又由+B通过 R_1 、 R_2 、 R_3 充电,为下次动作准备就绪。

3. 充电状态

充电器的直流电源 V_{cc} 通过 D_1 接入+B,为铅蓄电池充电,同时 V_{cc} 通过 D_2 加至 Q_4 的 b 极,使 Q_4 维持截止状态,此时即使按下 SW, Q_1 无论是导通或截止, Q_4 均截止,所以 Q_3 也截止,3 只 LED 无电流通过而不亮. 以免影响充电。

4. 铅蓄电池充满电

实测+B电压为 4.2V,为使 Q_1 在使用时能够维持饱和导通(能自保),+B必须大于 $U_{ce4}+U_{zd1}+U_{D8}+U_{be1}=0.2+2.5+0.6+0.6=3.9V$; 当+B电压在使用中降至 3.9V 以下时,不足以使 ZD_1 反向击穿, Q_1 无法实现自保,此时出现现象:按下 SW 后 3 只 LED 闪亮一下或维持几分钟后熄灭,可能误认为灯损坏出现故障,实际此时应该充电。

由于+B只有 4V,故该电路工作在低电压情况下一般元件不易损坏,只有 Q_3 以及 R_7 、 R_8 、 R_9 工作时电流较大,维修时应重点考虑 V_{CC} 为 3. 3~4. 2V 时的情况。

3.2.2 开启与关闭过程测试

1. 开启过程

开启过程仿真电路及其元器件表分别如图 3.16 和表 3.1 所示,参数取值为 $C_1 = 4\mu F$, $I_{C_1} = 4A$, $C_2 = 0$, $I_{C_2} = 0$ 。 Q_1 初始时处于关闭状态。

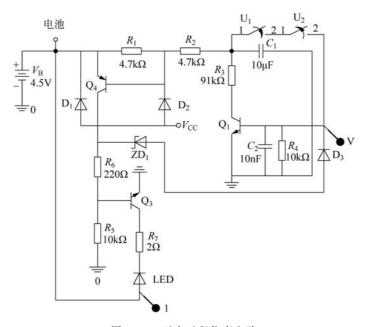


图 3.16 开启过程仿真电路

编号	名称	库	型号	参数	 备注
R_{1}	电阻	ANALOG	R	$4.7 \mathrm{k}\Omega$	
$R_{\scriptscriptstyle 2}$	电阻	ANALOG	R	$4.7 \mathrm{k}\Omega$	
R_3	电阻	ANALOG	R	$91 k\Omega$	
R_4	电阻	ANALOG	R	$10 \mathrm{k}\Omega$	
$R_{\scriptscriptstyle 5}$	电阻	ANALOG	R	$10 k\Omega$	
$R_{\scriptscriptstyle 6}$	电阻	ANALOG	R	220Ω	
$R_{\scriptscriptstyle 7}$	电阻	ANALOG	R	2Ω	
C_1	电容	ANALOG	C	$10\mu F$	$I_{\rm C} = 4 \mathrm{A}$
C_{2}	电容	ANALOG	C	10nF	$I_{\rm C} = 0 \mathrm{A}$
D_1	二极管	DIODE	MUR1560		
D_2	二极管	DIODE	D1N4148		
D_3	二极管	DIODE	D1N4148		
ZD_1	稳压管	BREAKOUT	Dbreakz	BV = 2.25V	2.5V 稳压管
LED	二极管	DIODE	MUR1560		由二极管代替 LED 模型
\mathbf{Q}_1	三极管	BIPOLAR	Q2N5551		小信号三极管
\mathbf{Q}_4	三极管	BIPOLAR	Q2N5401		小信号三极管
\mathbf{Q}_3	三极管	BJN	TIP50		功率三极管
U_1	常闭开关	ANL_MISC	sw_tClose	$T_{\text{CLOSE}} = 5 \text{ms}$	模拟开关过程
U_2	常开开关	ANL_MISC	Sw_tOpen	$T_{\mathrm{OPEN}} = 20\mathrm{ms}$	模拟开关过程
I_{C}	直流电流源	SOURCE	IDC	$500 \mathrm{mA}$	直流电流源,模拟充电
$V_{\scriptscriptstyle m B}$	直流电压源	SOURCE	VDC	4.5V	直流电压源,模拟电池

表 3.1 电路仿真元器件表

开启过程测试结果如图 3.17 所示。5ms 时 U_1 闭合,20ms 时 U_2 断开,利用 U_1 和 U_2 模拟开关 SW 接通和断开的过程; U_1 闭合时 LED 工作,但是 U_2 断开后不久 LED 停止工作,自保持功能消失。由于 R_3 电阻太大, Q_1 导通时 R_1 两端电压不能维持 Q_4 导通,从而 Q_3 截止,LED 停止工作。

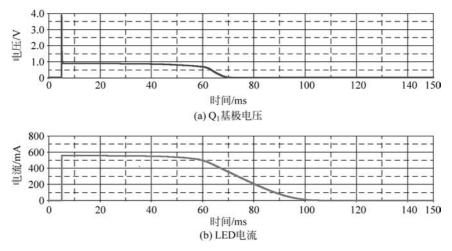


图 3.17 开启过程测试波形

2. 关闭过程

关闭过程仿真电路如图 3. 16 所示,相关参数取值为 $C_1 = 10 \mu F$, $I_{C1} = 0$, $C_2 = 10 n F$, $I_{C2} = 1 A$ 。 Q_4 初始时处于导通状态,从而 Q_3 初始时刻也正常工作,LED 有电流流过。

关闭过程测试结果如图 3. 18 所示。初始时刻 LED 导通,5ms 时 U_1 闭合,20ms 时 U_2 断开,利用 U_1 和 U_2 模拟开关 SW 接通和断开的过程。 U_1 闭合时 LED 已工作,但是 U_2 断开后不久 LED 停止工作,关闭功能正常。之所以 U_2 断开后 LED 还工作一段时间,主要原因是电容 C_1 的电压从 0V 充电到电池电压的过程中 Q_4 导通一段时间,通过 ZD_1 和 D_3 使 Q_1 继续工作一段时间,直到 C_1 电压与电池电压相同时 Q_4 关断, Q_1 停止工作。

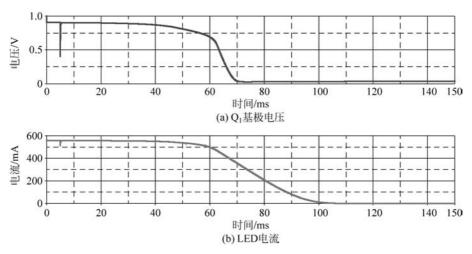


图 3.18 关闭过程测试波形

3. 电路修改后仿真

通过仿真可以看到,无论开启过程还是关闭过程,电路工作均不正常,而且参考的原始资料似乎存在问题(通过 R_1 、 R_2 、 R_3 充电至+B,通过 R_1 、 R_2 分压加至 Q_4 的 b 极),电容 C_1 充电时并未通过 R_3 ,所以可以猜测电路中连线存在错误——利用仿真进行电路故障分析、定位、排除。

电路修改后开启和关闭功能仿真分析如图 3.19 所示, R_2 与 R_3 的连接点改变,参数取值为 I_{Cl} =4A, I_{C2} =0。此时电路与实际分析一致。

开启过程测试结果分析如图 3. 20 所示,开启 5ms 时 U_1 闭合,20ms 时 U_2 断开,利用 U_1 和 U_2 模拟开关 SW 接通和断开的过程。 U_1 闭合时 LED 工作, U_2 断开后 LED 继续工作,实现自保持功能。

关闭过程测试电路与波形分别如图 3. 19 和图 3. 21 所示,参数取值为 $I_{C1}=0$, $I_{C2}=1$ A。 5ms 时 U_1 闭合,20ms 时 U_2 断开,利用 U_1 和 U_2 模拟开关 SW 接通和断开的过程。 U_1 闭合时 LED 关断, U_2 断开后 LED 继续关断,实现 LED 关闭功能。

电池电压变化时,测试电路与波形分别如图 3. 22 和图 3. 23 所示,其中 I_{C1} =4A, I_{C2} =0 时电路开启; I_{C1} =0, I_{C2} =1A 时电路关闭。5ms 时 U_1 闭合,LED 正常工作。在 20ms 时电池电压开始线性下降,当电池电压下降到约 3. 9V 时 LED 关断,即电池电压过低时能够自动关断,实现对电池过放保护。

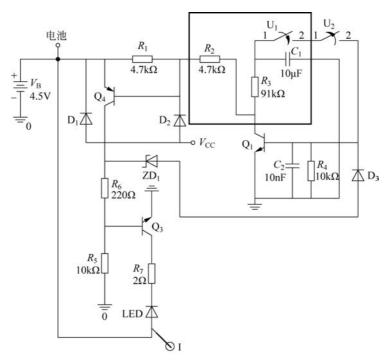


图 3.19 修改后的开启和关闭过程仿真电路

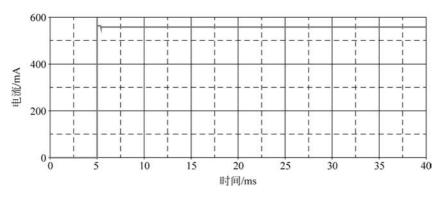


图 3.20 开启过程 LED 电流波形

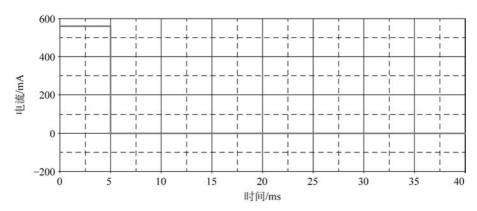


图 3.21 关闭过程 LED 电流波形

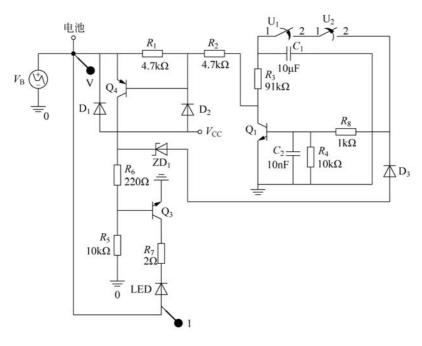


图 3.22 电池电压变化仿真电路

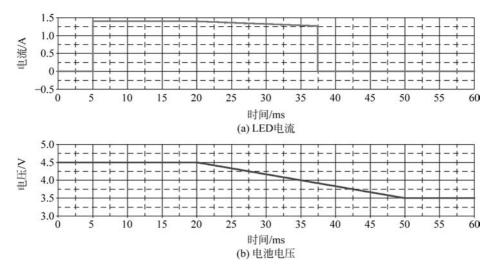
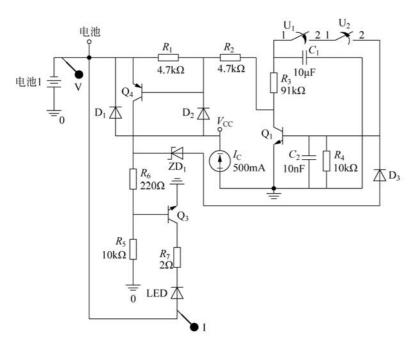



图 3.23 电池电压变化时的测试波形

如图 3. 24 所示,仅测试充电功能时,电池由电容代替,容量为 1F、初始值为 4V。充电电源由恒流源代替,电流为 500 mA。充电时 LED 不能正常工作,测试波形如图 3. 25 所示,只能处于关闭状态,主要由二极管 D_2 实现对 Q_4 的限制,使其不能导通。

充电电路仿真分析 图 3.24

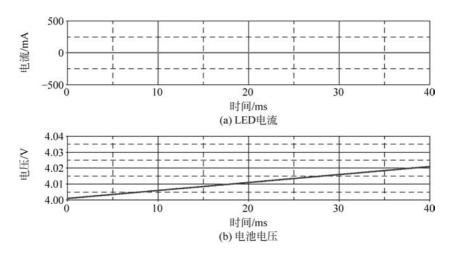


图 3.25 充电功能测试波形

充电功能和 LED 同时工作时,电路如图 3.26 所示,取代电池的电容为 1V,初始值为 4V,恒流源电流为1A。充电时LED能正常工作,测试波形如图3.27所示,同时实现对电 池充电,只是充电电流源 I。的电流值比较大。

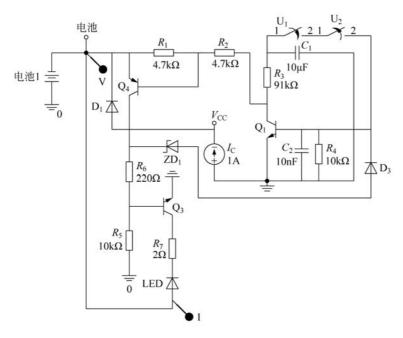


图 3.26 充电电路仿真分析——去掉二极管 D₂

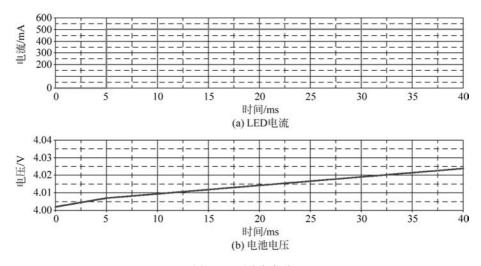


图 3.27 测试波形

3.2.3 LED 充电电路完整功能测试

LED 充电灯完整电路如图 3. 28 和图 3. 29 所示,220V 交流电通过电容和整流桥对模拟电池 Bat 进行充电,电阻 R_2 和 D_L 为充电指示灯;SW1 为 LED 启动开关, R_3 为限流电阻,详细元器件列表见表 3. 2。

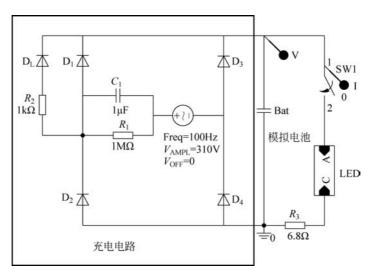


图 3.28 实际 LED 充电电路

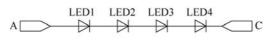


图 3.29 LED 模型

表 3.2 LED 充电灯完整电路仿真元器件表

编号	名称	库	型号	参数	备注
R_1	电阻	ANALOG	R	$1 M\Omega$	
$R_{{\scriptscriptstyle 2}}$	电阻	ANALOG	R	$1 \mathrm{k} \Omega$	
$R_{\scriptscriptstyle 3}$	电阻	ANALOG	R	6.8Ω	
C_1	电容	ANALOG	C	$1\mu F$	
Bat	电容	ANALOG	C	1F	$I_{\rm C}=4{\rm A}$ 、模拟电池
D_1	二极管	DIODE	D1N4007		
D_2	二极管	DIODE	D1N4007		
D_3	二极管	DIODE	D1N4007		
D_4	二极管	DIODE	D1N4007		
D_{L}	二极管	DIODE	D1N4007		充电指示发光二极管
LED1	二极管	DIODE	D1N4007		由二极管代替 LED 模型
LED2	二极管	DIODE	D1N4007		由二极管代替 LED 模型
LED3	二极管	DIODE	D1N4007		由二极管代替 LED 模型
LED4	二极管	DIODE	D1N4007		由二极管代替 LED 模型
SW1	常闭开关	ANL_MISC	sw_tClose	$T_{\text{CLOSE}} = 0 \text{ms}$	模拟开关过程
$V_{ m sin}$	交流电压源	SOURCE	Vsin	310V,50Hz	市电输入

测试波形如图 3.30 所示,图 3.30(a)为 LED 电流波形、约为 108mA、保持恒定,图 3.30(b) 为电池电压波形、通过 220V 交流电进行充电;由于 220V 交流电为电池充电达到稳态需要 一定时间,而仿真时间比较短——毫秒级,所以 LED 电流和电压仿真波形均有微小增大趋 势,当仿真时间足够长——秒级时二者将达到稳态。

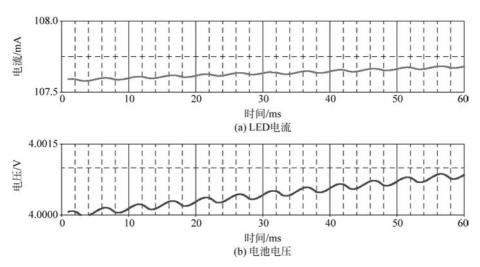


图 3.30 LED 电流和电池电压波形

3.2.4 电路性能改进

改进型电路增加基极电阻 R_8 , Q_3 由三极管更换成达灵顿管,电阻 R_6 阻值由 220 Ω 增大为 1k Ω ,修改后 Q_1 的工作状态更加柔和、不易损坏,电阻 R_6 损耗降低, Q_3 更换成达灵顿管之后可以提供更大功率,具体改进电路如图 3.31 所示,其中 $I_{C1}=4$ A, $I_{C2}=0$ 时,电路开启; $I_{C1}=0$, $I_{C2}=1$ A 时,电路关闭。

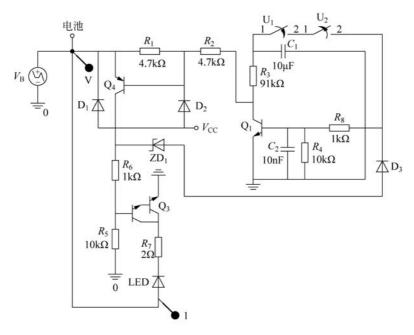


图 3.31 改进型电路

仿真测试波形如图 3.32 所示,图 3.32(a)为 LED 电流波形,可以输出更大电流,从而输出更大功率。图 3.32(b)为电池电压波形,电压低于约 3.9V 时 LED 关闭。增加电阻 R_8

并未影响电路正常工作,但是可以保护 Q 基极免受冲击。

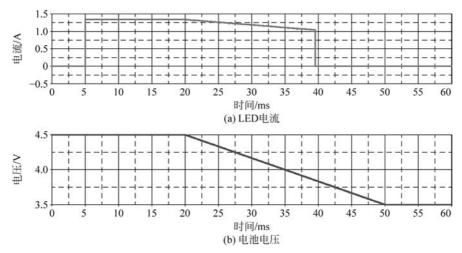


图 3.32 改进型电路的仿真测试波形

改进型完整电路仿真分析包括充电电路、LED 控制电路以及 LED 模型,具体如图 3.33 所示。充电时,LED 不能正常工作,通过改变 $V_{\rm sin}$ 的分量 $V_{\rm AMPL}$ 进行设置, $V_{\rm AMPL}=310{\rm V}$ 时充电; $V_{\rm AMPL}=0{\rm V}$ 时工作。LED 控制电路在 $I_{\rm C1}=4{\rm A}$, $I_{\rm C2}=0$ 时开启; $I_{\rm C1}=0$, $I_{\rm C2}=1{\rm A}$ 时关闭。

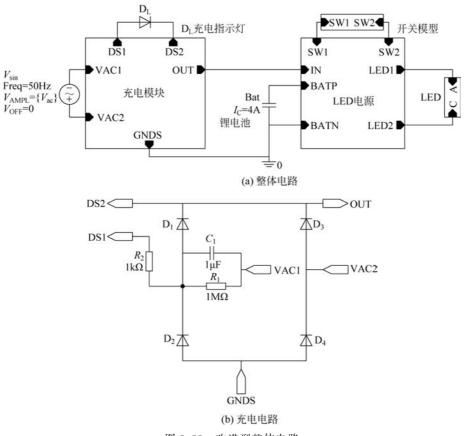
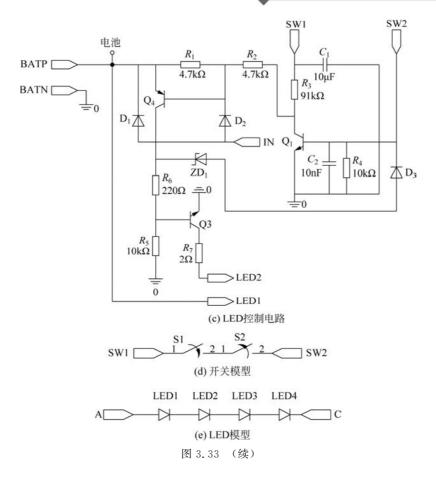



图 3.33 改进型整体电路

改进型电路测试波形如图 3.34 所示,图 3.34(a)为 LED 电流波形,图 3.34(b)为电池电压波形,图 3.34(c)为充电电流波形;充电时 LED 不能正常工作,只是在开始时闪亮几下,然后保持关闭。

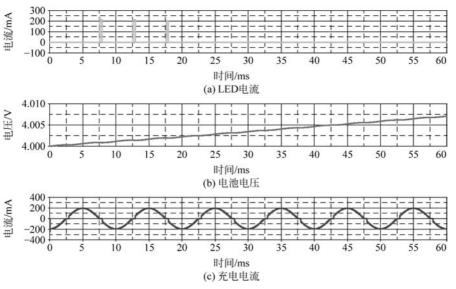


图 3.34 改进型电路测试波形

不充电时波形数据如图 3.35 所示,图 3.35(a)为 LED 电流波形,图 3.35(b)为电池电压波形,图 3.35(c)为充电电流波形。不充电时 LED 正常工作,电池电压下降。

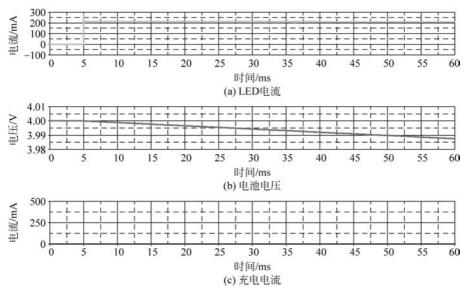
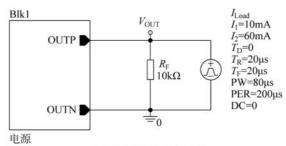


图 3.35 不充电时测试波形

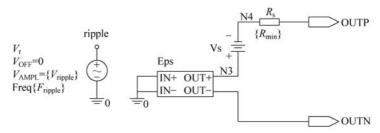
3.3 限流源模型分析与测试

通常测试电路需要使用限流电源,以保证电源和被测电路的安全,但是 PSpice 中的独立电源没有限流功能,因此必须单独添加此功能。如果电源在电流限制期间未产生连续电压,则限流功能可能出现收敛问题。目前 PSpice 软件中没有基本元件能够通过简单方法生成类似响应。

PSpice 可以利用行为模型建立分段线性响应,每段区域均能够通过非线性函数进行表征,该功能恰与"Table"表格模型相对应,表格模型中的每个区域只能由线性响应表示。


3.3.1 有源负载测试

限流电压源的有源负载测试电路如图 3.36 所示,利用 EVALUE 行为模型和 IF 语句建立限流电压源模型,使用余弦锥度函数实现电源平稳、受控过渡,利用参数进行具体设置。图 3.36(a)中,Delta 表示电流误差范围(0.01=1%); Voltage 表示正常工作输出电压值, (Voltage=5V); I_{Limit} 为限流值,表示过载时电源恒流输出值(I_{Limit} =50mA); R_{min} 表示电源等效输出电阻(R_{min} =1 $\mu\Omega$)。图 3.36(b)中,参数取值为 V_{ripple} =60mV, F_{ripple} =20kHz。


具体模型语句如下:

```
IF(I(Vs)<{(1 - Delta/2) * ILimit}, {Voltage} + V(Ripple), IF(I(Vs)>{(1 + Delta/2) * ILimit}, 0, ({Voltage/2}) * (1 + cos(3.14 * (I(Vs) - {(1 - Delta/2) * ILimit}))/{ILimit * Delta}))))

f(Vs) = {Voltage/2} * (1 + cos(3.14 * (I(Vs) - {(1 - Delta/2) * ILimit}))/{ILimit * Delta})语句解释:
```


(a) 主电路图及具体参数

 $IF(I(Vs) < \{(1-Delta/2)*ILimit\}, \{Voltage\} + V(Ripple), IF(I(Vs) > \{(1+Delta/2)*ILimit\}, 0, (\{Voltage/2\})*(1+cos(3.14*(I(Vs) - \{(1-Delta/2)*ILimit\})/\{ILimit*Delta\}))))$

(b) 受控源模型及其纹波参数

图 3.36 受控源模型测试电路

$$\cos(3.14*(I(Vs) - \{(1-Delta/2)*ILimit\})/\{ILimit*Delta\}) = \cos\left(\pi \times \frac{I(Vs) - \{(1-Delta/2)*ILimit\}}{ILimit*Delta}\right)$$
 当 $I(Vs) = (1-Delta/2)*ILimit 时 \cos(3.14*(I(Vs) - \{(1-Delta/2)*ILimit\})/\{ILimit*Delta\}) = \cos(0) = 1, 此时 f(Vs) = (\{Voltage/2\})*(1+1) = Voltage;$ 当 $I(Vs) = (1+Delta/2)*ILimit 时 \cos(3.14*(I(Vs) - \{(1-Delta/2)*ILimit\})/\{ILimit*Delta\}) = \cos(3.14) = -1, 此时 f(Vs) = \{Voltage/2\}*(1-1) = 0;$

所以电流在 $Delta \times I_{Limit}$ 范围内变化时实现输出电压从 $\{Voltage\} \sim 0$ 连续变化,实现了电路收敛。

1. 直流分析

 I_{Load} 直流分析的仿真设置与测试波形分别如图 3.37 和图 3.38 所示,当电流在 Delta 范围内变化时输出电压 V_{VOUT} 从 5V 平缓降为 0V,其一次导数和二次导数分别如图 3.38 的曲线所示,利用余弦锥度函数使得限流电路完美收敛。

由于 R_F 通过电流,所以影响 I_{Limit} 和 Delta 设置精度, R_F 阻值越大对精度影响越小。 具体测试电路参考图 3. 36(a),其中需要根据电路精度选择 R_F 阻值,因此采用参数 R_{FV} 表示 R_F 的值,该值对电路稳定性产生一定影响。测试电路的仿真设置如图 3. 39 和图 3. 40 所示。

 $R_{\rm F}$ =10kΩ 时负载特性曲线和数据如图 3.41 所示,电流约为 50.236mA 时输出电压约为 8.8mV,电流约为 49.268mA 时输出电压约为 4.9877V,与 $I_{\rm Limit}$ =50mA 和 Delta 存在约 0.5%误差

$$\frac{50.236+49.268}{2}$$
 = 49.752

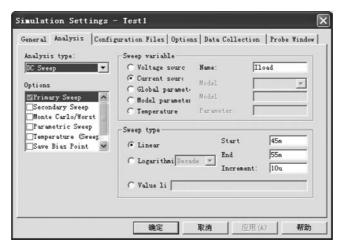


图 3.37 直流仿真设置

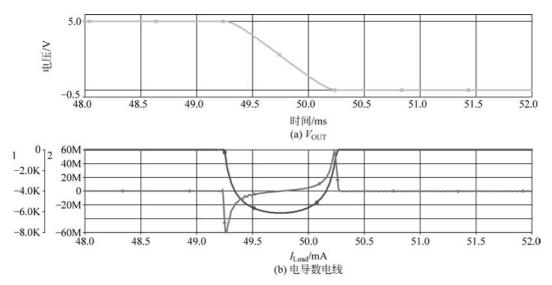


图 3.38 仿真测试波形

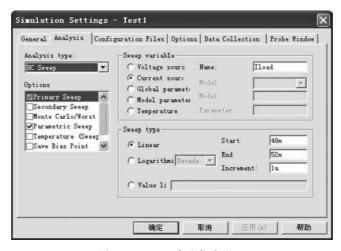


图 3.39 I_{Load} 直流仿真设置

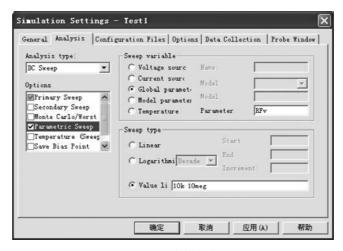
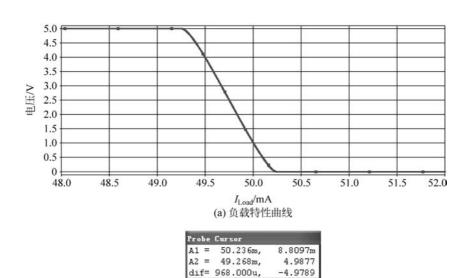
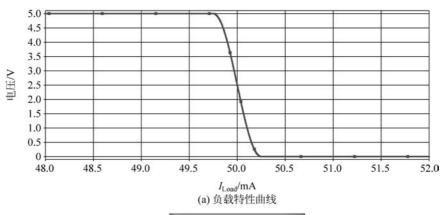



图 3.40 R_F 参数仿真设置

(b) 测试数据

图 3.41 $R_F = 10 \text{k}\Omega$ 时负载特性曲线和测试数据


 $R_{\rm F} = 10 {\rm M}\Omega$ 时负载特性曲线和数据如图 3.42 所示,电流约为 50.24mA 时输出电压约 为 5. 18mV, 电流约为 49. 764mA 时输出电压约为 4. 9896V, 与 $I_{\text{Limit}} = 50 \text{mA}$ 和 Delta 基本 一致

$$\frac{50.24 + 49.764}{2} = 50.002$$

2. 瞬态分析

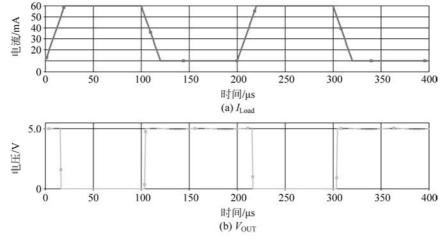
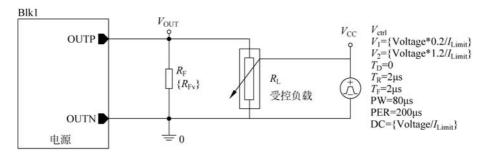
仿真设置与测试波形分别如图 3.43 和图 3.44 所示,负载电流大于 50mA 时输出电压 约为 0V,负载电流小于 50mA 时输出电压约为 5V,转换过程系统稳定工作,即使电压存在 60mV 纹波。

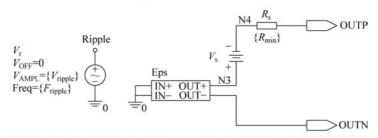
Probe Cursor A1 = 50.240m, 5.1807m A2 = 49.764m4.9896 dif= 476.000u, -4.9845

(b) 测试数据

图 3.42 $R_F = 10 M\Omega$ 时负载特性曲线和测试数据

图 3.43 瞬态仿真设置


图 3.44 瞬态测试波形

3.3.2 无源负载测试

利用无源负载对限流源进行测试,并且与有源负载时的特性进行对比,测试电路如图 3.45 所示。

(a) 主电路图及具体参数

 $IF(I(Vs) < \{(1-Delta/2)*ILimit\}, \{Voltage\} + V(Ripple), IF(I(Vs) > \{(1+Delta/2)*ILimit\}, 0, (\{Voltage/2\})*(1+cos(3.14*(I(Vs) - \{(1-Delta/2)*ILimit\})/\{ILimit*Delta\}))))$

(b) 受控源模型及其纹波参数

SUBCKT VARIRES 1 2 CTRL

R1 1 2 3E10

G1 1 2 Value= $\{V(1, 2)/(V(CTRL)+1u)\}$

.ENDS

(c) 可控电阻模型语句

图 3.45 无源负载测试电路

1. 直流分析

负载电阻 R_L 从 1Ω 线性增加到 200Ω 时,直流仿真设置和仿真波形分别如图 3.46 和图 3.47 所示,负载电阻小于 100Ω 时的输出电流近似恒为 $50 \, \text{mA}$,电路实现限流输出功能,即该电源最大输出 $50 \, \text{mA}$,与有源负载的 $60 \, \text{mA}/0 \, \text{V}$ 存在矛盾,负载电阻大于约 100Ω 时输出 $5 \, \text{V}$ 恒定电压,电路实现限流功能,所以测试电源负载特性时尽量使用无源负载,以保证测试的准确性。

2. 瞬态分析

当负载电阻为 120Ω 时电源工作于恒压状态,输出电压约为 5V(有纹波); 当负载电阻为 20Ω 时电源工作于恒流状态,输出电压约为 $20\times50=1V(无纹波)$; 具体仿真设置和测试 波形分别如图 3.48 和图 3.49 所示。

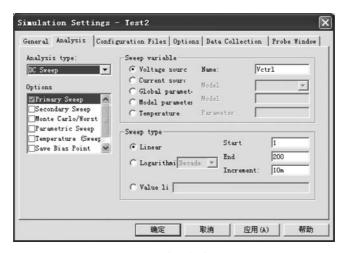


图 3.46 直流仿真设置

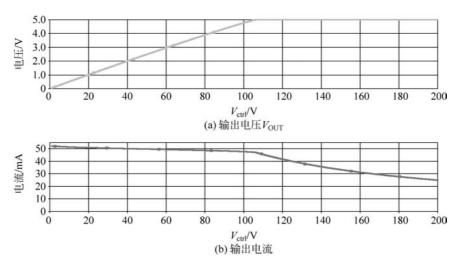


图 3.47 仿真测试波形

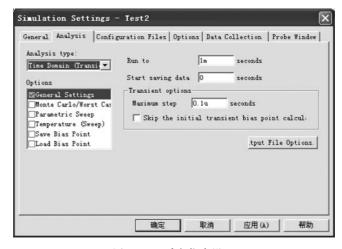


图 3.48 瞬态仿真设置

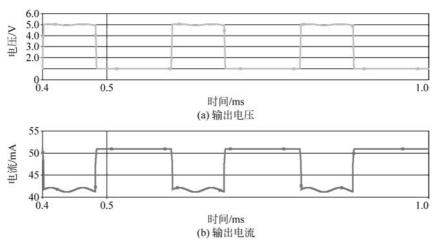


图 3.49 瞬态测试波形

3. IF 语句仿真收敛对比测试

如图 3.50 所示,当比较语句更改为 $IF(I(V_s) < \{I_{Limit}\}, \{Voltage\}, 0)$,仿真将出现不收敛 (见图 3.51),并且无法通过 Options 设置使其收敛,从而体现 IF 语句比较功能时函数的重要性。

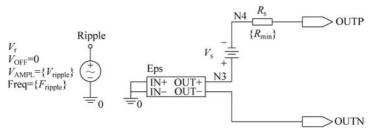


图 3.50 修改比较语句之后的电压源模型

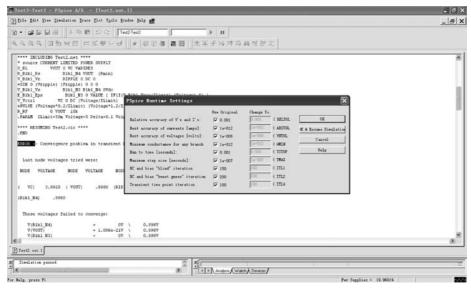


图 3.51 仿真不收敛

很多时候仿真不收敛与电路结构和设置有关,如果实际电路与仿真设置完全一样,但实 际电路还可能出现问题:工作不稳定、振荡、元器件和电路板损坏。当实际电路仿真出现不 收敛时一定要认真思考,找到问题根源是电路设计还是仿真故障。

高效降压变换器 3.4

3.4.1 工作原理分析

TL431 可编程精密基准电压源通常用于低成本降压开关变换器设计,以发挥其基准电 压源和电压比较器的双重功能,通过调节反馈电阻参数值进行输出电压设置。图 3.52 为输 出 5V/1A 电源的实际测试电路,其中 $V_{DC} = 20V$,为输入直流电压值; $V_{out} = 5V$,为输出电 压值; I_{out} 为输出电流值,取 1 表示工作于断续模式,取 2 表示工作于连续模式; RatioH= 0.9,为输出脉冲电流高比率; RatioL=0.1,为输出脉冲电流低比率; L_α=15μA 或 150μA, 为滤波电感 L_i 的参数值,此值影响开关频率(近似平方根关系); R_4 = 10 Ω 或者 50 Ω ,为正 反馈分压电阻 R4参数值,阻值越大输出电压越大、纹波越大。

图 3.53 为压控负载,表 3.3 为主要元器件列表,整机效率约为 70%。仿真分析时可为 输出滤波电感 L_i 和电容 C_i 设置初始电流和电压值,如果不能确定其初始值,也可由软件自 动配置初始值,但是瞬态仿真时间可能比较长,并且最大仿真步长尽量设置小,因为开关频 率和上升/下降沿时间不能确定,为保证仿真结果的准确性,Option 精度应设置足够高。 PSpice 对开关变换器各元器件的寄生参数非常敏感,所以仿真结果与测量结果存在微小 差异。

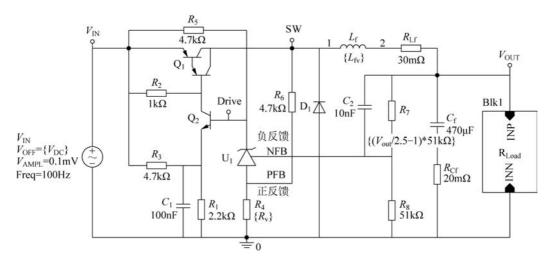


图 3.52 主电路和参数设置

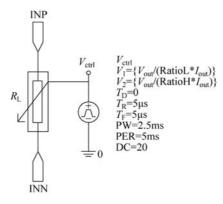


图 3.53 压控负载

表 3.3 主要元器件列表

编号	名称	型号	参数	库	功能注释
R_1	电阻	R	2. 2kΩ	ANALOG	偏置电压
R_{2}	电阻	R	$1k\Omega$	ANALOG	偏置电流
R_3	电阻	R	$4.7 \mathrm{k}\Omega$	ANALOG	偏置电压
R_4	电阻	R	10Ω	ANALOG	正反馈
R_{5}	电阻	R	$4.7 \mathrm{k}\Omega$	ANALOG	正反馈
$R_{\scriptscriptstyle 6}$	电阻	R	$4.7 \mathrm{k}\Omega$	ANALOG	偏置电流
R_{7}	电阻	R	$\{(V_{\text{out}}/2.5-1)\times51\text{k}\Omega\}$	ANALOG	负反馈
R_{8}	电阻	R	$51 \mathrm{k}\Omega$	ANALOG	负反馈
$R_{ m Lf}$	电阻	R	$30\mathrm{m}\Omega$	ANALOG	滤波电感 $L_{\rm f}$ 串联电阻
$R_{ m Cf}$	电阻	R	$20\mathrm{m}\Omega$	ANALOG	滤波电容 C_f 串联电阻
$R_{ m Load}$	压控电阻	层电路	见图 3.53		等效负载
$R_{ extsf{L}}$	可控电阻	VARIRES	SUBCKT VARIRES 1 2 CTRL R1 1 2 2E10 G1 1 2 Value = { V (1,2)/(V(CTRL) + 1u) } .ENDS	APPLICATION	等效负载
$L_{ m f}$	电感	L	$\{L_{\rm fv}\}$	ANALOG	输出滤波
C_{f}	电容	C	$\{C_{\text{fv}}\}$	ANALOG	输出滤波
C_1	电容	C	100nF	ANALOG	稳压滤波
C_2	电容	C	10nF	ANALOG	反馈补偿
D_1	二极管	D1N5822	$I_{\rm s} = 8.5 \mu {\rm A, Bv} = 40 {\rm V}$	DIODE	反向续流
\mathbf{Q}_1	达林顿	TIP117	$100\mathrm{V}/2\mathrm{A}$	DARLNGTN	功率开关
\mathbf{Q}_2	三极管	MPSA20	$I_{\rm s} = 1.9 {\rm fA, Bv} = 40 {\rm V}$	BIPOLAR	信号放大
U_1	基准源	TL431	见模型	VR	环路控制
$V_{ m IN}$	正弦电压源	Vsin	见图 3.52	SOURCE	功率输入
$V_{ m ctrl}$	脉冲电压源	VPULSE	见图 3.52	SOURCE	负载控制

工作原理: U_1 驱动 Q_2 使得 Q_1 工作于开关状态,通过反馈分压和补偿网络使系统工作 于恒压状态,电感 L_i 和电容 C_i 实现能量的存储与交换。 R_1 、 R_3 、 C_1 构成偏置电压,使得 TL431 的输出控制电压为合适值以发挥其最高精度。 R_2 为 Q_2 提供偏置电流,稳定其放大 功效。 R_s 为 U_1 提供偏置电流,使其稳定工作。 R_a 和 R_s 为 TL431 提供正反馈,使得开关 在开通和关断期间更稳定、不振荡。Q, 导通时 SW 点电压升高,使得 PFB 点电压升高,从 而 TL431 输出高压,则 Q 保持导通; Q 关断时 SW 点电压降低,使得 PFB 点电压降低,从 而 TL431 输出低压,则 Q_1 更加关断。 R_7 、 R_8 、 C_2 构成输出电压负反馈。电阻负责分压,使 得 NFB 点电压约为 2.5V,改变 R_7 电阻值调节输出电压幅度。 C_2 起到环路稳定补偿作用, 使得容性负载和测试状态变化时系统都能稳定工作。R Lord 为等效负载,利用电压控制其阻 值,实现负载效应调节与测试。 $V_{\rm IN}$ 为输入供电电源,具有偏置电压和纹波设置功能,用于 源效应、输出纹波、整机效率测试。 $V_{\rm ctrl}$ 为负载控制电源,通过电压控制 $R_{\rm L}$ 阻值,从而调节 输出电流,可工作于直流和脉冲状态,用于测试负载效应。

3.4.2 5V/1A 功能测试

稳态时输出电压约为 5.4V、输出电流 1.07A,变换器工作于断续模式。稳态时输出电 压纹波峰峰值 $V_{\text{pp}}=87\,\text{mV}$ 、输出电流纹波峰峰值 $I_{\text{pp}}=17.4\,\text{mA}$ 。相关参数设置为: $V_{\text{DC}}=17.4\,\text{mA}$ 20V, $V_{OUT} = 5V$, $I_{out} = 1A$, RatioH = 1, RatioL = 1, $L_{fv} = 150 \mu F$, $R_{4v} = 10\Omega$ 。仿真设置和测 试波形分别如图 3.54 和图 3.55~图 3.58 所示。



图 3.54 功能测试仿真设置

5V/1A 源效应测试的仿真设置和测试波形数据分别如图 3.59 和图 3.60 所示,其中部 分参数设置为: RatioH=1,RatioL=1, L_{fv} =150 μ F, R_{4v} =10 Ω , V_{OUT} =5V, I_{OUT} =1A。 V_{DC} 分别为 20V 和 10V 时输出电压相差约 285mV。

5V/1A 输出电压纹波测试数据如图 3.61 所示, V_{DC} 分别为 20V 和 10V 时输出电压纹 波分别约为87mV和83mV,输入电压越高、输出电压纹波越大。

5V/1A 整机效率测试的仿真设置和测试波形数据分别如图 3.62 和图 3.63 所示,输入 平均功率约为 7.2W、负载平均功率约为 4.95W,整机效率约为 4.95/7.2=68.8%。

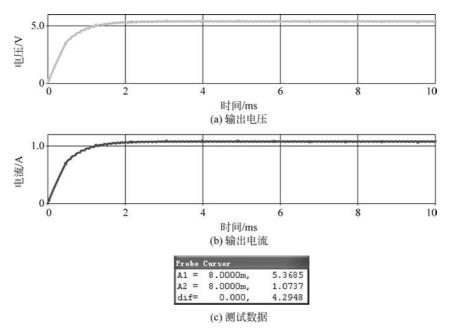


图 3.55 5V/1A 稳态时输出电压和电流

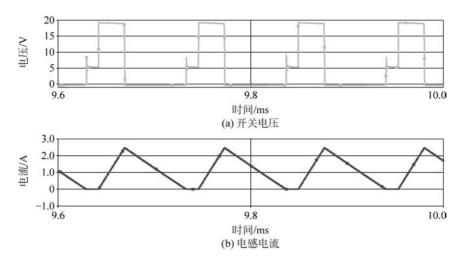


图 3.56 5V/1A 稳态时开关电压和电感电流波形——断续模式

 $5V/0.1\sim0.9A$ 脉冲负载测试的参数设置为: $V_{\rm DC}=15V$, $V_{\rm out}=5V$, $I_{\rm out}=1A$, RatioH=0.9, RatioL=0.1, $L_{\rm fv}=150\mu{\rm F}$, $R_{\rm 4v}=10\Omega$ 。测试波形如图 3.64 所示,输出电流改变瞬间输出电压出现微小跳变,但在约 200 $\mu{\rm s}$ 时间内恢复正常。输出 0.9A 电流时开关频率高,输出 0.1A 电流时开关频率低。负载突变时系统能够稳定工作。

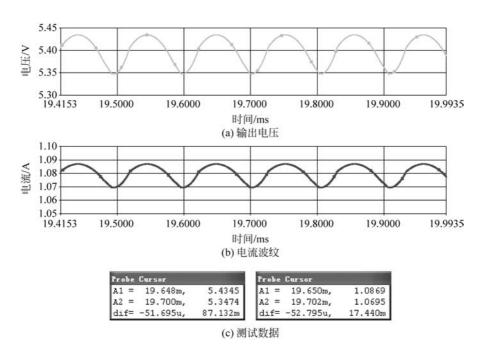


图 3.57 5V/1A, $L_{fv}=150\mu F$ 稳态时输出电压、电流纹波及测试数据: $V_{p-p}=87 \,\mathrm{mV}$, $I_{p-p}=17.4$ mA,开关周期约为 10kHz

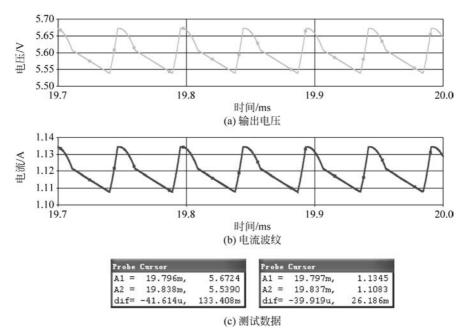


图 3.58 5V/1A, $L_{\rm fv} = 15 \mu F$ 稳态时输出电压、电流纹波及测试数据: $V_{\rm pp} = 133 \, {\rm mV}$, $I_{p-p}=26.2 \text{mA}$,开关周期约为 20 kHz

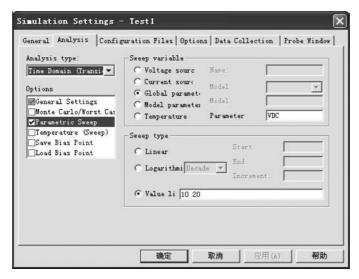


图 3.59 仿真设置

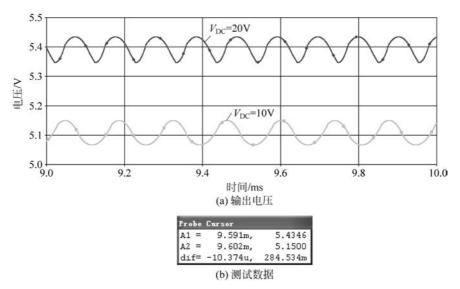


图 3.60 5V/1A 时的源效应测试波形和测试数据

Probe Cursor			Probe Cursor			
A1 =	9.4622m,	5.1500	A1 = 9.4880m,	5.4346		
A2 =	9.534m,	5.0667	A2 = 9.542m	5.3475		
dif=	-71.459u,	83.326m	dif= -54.280u,	87.112m		

图 3.61 5V/1A 时输出电压纹波测试数据

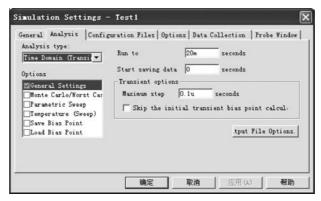


图 3.62 仿真和参数设置

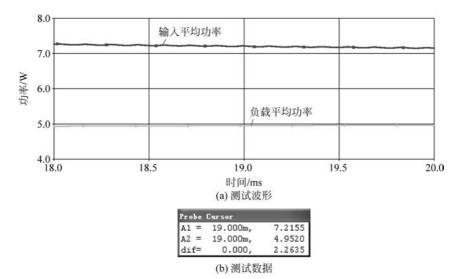


图 3.63 5V/1A 时功率测试波形和测试数据

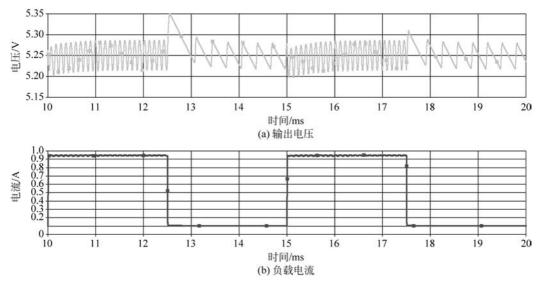


图 3.64 输出电压与负载电流波形

3.4.3 5V/2A 功能测试

稳态时输出电压约为 5. 2V、输出电流 2. 1A,变换器工作于连续模式,参数设置为 $V_{\rm DC}$ = 20 V, $V_{\rm out}$ = 5 V, $I_{\rm out}$ = 2 A。 RatioH=1,RatioL=1, $L_{\rm fv}$ = 150 μ F, $R_{\rm v}$ = 10 Ω。测试波形和数据分别如图 3. 65 和图 3. 66 所示。电源启动时输出电压和负载电流均从 0 开始逐渐增大,最后达到稳态值。开关电压为高电平时,电感 $L_{\rm f}$ 电流增大,开始储能;开关电压为低电平时,电感 $L_{\rm f}$ 电流减小,开始释放能量。此时电源工作于连续模式。

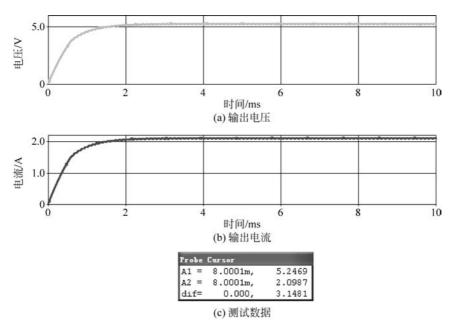


图 3.65 5V/2A 稳态时输出电压、电流波形与测试数据

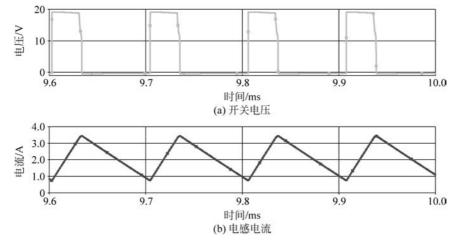
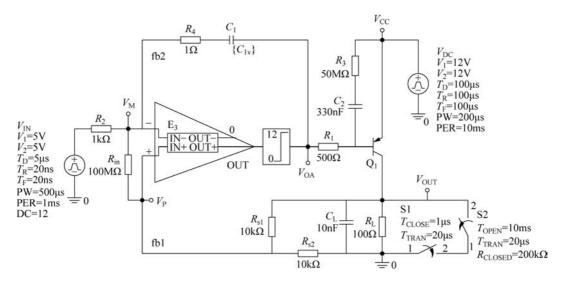


图 3.66 5V/2A 稳态时的开关电压和电感电流波形——连续模式

单电源缓冲电路设计


设计指标:输出电压 10V、电流 100mA、带宽 100kHz。 其中,电路使用的运算放大器的极点和增益设置函数为:

$$GAIN = Gop / \left(1 + \frac{S}{6.28 \times fp1}\right) \left(1 + \frac{S}{6.28 \times fp2}\right)$$

其中,fp1 为运放第一极点频率,取值为 10Hz; fp2 为运放第二极点频率,取值为 100MHz; Gop 为直流增益频率,取值为 1MHz。电容参数 $C_{1v}=1.6nF$ 。

3.5.1 瞬态时域分析与测试

正常工作时,输出 10V/100mA; 测试电路、仿真设置、输出电压和电流波形分别如 图 3.67~图 3.69 所示,电路正常工作时输出电压为 10V,负载电流为 100mA。

正常工作时稳态测试电路

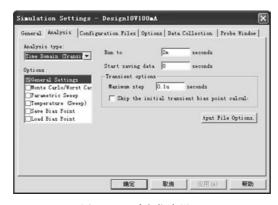


图 3.68 瞬态仿真设置

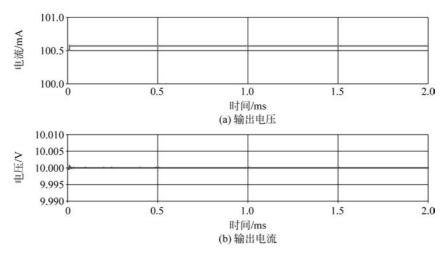


图 3.69 输出电压与电流波形

3.5.2 供电源效应测试

当图 3.67 中的供电电源 $V_{\rm DC}$ 在 10.8~12V 变化时测试输出电压特性, $V_{\rm DC}$ 的 $T_{\rm R}$ 和 $T_{\rm F}$ 分别为 $100\mu{\rm s}$ 时输出电压瞬间变化约 $40{\rm mV}$,测试波形如图 3.70 所示。 $V_{\rm DC}$ 的 $T_{\rm R}$ 和 $T_{\rm F}$ 分别为 $10\mu{\rm s}$ 时输出电压瞬间变化约 $400{\rm mV}$,测试波形如图 3.71 所示。当供电电源稳定后输出电压恢复至 $10{\rm V}$,输出过冲与供电 $V_{\rm DC}$ 的上升、下降沿速度有关。

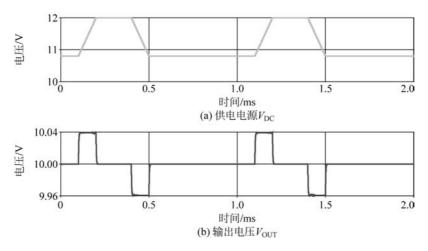


图 3.70 V_{DC} 的 T_R 和 T_F 为 $100\mu s$ 时的输入输出波形

3.5.3 输入信号源 $V_{\rm IN}$ 测试

输出 10V/100mA 时测试图 3.67 中输入信号 V_{IN} 对输出电压的控制特性,当输入信号 V_{IN} 在 $4.8\sim5\text{V}$ 脉冲变化时,输出电压 V_{OUT} 在 $9.6\sim10\text{V}$ 脉冲变化,电源实现 $V_{\text{OUT}}=2V_{\text{IN}}$ 的输出控制功能,具体波形如图 3.72 所示。

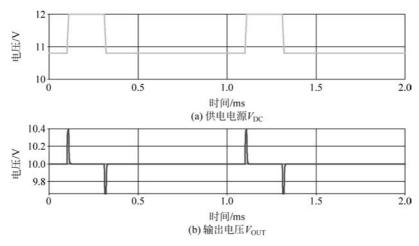


图 3.71 V_{DC} 的 T_R 和 T_F 为 $10\mu s$ 时的输入输出波形

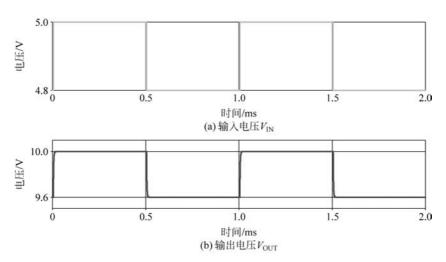


图 3.72 输入、输出电压波形: $V_{\text{OUT}} = 2V_{\text{IN}}$

直流仿真设置和测试波形与数据分别如图 3.73 和图 3.74 所示,当输入电压 $V_{\rm IN}$ <5.88V 时,输出电压 $V_{\rm OUT}$ =2 $V_{\rm IN}$; 当输入电压 $V_{\rm IN}$ >5.88V 时,输出电压 $V_{\rm OUT}$ =11.756V,此时发生输出饱和。

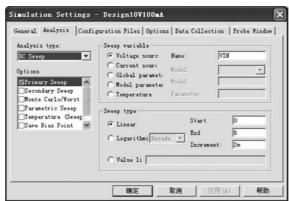


图 3.73 直流仿真设置

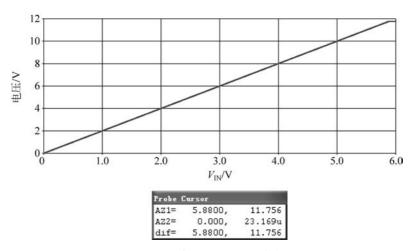


图 3.74 直流测试波形与数据

3.5.4 负载效应测试

负载在 $50\% \sim 100\%$ 变化时测试输出电压特性,此时图 3.67 的供电电源 V_{DC} 的参数 $T_{R}=10\mu s$, $T_{F}=10\mu s$, 开关 S_{1} 的参数 $T_{CLOSE}=0.4 ms$, 开关 S_{2} 的参数 $T_{OPEN}=0.8 ms$ 。负载 特性测试曲线及数据如图 3.75 所示,输出电压为 10V, 负载电流由 50 mA 增大至 100 mA 时输出电压下降约 264 mV, $16.7 \mu s$ 恢复正常。输出电压为 10V, 负载电流由 100 mA 降低至 50 mA 时输出电压上升约 260 mV, $16.7 \mu s$ 恢复正常。负载变化期间输出电压无振荡,系统能够稳定工作。

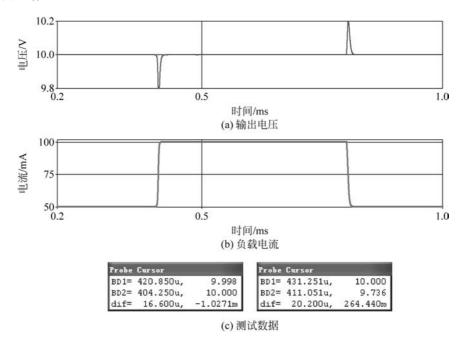


图 3.75 负载特性测试曲线及数据

频域稳定性分析 3.5.5

频域稳定性测试电路如图 3.76 和图 3.77 所示,其中,参数取值: $C_{1v}=1.6nF$, $C_{Llv}=$ $10 \mathrm{nF}$ 。利用 V_{GI} 、 C_{T} 、 L_{T} 对环路进行幅频和相频测试,以检验系统的稳定性,利用不同电路 分别进行开环和闭环性能测试,以对比二者的统一性。

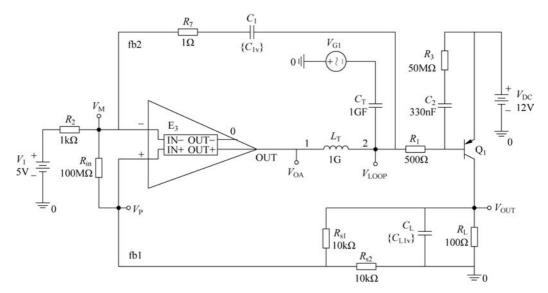


图 3.76 开环频域稳定性测试电路

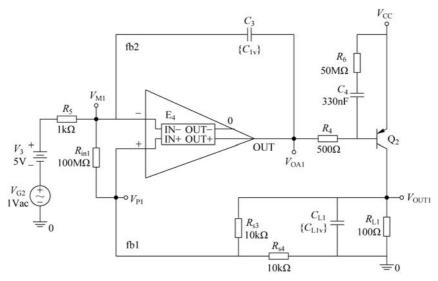


图 3.77 闭环频域测试电路、运放极点与增益设置函数

备注:

- (1) $V_1 = 5V$ 提供直流工作点,对应输出 10V,应正确设置,否则频率特性不正常。
- (2) fb1 和 fb2 均为负反馈。
- (3) 交流测试频率范围为 1Hz~100MHz,具体设置如图 3.78 所示。

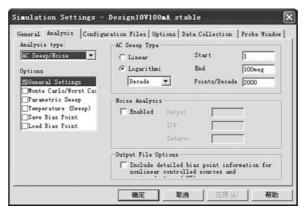
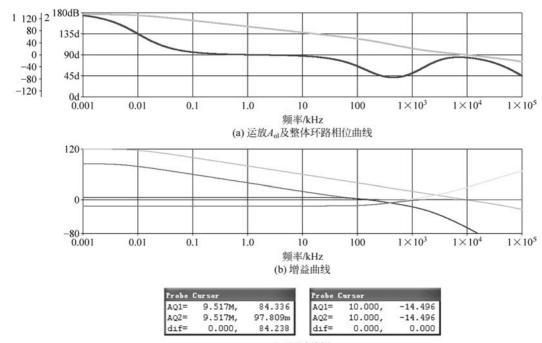


图 3.78 交流仿真设置


频率特性曲线及数据如图 3.79 所示,fb1 与 fb2 谁强谁起作用,即 DB($V_{\text{VLOOP}}/V_{\text{VP}}$)与 DB($V_{\text{VLOOP}}/V_{\text{VM}}$)谁低谁起作用。最终运放 A_{ol} 曲线 DB($V_{\text{VOA}}/V_{\text{VM,VP}}$)与总反馈曲线 DB($V_{\text{VLOOP}}/V_{\text{VM,VP}}$)交越增益为一20dB/DEC,环路稳定工作、相位裕度约 90°。 R_2 、 C_1 构成的零点频率与 R_L 、 C_L 构成的极点频率互相抵消。因为此时 DB($V_{\text{VLOOP}}/V_{\text{VM}}$)增益比较小,所以 C_2 补偿不起作用。直流时有:

$$DB(V_{VLOOP}/V_{VM}) = 20\log\left(\frac{0.81}{5}\right) = -15.81$$

即输出电压从 0V 增大到 10V(100mA)时运放输出电压 V_{OA} 的变化量与反馈量之比为:

$$\frac{11.43 - 10.62}{5} = \frac{0.81}{5}$$

所以直流增益为-15.81dB,仿真测试值为-14.5dB,二者基本一致。

(c) 测试数据

图 3.79 频率特性曲线及数据

备注:

- (1) V_{IN} 提供直流工作点,应正确设置,否则工作不正常! 设置 V_{IN} 参数进行瞬态和直流测试——输入信号源效应与输出满度。
 - (2) C_L 与 C_1 相对应,同时增大或减小相同倍率,用于负载电容补偿。
 - (3) 输出过冲是指运放输出端,并非电源输出端。
 - (4) 瞬态仿真设置最大步长应与 f_{cl} 相匹配: $t=1/(10\times f_{cl})$ 。
 - (5) $C_L = 1 \text{nF} R_3 = 50 \text{M}\Omega$ 时域稳定, 频域与时域特性一致。
- (6) S₁ 和 S₂ 测试 $50\%\sim100\%$ 负载转换效应,调节时间与闭环带宽相对应,测试不同转换时间对应的输出电压特性, $T_{\rm RAN}$ 分别为 $10\mu{\rm s}$ 、 $100\mu{\rm s}$ 。
- (7) 供电电源 V_{DC} 在 10%变化时测试输出电压特性,测试不同转换时间对应的输出电压特性, T_R 和 T_F 分别为 $10\mu s$ 、 $100\mu s$ 。