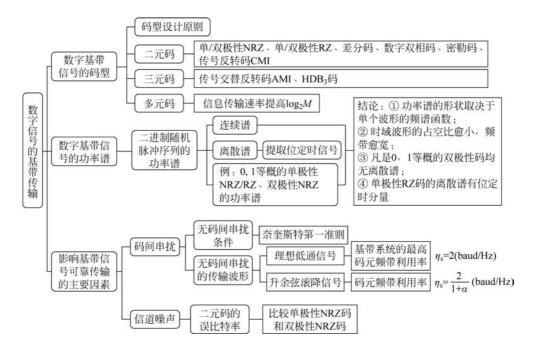
第5章 数字信号的基带传输

5.1 学习辅导

5.1.1 教学背景


第4章讨论了模拟信号的波形编码。模拟信号经编码后得到的是数字信息,为了有效 地传输数字信息,必须使用电信号表示数字信息。表示数字信息的电信号形式有数字基带 信号和数字调制信号,相应的传输方式为数字信号的基带传输和频带传输。

数字信号的基带传输是用电脉冲表示数字信息后直接传输。用数字基带信号对载波进 行调制,形成数字调制信号后再进行传输称为数字信号的频带传输。

由于大多数的信道是带通型的,所以在多数情况下必须使用数字调制传输系统。但是数字基带传输是数字调制传输的基础,同时它本身是一种重要的传输方式,所以对数字传输系统的讨论首先从数字信号的基带传输原理开始。

第5章讨论数字信号的基带传输。

5.1.2 知识点框图

5.1.3 学习目标

- (1) 叙述数字基带信号和数字调制信号的定义。
- (2) 画出数字基带信号的常用码型。

- (3) 定性分析数字基带信号的功率谱的一般组成,具体分析二元 NRZ 码和 RZ 码的功率谱的组成。设计单极性 NRZ 码的位定时分量的提取方法。
- (4) 说明无码间串扰的传输条件。用作图法验证基带系统能否实现无码间串扰的传输。计算理想低通信号和升余弦滚降信号的带宽和频带利用率。
 - (5) 说明部分响应基带传输系统的作用。
 - (6) 了解二元码误比特率的推导过程,计算单、双极性二元 NRZ 码的误比特率。
- (7) 叙述 m 序列的定义,画出 3、4、5 级 m 序列发生器的框图,列出移位寄存器的状态转移流程图。验证输出序列是否符合 m 序列的性质。
 - (8) 解释眼图与系统性能之间的关系。
 - (9) 说明时域均衡的作用。

5.1.4 学习要点

1. 数字基带信号的常用码型

- 码型的定义;
- 二元码的常用码型: 单极性 NRZ 码和 RZ 码, 双极性 NRZ 码和 RZ 码, 差分码, CMI 码, 数字双相码;
- 三元码的常用码型: AMI 码, HDB。码。

2. 数字基带信号的功率谱

- 数字基带信号的功率谱组成的一般规律;
- 二元 NRZ 码和 RZ 码的功率谱的具体组成;
- 单极性二元 NRZ 码位定时分量的提取方法。

3. 无码间串扰

- 无码间串扰的传输条件:
- 验证基带系统能否实现无码间串扰传输的方法;
- 理想低通信号的传输特性,带宽和频带利用率;
- 升余弦滚降信号的传输特性,带宽和频带利用率。

4. 二元码误比特率

- 数字基带信号的传输模型;
- 二元码误比特率的推导过程;
- 单、双极性二元 NRZ 码的误比特率计算。

5. m 序列

- m 序列的定义:
- 3、4、5级 m 序列发生器的框图,移位寄存器的状态转移流程图:
- m 序列的性质。

5.1.5 学习难点

1. 位定时信号和码元速率的关系

位定时信号的作用是控制码元的起止时间,位定时信号的一个周期是 1 位码元的长度,位定时信号的周期即码元周期。码元速率 R_s 是码元周期 T_s 的倒数,位定时信号的频率

 f_s 也是码元周期 T_s 的倒数,所以码元速率 R_s 和位定时信号的频率 f_s 在数量上相等,只是单位不同。

2. 从数字基带信号中提取位定时信号

一般来说,数字基带信号的功率谱由连续谱和离散谱组成。在离散谱中如果有位定时分量,则可以用窄带滤波器提取出来。提取出来的位定时分量为单频余弦信号,经判决整形后可形成码元周期的矩形脉冲,即位定时信号。

经分析可知,单极性二元 RZ 码的离散谱中有位定时分量。对其他码型的数字基带信号进行变换,先使之形成相对应的单极性二元 RZ 码,然后就可以进行位定时分量的提取。 在数字传输系统的接收端,位定时信号的提取是一个重要的问题。

3. 验证基带系统能否实现无码间串扰传输的方法

验证方法通常采用作图法。对于给定的系统的传递函数 H(f),找到滚降段的中心频率 f_s ,以 $2f_s$ 为间隔切割,然后分段沿 f 轴平移到[$-f_s$, f_s]区间内进行叠加,叠加后的传输特性如果满足等效理想低通特性,且传输速率为 $2f_s$,则该系统能够实现无码间串扰的传输。

4. 基带传输系统无码间串扰传输的最高速率

基带传输系统无码间串扰传输的最高速率由基带传输系统的等效理想低通带宽 B 决定。当等效理想低通带宽 B 为 $\frac{\pi}{T} \left(\frac{1}{2T} \, \text{或} \, f_s \right)$ 时,无码间串扰传输的最高速率 R_s 为 $\frac{1}{T} (\, \text{或} \, 2f_s)$ 。

等效理想低通带宽B不一定是基带传输系统的实际带宽,实际带宽要具体计算。设升 余弦滚降信号的等效理想低通带宽为 B_{eq} ,有

$$B_{\rm eq} = \frac{1}{2T}$$

实际带宽与 α 取值有关,即

$$B = \frac{1+\alpha}{2T}$$

5. 码元频带利用率和信息频带利用率

无码间串批传输时基带传输系统所能提供的最高码元频带利用率为

$$\eta_{s} = \frac{R_{s}}{B} = \frac{1/T}{1/2T} = 2(\text{baud/Hz})$$

这里的码元指任何进制的码元。

信息频带利用率的定义式为

$$\eta_{\rm b} = \frac{R_{\rm b}}{B}$$

二进制时码元速率和信息速率相等,即

$$R_{s} = R_{b}$$

二进制时无码间串扰传输的最高信息频带利用率为

$$\eta_b = \frac{R_b}{R} = \frac{R_s}{R} = 2(\text{bit/(s} \cdot \text{Hz}))$$

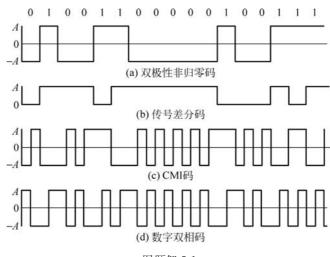
多进制时码元速率和信息速率的关系为

$$R_{\rm b} = R_{\rm s} \log_2 M$$

所以多进制时的最高信息频带利用率为

$$\eta_b = \frac{R_b}{B} = \frac{R_s}{B} \log_2 M = 2\log_2 M$$

在码元速率相同的情况下,多进制传输可明显提高信息频带利用率。

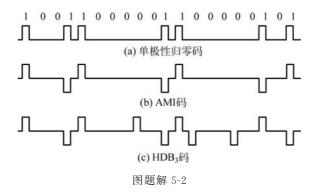

5.1.6 学习后记

数字信号的传输方式分为数字信号的基带传输和数字信号的调制(频带)传输。第5章讨论了数字信号的基带传输,基带传输要求使用低通型信道。由于大多数的信道是带通型的,所以在多数情况下必须使用数字调制传输系统。数字信号的基带传输和调制传输有密切的关系。在数字信号基带传输的基础上,第6章将讨论数字信号的调制(频带)传输。

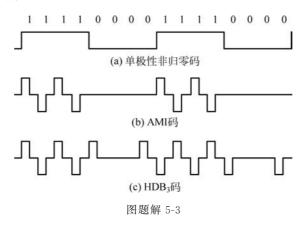
5.2 习题解答

5.1 已知二元信息序列为 01001100000100111,画出它所对应的双极性非归零码、传号差分码、CMI 码、数字双相码的波形。

解 具体编码规则见主教材 P169~P170,波形如图题解 5-1 所示。


图题解 5-1

5.2 已知二元信息序列为 10011000001100000101,画出它所对应的单极性归零码、AMI 码和 HDB。码的波形。


解 具体编码规则见主教材 P170~P172,波形如图题解 5-2 所示。

注意 本题的二元信息序列存在两个 4 连 0 码,根据 HDB₃ 码的编码规则,在选择取代节(000V或 B00V)时,需要满足:两个相邻 V 脉冲之间的 B 脉冲的个数为奇数。本题中首个破坏节(取代节)可随机选取 000V或 B00V,则第二个取代节应该选取 B00V。

5.3 有 4 个连 1 与 4 个连 0 交替出现的序列, 画出用单极性非归零码、AMI 码、HDB₃ 码表示时的波形图。

解 波形如图题解 5-3 所示。

注意 题目给出的是周期性序列,相邻的4个连0之间均为4个连1,所以破坏节均为B00V。建议画出两个以上周期的波形。

- **5.4** 在与传输线特性阻抗相匹配的 75Ω 终端负载上对非归零码进行测量。信息速率 R_b =100kbit/s,1 码的电平值为 100mV,0 码的电平值为一100mV,且出现 1 和 0 的概率 相等。
 - (1) 计算信号的功率谱;
 - (2) 若阻抗和信号电平均不改变,信息速率增加到 10Mbit/s,信号功率谱将如何变化?
- **解** (1) 由题目条件可知传输信号为双极性非归零码,由主教材例 5-3 的结论可进一步推导出双极性非归零码的功率谱计算公式为

$$P(f) = \frac{A^2}{R} T_s \operatorname{Sa}^2 \left(\frac{\pi f}{f_s} \right) = \frac{A^2}{R} \frac{1}{R_b} \operatorname{Sa}^2 \left(\frac{\pi f}{R_b} \right)$$

代入具体数据

$$P(f) = \frac{A^2}{R} T_s Sa^2 \left(\frac{\pi f}{f_s}\right)$$

$$= \frac{A^2}{R} \frac{1}{R_b} Sa^2 \left(\frac{\pi f}{R_b}\right)$$

$$= \frac{0.1^2}{75} \frac{1}{100 \times 10^3} Sa^2 \left(\frac{\pi f}{100 \times 10^3}\right)$$

$$\approx 1.33 \times 10^{-9} \text{ Sa}^2 (1 \times 10^{-5} \pi f)$$

(2) 若阻抗和信号电平均不改变,信息速率增加到 10Mbit/s,功率谱为

$$\begin{split} P(f) = & \frac{A^{2}}{R} T_{s} \mathrm{Sa}^{2} \left(\frac{\pi f}{f_{s}} \right) \\ = & \frac{A^{2}}{R} \frac{1}{R_{b}} \mathrm{Sa}^{2} \left(\frac{\pi f}{R_{b}} \right) \\ = & \frac{0.1^{2}}{75} \frac{1}{10 \times 10^{6}} \mathrm{Sa}^{2} \left(\frac{\pi f}{10 \times 10^{6}} \right) \\ \approx & 1.33 \times 10^{-11} \mathrm{Sa}^{2} (1 \times 10^{-7} \pi f) \end{split}$$

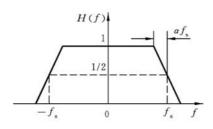
由计算结果可知,信息速率增加后功率谱随之加宽。

- 5.5 理想低通信道的截止频率为8kHz。
- (1) 若发送信号采用 2 电平基带信号,求无码间串批的最高信息传输速率;
- (2) 若发送信号采用 16 电平基带信号,求无码间串扰的最高信息传输速率。
- 解 (1) 由主教材式(5-23)可知,无码间串扰传输二进制码的最高频带利用率为

$$\eta_{\rm b} = \frac{R_{\rm b}}{R} = 2(\text{bit/(s • Hz)})$$

发送信号采用2电平基带信号,无码间串扰的最高信息传输速率为

$$R_{\rm b} = \eta_{\rm b} B = 2 \times 8 \times 10^3 = 16 ({\rm kbit/(s \cdot Hz)})$$

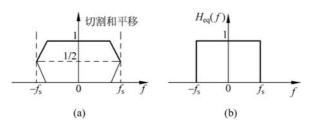

(2) 若发送信号采用 16 电平基带信号,多进制数 M=16,可求出

$$\log_2 M = \log_2 16 = 4$$

无码间串扰的最高信息传输速率

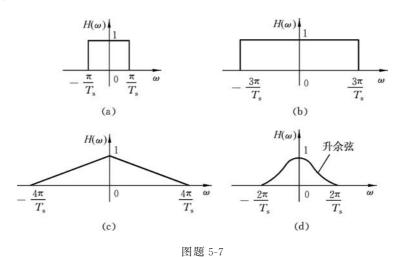
$$R_{\rm b} = \eta_{\rm b} B \log_2 M = 2 \times 8 \times 10^3 \times 4 = 64 \text{ (kbit/(s • Hz))}$$

5.6 斜切滤波器的频谱特性如图题 5-6 所示,若输入为速率等于 $2f_s$ 的冲激脉冲序列,试验证传输特性可否保证输出波形无码间串扰。

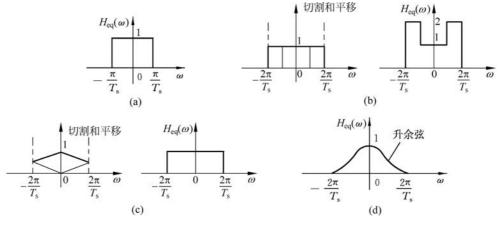

图题 5-6

解 将该系统的传递函数 H(f)以 $2f_s$ 为间隔切割,然后分段沿 f 轴平移到 $[-f_s,f_s]$ 区间内,如图题解 5-6(a)所示。叠加后的传输特性如图题解 5-6(b)所示,可表示为

$$H_{\mathrm{eq}}(f) = \begin{cases} 1, & |f| \leqslant f_{\mathrm{s}} \\ 0, & 其他 \end{cases}$$


由于叠加后的传输特性符合等效理想低通特性,所以该系统能够实现无码间串扰的传输。

5.7 设基带系统的发送滤波器、信道及接收滤波器组成的总特性为 $H(\omega)$, 若要求以



图题解 5-6

 $2/T_s$ baud 的速率进行数据传输,试检验图题 5-7 所示各种 $H(\omega)$ 能否满足抽样点上无码间 串扰的条件?

解 若要求以 $2/T_s$ baud 的速率进行数据传输,系统的传递函数 $H(\omega)$ 应以 $\frac{4\pi}{T_s}$ 为间隔 切割,然后分段沿 ω 轴平移到 $\left[-\frac{2\pi}{T_s},\frac{2\pi}{T_s}\right]$ 区间内进行叠加,如图题解 5-7 所示。

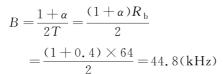
图题解 5-7

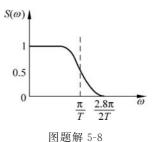
由叠加后的传输特性可知,只有(c)的传递函数 $H(\omega)$ 满足抽样点上无码间串扰的条件,(a)、(b)、(d)均不满足无码间串扰的条件。

- 5.8 已知信息速率为 64kbit/s,采用 $\alpha = 0.4$ 的升余弦滚降频谱信号。
- (1) 求它的时域表达式;
- (2) 画出它的频谱图;
- (3) 求传输带宽;
- (4) 求频带利用率。

解 (1) 由题目条件可知,信息速率 R_b = 64kbit/s,滚降系数 α = 0.4,预先算出以下数据:

$$\frac{1}{T} = R_b = 64 \times 10^3 \,\text{Hz}$$


$$\frac{1}{T^2} = R_b^2 = 4096 \times 10^6 \,\text{Hz}^2$$


$$\alpha^2 = 0.4^2 = 0.16$$

代入主教材式(5-25),升余弦滚降频谱信号的时域表达式为

$$\begin{split} s(t) &= S_0 \, \frac{\sin \frac{\pi t}{T}}{\frac{\pi t}{T}} \, \frac{\cos \frac{\alpha \pi t}{T}}{1 - \left(\frac{4\alpha^2 \, t^2}{T^2}\right)} \\ &= S_0 \, \frac{\sin(64 \times 10^3 \, \pi t)}{64 \times 10^3 \, \pi t} \, \frac{\cos(0.4 \times 64 \times 10^3 \, \pi t)}{1 - (4 \times 0.16 \times 4096 \times 10^6 \, t^2)} \\ &= S_0 \, \frac{\sin(64 \times 10^3 \, \pi t)}{64 \times 10^3 \, \pi t} \, \frac{\cos(25.6 \times 10^3 \, \pi t)}{1 - (2.62 \times 10^9 \, t^2)} \end{split}$$

- (2) 升余弦滚降频谱信号的频谱示意图如图题解 5-8 所示。
- (3) 由主教材式(5-26)可求出升余弦滚降频谱信号的传输 带宽

(4) 由主教材式(5-27)可求出升余弦滚降频谱信号的频带利用率

$$\eta_{\rm b} = \frac{2}{1+\alpha} = \frac{2}{1+0.4} \approx 1.43 (\,{\rm bit/(\,s \cdot \, Hz)})$$

也可以由信息凍率和传输带宽求出频带利用率

$$\eta_{\rm b} = \frac{R_{\rm b}}{B} = \frac{64 \times 10^3}{44.8 \times 10^3} \approx 1.43 (\,{\rm bit/(s \cdot Hz)})$$

5.9 若二元码的数据信息速率为 64kbit/s,按照以下几种滚降系数设计升余弦滤波器,求相应的信道带宽和频带利用率。

- (1) $\alpha = 0.25$;
- (2) $\alpha = 0.3$:
- (3) $\alpha = 0.5$:
- $(4) \alpha = 1_{\circ}$

解 (1) 由主教材式(5-26)可求出信道带宽

$$B = \frac{1+\alpha}{2T} = \frac{(1+\alpha)R_b}{2} = \frac{(1+0.25) \times 64}{2} = 40(\text{kHz})$$

由主教材式(5-27)可求出升余弦滚降频谱信号的频带利用率

$$\eta_{\rm b} = \frac{2}{1+\alpha} = \frac{2}{1+0.25} = 1.6(\text{bit/(s} \cdot \text{Hz}))$$

也可以由信息速率和信道带宽求出频带利用率

$$\eta_{\rm b} = \frac{R_{\rm b}}{B} = \frac{64 \times 10^3}{40 \times 10^3} = 1.6(\text{bit/(s} \cdot \text{Hz}))$$

(2) 由主教材式(5-26)可求出信道带宽

$$B = \frac{1+\alpha}{2T} = \frac{(1+\alpha)R_b}{2} = \frac{(1+0.3)\times 64}{2} = 41.6(\text{kHz})$$

由主教材式(5-27)可求出频带利用率

$$\eta_{\rm b} = \frac{2}{1+\alpha} = \frac{2}{1+0.3} \approx 1.54 (\,{\rm bit/(s \cdot Hz)})$$

也可以由信息速率和信道带宽求出频带利用率

$$\eta_{\rm b} = \frac{R_{\rm b}}{B} = \frac{64 \times 10^3}{41.6 \times 10^3} \approx 1.54 ({\rm bit/(s \cdot Hz)})$$

(3) 由主教材式(5-26)可求出信道带宽

$$B = \frac{1+\alpha}{2T} = \frac{(1+\alpha)R_b}{2} = \frac{(1+0.5)\times 64}{2} = 48(\text{kHz})$$

由主教材式(5-27)可求出频带利用率

$$\eta_{\rm b} = \frac{2}{1+\alpha} = \frac{2}{1+0.5} \approx 1.33 (\,\text{bit/(s} \cdot \text{Hz})\,)$$

也可以由信息速率和信道带宽求出频带利用率

$$\eta_{\rm b} = \frac{R_{\rm b}}{B} = \frac{64 \times 10^3}{48 \times 10^3} \approx 1.33 (\,{\rm bit/(s \cdot Hz)})$$

(4) 由主教材式(5-26)可求出信道带宽

$$B = \frac{1+\alpha}{2T} = \frac{(1+\alpha)R_b}{2} = \frac{(1+1)\times 64}{2} = 64(\text{kHz})$$

由主教材式(5-27)可求出频带利用率

$$\eta_{\rm b} = \frac{2}{1+\alpha} = \frac{2}{1+1} = 1(\text{bit/(s} \cdot \text{Hz}))$$

也可以由信息速率和信道带宽求出频带利用率

$$\eta_{\rm b} = \frac{R_{\rm b}}{B} = \frac{64 \times 10^3}{64 \times 10^3} = 1(\text{bit/(s \cdot Hz)})$$

5.10 设二进制基带系统的传输特性为

$$H(\omega) = \begin{cases} \tau_0 (1 + \cos \omega \tau_0), & |\omega| \leqslant \pi/\tau_0 \\ 0, & 其他 \end{cases}$$

试确定系统最高的传输速率 R_b 及相应的码元间隔 T_s 。

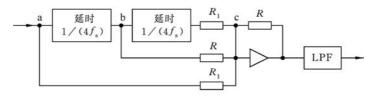
解 由题目条件可知,该系统的传输特性为全升余弦滚降特性,其等效低通带宽为滚降 段的中心频率 ω_s ,可求出

$$\omega_{s} = \frac{\pi}{2\tau_{0}}$$

$$f_{s} = \frac{1}{2\pi} \cdot \frac{\pi}{2\tau_{0}} = \frac{1}{4\tau_{0}}$$

由主教材式(5-23)可知,系统最高的传输速率 R_b 是等效低通带宽的 2 倍,由此可计算

$$R_{\rm b} = 2f_{\rm s} = 2 \times \frac{1}{4\tau_0} = \frac{1}{2\tau_0}$$


相应的码元间隔 T。为

$$T_{\rm s} = \frac{1}{R_{\rm b}} = 2\tau_{\rm 0}$$

5.11 图题 5-11 为用一数字电路方法产生具有升余弦频谱特性的成形滤波器的原理电路。图中的运算放大器作相加器用。使 R_1 =2R 以保证相加器的输出中对 a,b,c 点 3 个分量的加权值分别为 $\frac{1}{2}$,1, $\frac{1}{2}$ 。试证明该电路的传递函数|H(f)|为

$$\mid H(f)\mid = \begin{cases} 1+\cos\frac{\pi f}{2f_{\mathrm{s}}}, & 0\leqslant f\leqslant 2f_{\mathrm{s}} \\ 0, & f>2f_{\mathrm{s}} \end{cases}$$

并画出滤波器的频谱特性曲线。

图题 5-11

解 设延时常数为τ,由图题 5-11 可知,系统的传递函数为

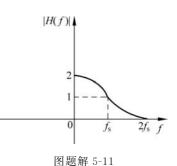
$$H(f) = \frac{1}{2} + e^{-j2\pi f\tau} + \frac{1}{2}e^{-j2\pi f\tau} \cdot e^{-j2\pi f\tau}$$
$$= e^{-j2\pi f\tau} \left(\frac{1}{2}e^{j2\pi f\tau} + 1 + \frac{1}{2}e^{-j2\pi f\tau} \right)$$
$$= e^{-j2\pi f\tau} \lceil 1 + \cos(2\pi f\tau) \rceil$$

把 $\tau=1/(4f_s)$ 代入上式,得到

$$H(f) = e^{-j\frac{\pi f}{2f_s}} \left[1 + \cos\left(\frac{\pi f}{2f_s}\right) \right]$$

经过低通滤波器后,传递函数为

$$H(f) = \begin{cases} e^{-j\frac{\pi f}{2f_{s}}} \left[1 + \cos\left(\frac{\pi f}{2f_{s}}\right) \right], & |f| \leqslant 2f_{s} \\ 0, & |f| > 2f_{s} \end{cases}$$


对系统的传递函数取模,得

$$\mid H(f)\mid = \begin{cases} 1+\cos\Bigl(\frac{\pi f}{2f_{\mathrm{s}}}\Bigr)\,, & 0\leqslant f\leqslant 2f_{\mathrm{s}}\\ 0\,, & f>2f_{\mathrm{s}} \end{cases}$$

频谱特性曲线如图题解 5-11 所示。

5.12 试求用两个相隔一位码元间隔的 $\frac{\sin x}{x}$ 波形的合

成波来代替传输系统冲激响应的 $\frac{\sin x}{x}$ 波形的频谱,并说明

其传递函数的特点。

解 令相邻码元取样时刻在 $t=\pm T/2$ 处,其余码元的取样时刻在 $\pm 3T/2$, $\pm 5T/2$, ...。 用两个相隔一位码元间隔 T 的 $\sin x/x$ 的合成波形来代替 $\sin x/x$ 波形,合成波的数学表达式为

$$p(t) = \frac{\sin\frac{\pi}{T}\left(t + \frac{T}{2}\right)}{\frac{\pi}{T}\left(t + \frac{T}{2}\right)} + \frac{\sin\frac{\pi}{T}\left(t - \frac{T}{2}\right)}{\frac{\pi}{T}\left(t - \frac{T}{2}\right)}$$

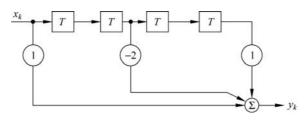
对上式进行傅里叶变换,可以求出 p(t)的频谱函数为

$$P(\omega) = \begin{cases} T(e^{-j\omega T/2} + e^{j\omega T/2}), & |\omega| \leqslant \frac{\pi}{T} \\ 0, & |\omega| > \frac{\pi}{T} \end{cases}$$
$$= \begin{cases} 2T\cos(\omega T/2), & |\omega| \leqslant \frac{\pi}{T} \\ 0, & |\omega| > \frac{\pi}{T} \end{cases}$$

传递函数的特点是 p(t)的频谱限制在 $\pm \pi/T$ 之内,而且呈余弦形。这种缓变的滚降过渡特性与陡峭衰减的理想低通特性有明显的不同。这时的传输带宽为

$$B = \frac{1}{2\pi} \frac{\pi}{T} = \frac{1}{2T}$$

频带利用率为


$$\eta_{\rm b} = \frac{R_{\rm b}}{R} = \frac{1/T}{1/2T} = 2(\text{bit/(s} \cdot \text{Hz}))$$

5.13 设一个部分响应系统采用的相关编码表示式为

$$y_k = x_k - 2x_{k-2} + x_{k-4}$$

画出该系统的框图,并求出系统的单位冲激响应和频率特性。

解 系统框图如图题解 5-13 所示。

图题解 5-13

由图可知,该系统的单位冲激响应为

$$h(t) = \delta(t) - 2\delta(t - 2T) + \delta(t - 4T)$$

相应的传递函数为

$$\begin{split} H(f) &= 1 - 2\mathrm{e}^{-\mathrm{j}4\pi Tf} + \mathrm{e}^{-\mathrm{j}8\pi Tf} \\ &= 2\mathrm{e}^{-\mathrm{j}4\pi Tf} \left(\frac{1}{2} \mathrm{e}^{\mathrm{j}4\pi Tf} - 1 + \frac{1}{2} \mathrm{e}^{-\mathrm{j}4\pi Tf} \right) \\ &= 2\mathrm{e}^{-\mathrm{j}4\pi Tf} \left[\cos(4\pi Tf) - 1 \right] \end{split}$$

对系统的传递函数取模,得

图数取模,得
$$|H(f)| = \begin{cases} 2[1 - \cos(4\pi T f)], & 0 \leqslant f \leqslant 1/2T \\ 0, & f > 1/2T \end{cases}$$

- 5.14 数字基带信号在传输过程中受到均值为 0,平均功率为 σ^2 的加性高斯白噪声的干扰,若信号采用单极性非归零码,且出现"1"的概率为 3/5,出现"0"的概率为 2/5,试推导出最佳判决门限值 $V_{\rm d}$ 和平均误比特率公式。
- **解** 设最佳判决门限为 $V_{\rm d}$ 。信源发 0 码和 1 码的概率分别为 $P_{\rm 0}$ 和 $P_{\rm 1}$,则基带传输系统的平均误比特率为

$$P_{b} = P_{0}P_{b0} + P_{1}P_{b1} = P_{0}\int_{V_{d}}^{\infty} p_{0}(r)dr + P_{1}\int_{-\infty}^{V_{d}} p_{1}(r)dr$$

基带信号采用单极性非归零码,设1码的幅度为A,上式中的概率密度函数可表示为

$$p_{0}(r) = \frac{1}{\sqrt{2\pi}\sigma} e^{-r^{2}/(2\sigma^{2})}$$

$$p_{1}(r) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(r-A)^{2}/(2\sigma^{2})}$$

为求出最佳判决门限,令

$$\frac{\partial P_{\rm b}}{\partial V_{\rm d}} = 0$$

因此有

$$\begin{aligned} & P_{1} p_{1} (V_{d}) - P_{0} p_{0} (V_{d}) = 0 \\ & \frac{p_{1} (V_{d})}{p_{0} (V_{d})} = \frac{P_{0}}{P_{1}} \end{aligned}$$

将 $p_1(V_d)$ 和 $p_0(V_d)$ 代入,得最佳门限值为

$$V_{\rm d} = \frac{A}{2} + \frac{\sigma^2}{A} \ln \frac{P_0}{P_1}$$

由题目已知条件可知 $P_1 = 3/5$, $P_0 = 2/5$, 于是有

$$V_{\rm d} = \frac{A}{2} + \frac{\sigma^2}{A} \ln \frac{P_0}{P_1} = \frac{A}{2} + \frac{\sigma^2}{A} \ln \frac{2}{3}$$

平均误比特率的公式为

$$\begin{split} P_{b} &= P_{0} P_{b0} + P_{1} P_{b1} = P_{0} \int_{V_{d}}^{\infty} p_{0}(r) dr + P_{1} \int_{-\infty}^{V_{d}} p_{1}(r) dr \\ &= \frac{2}{5} \int_{V_{d}}^{\infty} p_{0}(r) dr + \frac{3}{5} \int_{-\infty}^{V_{d}} p_{1}(r) dr \\ &= \frac{2}{5} \int_{V_{d}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-r^{2}/2\sigma^{2}} dr + \frac{3}{5} \int_{-\infty}^{V_{d}} \frac{1}{\sqrt{2\pi}\sigma} e^{-(r-A)^{2}/2\sigma^{2}} dr \\ &= \frac{2}{5} \int_{\frac{V_{d}}{\sigma}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx + \frac{3}{5} \int_{-\infty}^{\frac{V_{d}-A}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx \\ &= \frac{2}{5} Q \left(\frac{V_{d}}{\sigma} \right) + \frac{3}{5} Q \left(\frac{A - V_{d}}{\sigma} \right) \end{split}$$

- 5.15 双极性 NRZ 码在抽样时刻的电平取值为+A 或-A,分别对应于 1 码和 0 码。 信源发送 1 码和 0 码的概率分别为 P_1 和 P_0 ,判决器输入端的噪声功率为 σ^2 。
 - (1) 证明最佳判决电平 $V_d = \frac{\sigma^2}{2A} \ln \frac{P_0}{P_1}$;
 - (2) 求 $P_0 = P_1 = 1/2$ 时的最佳判决电平;
 - (3) 当 $P_0 > P_1$ 时 V_d 的值应如何变化?
 - (4) 当 $P_0 < P_1$ 时 V_d 的值应如何变化?

解 (1) 设最佳判决门限为 $V_{\rm d}$ 。信源发 0 码和 1 码的概率分别为 $P_{\rm 0}$ 和 $P_{\rm 1}$,则基带传输系统的平均误比特率为

$$P_{b} = P_{1}P_{b0} + P_{1}P_{b1} = P_{0}\int_{V_{d}}^{\infty} p_{0}(r) dr + P_{1}\int_{-\infty}^{V_{d}} p_{1}(r) dr$$

上式中的概率密度函数可表示为

$$p_{0}(r) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(r+A)^{2}/(2\sigma^{2})}$$

$$p_{1}(r) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(r-A)^{2}/(2\sigma^{2})}$$

为求出最佳判决门限,令

$$\frac{\partial P_{\rm b}}{\partial V_{\rm d}} = 0$$

因此有

$$\begin{split} &P_{1}p_{1}(V_{d}) - P_{0}p_{0}(V_{d}) = 0 \\ &\frac{p_{1}(V_{d})}{p_{0}(V_{d})} = \frac{P_{0}}{P_{1}} \end{split}$$

将 $p_1(V_d)$ 和 $p_0(V_d)$ 代入,得最佳门限值为

$$V_{\rm d} = \frac{\sigma^2}{2A} \ln \frac{P_0}{P_1}$$

(2) 当 $P_0 = P_1 = 1/2$ 时,最佳判决电平

$$V_{\rm d} = 0$$

(3) 当 $P_0 > P_1$ 时, V_d 的值应有利于对 P_0 的判决,判决门限 V_d 应向右离开等概时的判决门限,即

$$V_{\rm d} = \frac{\sigma^2}{2A} \ln \frac{P_0}{P_1} > 0$$

(4) 当 $P_0 < P_1$ 时, V_d 的值应有利于对 P_1 的判决,判决门限 V_d 应向左离开等概时的判决门限,即

$$V_{\rm d} = \frac{\sigma^2}{2A} \ln \frac{P_0}{P_1} < 0$$

5.16 设有一个 PCM 传输系统,其误码率不大于 10^{-6} ,试求在接收双极性码信号和单极性码信号时的最低信噪比。

解 由主教材式(5-60)可知,双极性 NRZ 码所需要的信噪比 S/N 与误比特率 $P_{\rm b}$ 的 关系为

$$P_{\rm b} = Q\left(\sqrt{\frac{S}{N}}\right)$$

当误比特率不大于 10⁻⁶ 时,查主教材附录表 B-2 可知

$$\sqrt{\frac{S}{N}} = 4.80$$

双极性 NRZ 码所需要的最低信噪比 S/N 为

$$\frac{S}{N} = 4.80^2 \approx 23.04$$

由主教材式(5-59)可知,单极性 NRZ 码所需要的信噪比 S/N 与误比特率 P_0 的关系为

$$P_{\rm b} = Q\left(\sqrt{\frac{S}{2N}}\right)$$

当误比特率不大于 10⁻⁶ 时,查主教材附录表 B-2 可知

$$\sqrt{\frac{S}{2N}} = 4.80$$

单极性 NRZ 码所需要的最低信噪比 S/N 为

$$\frac{S}{N} = 2 \times 4.80^2 = 46.08$$

- **5.17** 一计算机产生速率 R_b = 2400 bit/s 的单极性非归零码,在单边功率谱密度 n_0 = 4×10^{-20} W/Hz 的噪声信道中传输。
 - (1) 当误比特每 1s 不大于 1bit 时,求信号的功率;
 - (2) 当接收端的信噪比为 30 时,求误比特率。
 - 解 (1) 由题目条件可知,信息速率 $R_b = 2400 \, \text{bit/s}$,当误比特每 1s 不大于 1bit 时,误

比特率 P_b 的取值为

$$P_{\rm b} < \frac{1}{R_{\rm b}} = \frac{1}{2400} \approx 4.17 \times 10^{-4}$$

由主教材式(5-59)可知,单极性 NRZ 码所需要的信噪比 S/N 与误比特率 P_b 的关系为

$$P_{\rm b} = Q\left(\sqrt{\frac{S}{2N}}\right)$$

当误比特率 P_b <4.17×10⁻⁴ 时,查主教材附录表 B-2 可知

$$\sqrt{\frac{S}{2N}} = 3.35$$

单极性 NRZ 码所需要的信噪比 S/N 为

$$\frac{S}{N} = 2 \times 3.35^2 \approx 22.44$$

NRZ 码的谱零点带宽在数值上取信息速率,所以噪声的平均功率

$$N = n_0 B = n_0 R_b$$

信号的平均功率

$$S = 22.44 \times n_0 R_b = 22.44 \times 4 \times 10^{-20} \times 2400$$

 $\approx 2.15 \times 10^{-15} \text{ (W)}$

(2) 当接收端的信噪比为 30 时,可计算出

$$\sqrt{\frac{S}{2N}} = \sqrt{\frac{30}{2}} = \sqrt{15} \approx 3.87$$

查主教材附录表 B-2 可知 Q 函数值

$$P_{\rm b} = 5.91 \times 10^{-5}$$

- **5.18** 若要求基带传输系统的误比特率分别为 10^{-6} 和 10^{-7} ,求采用下列基带信号时所需要的信噪比:
 - (1) 单极性 NRZ 码;
 - (2) 双极性 NRZ 码。
- **解** (1) 由主教材式(5-59)可知,单极性 NRZ 码所需要的信噪比 S/N 与误比特率 $P_{\rm b}$ 的关系为

$$P_{\rm b} = Q\left(\sqrt{\frac{S}{2N}}\right)$$

当误比特率 $P_b = 10^{-6}$ 时,查主教材附录表 B-2 可知 Q 函数值应取 4.80,即

$$\sqrt{\frac{S}{2N}} = 4.80$$

单极性 NRZ 码所需要的信噪比 S/N 为

$$\frac{S}{N} = 2 \times 4.80^2 = 46.08$$

当误比特率 $P_b=10^{-7}$ 时,查主教材附录表 B-2 可知 Q 函数值应取 5.20,即

$$\sqrt{\frac{S}{2N}} = 5.20$$

单极性 NRZ 码所需要的信噪比 S/N 为

$$\frac{S}{N} = 2 \times 5.20^2 = 54.08$$

(2) 由主教材式(5-60)可知,双极性 NRZ 码所需要的信噪比 S/N 与误比特率 $P_{\rm b}$ 的关系为

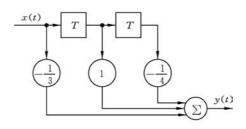
$$P_{\rm b} = Q\left(\sqrt{\frac{S}{N}}\right)$$

当误比特率 $P_b = 10^{-6}$ 时,查主教材附录表 B-2 可知 Q 函数值对应 4.80,即

$$\sqrt{\frac{S}{N}} = 4.80$$

双极性 NRZ 码所需要的信噪比 S/N 为

$$\frac{S}{N} = 4.80^2 = 23.04$$


当误比特率 $P_b=10^{-7}$ 时,查主教材附录表 B-2 可知 Q 函数值对应 5.20,即

$$\sqrt{\frac{S}{N}} = 5.20$$

双极性 NRZ 码所需要的信噪比 S/N 为

$$\frac{S}{N} = 5.20^2 = 27.04$$

5.19 有一个三抽头时域均衡器如图题 5-19 所示,各抽头增益分别为-1/3,1,-1/4。 若输入信号 x(t)的抽样值为 $x_{-2}=1/8$, $x_{-1}=1/3$, $x_0=1$, $x_{+1}=1/4$, $x_{+2}=1/16$,求均衡器输入及输出波形的峰值畸变。

图题 5-19

解 由题目条件可知,三抽头增益分别为 $C_{-1} = -1/3$, $C_0 = 1$, $C_1 = 1/4$, 且有 2N + 1 = 3

由主教材式(5-74)可以求得各时刻输出为

$$y_{-3} = \sum_{n=-1}^{1} C_n x_{-3-n}$$

$$= C_{-1} x_{-2} + C_0 x_{-3} + C_1 x_{-4}$$

$$= -\frac{1}{4} \times \frac{1}{8} + 0 + 0$$

$$= -\frac{1}{32}$$

$$\begin{aligned} y_{-2} &= \sum_{n=-1}^{1} C_n x_{-2-n} \\ &= C_{-1} x_{-1} + C_0 x_{-2} + C_1 x_{-3} \\ &= -\frac{1}{3} \times \frac{1}{3} + 1 \times \frac{1}{8} + 0 \\ &= \frac{1}{72} \\ y_{-1} &= \sum_{n=-1}^{1} C_n x_{-1-n} \\ &= C_{-1} x_0 + C_0 x_{-1} + C_1 x_{-2} \\ &= -\frac{1}{3} \times 1 + 1 \times \frac{1}{3} - \frac{1}{4} \times \frac{1}{8} \\ &= -\frac{1}{32} \\ y_0 &= \sum_{n=-1}^{1} C_n x_{-n} \\ &= C_{-1} x_{+1} + C_0 x_0 + C_1 x_{-1} \\ &= -\frac{1}{3} \times \frac{1}{4} + 1 \times 1 - \frac{1}{4} \times \frac{1}{3} \\ &= \frac{5}{6} \\ y_1 &= \sum_{n=-1}^{1} C_n x_{1-n} \\ &= C_{-1} x_{+2} + C_0 x_{+1} + C_1 x_0 \\ &= -\frac{1}{3} \times \frac{1}{16} + 1 \times \frac{1}{4} - \frac{1}{4} \times 1 \\ &= -\frac{1}{48} \\ y_2 &= \sum_{n=-1}^{1} C_n x_{2-n} \\ &= C_{-1} x_{+3} + C_0 x_{+2} + C_1 x_{+1} \\ &= 0 + 1 \times \frac{1}{16} - \frac{1}{4} \times \frac{1}{4} \\ &= 0 \\ y_3 &= \sum_{n=-1}^{1} C_n x_{3-n} \\ &= C_{-1} x_{+4} + C_0 x_{+3} + C_1 x_{+2} \\ &= 0 + 0 - \frac{1}{4} \times \frac{1}{16} \\ &= \frac{1}{64} \end{aligned}$$

由主教材式(5-75)可求得输出峰值畸变为

$$D = \frac{1}{y_0} \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} |y_k|$$

$$= \frac{1}{y_0} (y_{-3} + y_{-2} + y_{-1} + y_{+1} + y_{+2} + y_{+3})$$

$$= \frac{6}{5} \left(\frac{1}{32} + \frac{1}{72} + \frac{1}{32} + \frac{1}{48} + \frac{1}{64}\right)$$

$$= 0.14$$

输入峰值畸变为

$$D_0 = \frac{1}{x_0} \sum_{\substack{k = -\infty \\ k \neq 0}}^{\infty} |x_k|$$

$$= \frac{1}{x_0} (x_{-2} + x_{-1} + x_{+1} + x_{+2})$$

$$= \frac{1}{1} \times \left(\frac{1}{8} + \frac{1}{3} + \frac{1}{4} + \frac{1}{16}\right)$$

$$\approx 0.77$$

由结论可知,均衡后使峰值畸变减小5.5倍。

5.20 设有 3 个抽头的迫零均衡器,输入信号 x(t) 在各抽样点的值依次为 $x_{-2}=0.1$, $x_{-1}=0.2$, $x_0=1$, $x_{+1}=-0.3$, $x_{+2}=0.1$ 。对于 k>2 的 $x_k=0$, 求 3 个抽头的最佳增益值。

解 设 3 个抽头的最佳增益值分别为 C_{-1} , C_0 和 C_1 。因为 2N+1=3, 根据主教材式 (5-78), 列出矩阵方程为

$$\begin{bmatrix} x_0 & x_{-1} & x_{-2} \\ x_1 & x_0 & x_{-1} \\ x_2 & x_1 & x_0 \end{bmatrix} \begin{bmatrix} C_{-1} \\ C_0 \\ C_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

将输入信号 x(t) 在各抽样点的值代入上式,得

$$\begin{bmatrix} 1 & 0.2 & 0.1 \\ -0.3 & 1 & 0.2 \\ 0.1 & -0.3 & 1 \end{bmatrix} \begin{bmatrix} C_{-1} \\ C_{0} \\ C_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

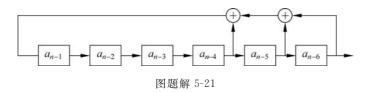
由矩阵方程可列出方程组

$$\begin{cases} C_{-1} + 0.2C_0 + 0.1C_1 = 0 \\ -0.3C_{-1} + C_0 + 0.2C_1 = 1 \\ 0.1C_{-1} - 0.3C_0 + C_1 = 0 \end{cases}$$

解联立方程组可得

$$C_{-1} = -0.2048$$
, $C_0 = 0.8816$, $C_1 = 0.2850$

- **5.21** 已知某线性反馈移位寄存器的特征多项式系数的八进制表示为 107, 若移位寄存器的起始状态为全 1:
 - (1) 求末级输出序列;


(2) 输出序列是否为 m 序列? 为什么?

解 (1) 特征多项式系数的八进制表示为 107, 与二进制系数的关系为

由二进制系数可写出对应的特征多项式

$$F_1(x) = x^6 + x^5 + x^4 + 1$$

特征多项式所对应的6级移位寄存器的逻辑反馈图如图题解5-21所示。

经计算可求出末级输出序列为全1序列。

(2) 由 6 级线性反馈移位寄存器产生的 m 序列的周期应为

$$2^6 - 1 = 63$$

而全1序列的周期为1,所以输出序列不是m序列。

- 5.22 已知移位寄存器的特征多项式系数为51,若移位寄存器起始状态为10000,
- (1) 求末级输出序列;
- (2) 验证输出序列是否符合 m 序列的性质。
- 解 (1) 特征多项式系数为 51,写出二进制系数和对应的特征多项式的过程为

使用特征多项式 $F_1(x) = x^5 + x^2 + 1$, 若移位寄存器起始状态为 10 000, 移位寄存器状态转移流程图如表题解 5-22 所示。

表题解 5-22

移位时 钟节拍	第 1 级 a _{n-1}	第2级 a _{n-2}	第 3 级 a _{n-3}	第 4 级 a _{n-4}	第 5 级 a _{n-5}	反馈值 $a_n = a_{n-2} \oplus a_{n-5}$
0	1	0	0	0	0	0
1	0	1	0	0	0	1
2	1	0	1	0	0	0
3	0	1	0	1	0	1
4	1	0	1	0	1	1
5	1	1	0	1	0	1
6	1	1	1	0	1	0
7	0	1	1	1	0	1

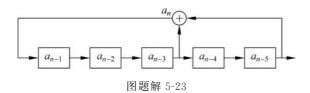
续表

移位时	第1级	第2级	第3级	第4级	第5级	反馈值
钟节拍	a_{n-1}	a_{n-2}	a_{n-3}	a_{n-4}	a_{n-5}	$a_n = a_{n-2} \oplus a_{n-5}$
8	1	0	1	1	1	1
9	1	1	0	1	1	0
10	0	1	1	0	1	0
11	0	0	1	1	0	0
12	0	0	0	1	1	1
13	1	0	0	0	1	1
14	1	1	0	0	0	1
15	1	1	1	0	0	1
16	1	1	1	1	0	1
17	1	1	1	1	1	0
18	0	1	1	1	1	0
19	0	0	1	1	1	1
20	1	0	0	1	1	1
21	1	1	0	0	1	0
22	0	1	1	0	0	1
23	1	0	1	1	0	0
24	0	1	0	1	1	0
25	0	0	1	0	1	1
26	1	0	0	1	0	0
27	0	1	0	0	1	0
28	0	0	1	0	0	0
29	0	0	0	1	0	0
30	0	0	0	0	1	1
31	1	0	0	0	0	0
32	0	1	0	0	0	1

末级输出序列 $a_{n-5} = 00001010111101100011111001101001$ 。

- (2) 周期序列的长度为 31 位,其中1码的个数 16 位、0码的个数 15 位。长度为 5 个码的游程 1 个(5 个 1 码),长度为 4 个码的游程 1 个(4 个 0 码),长度为 3 个码的游程 2 个,长度为 2 个码的游程 4 个,长度为 1 个码的游程 8 个。这些特点符合 m 序列的性质。
- 5.23 试设计一个长为 31 的 m 序列,画出逻辑反馈图,写出此序列一个周期内的所有游程。
 - 解 长为31的m序列满足下式关系:

$$2^5 - 1 = 31$$


m 序列应由 5 级移位寄存器产生。查主教材表 5-3 可知,特征多项式系数为 45,所对应的特征多项式为

$$F_1(x) = x^5 + x^2 + 1$$

$$F_2(x) = x^5 + x^3 + 1$$

选择特征多项式 $F_2(x) = x^5 + x^3 + 1$,选择初始状态 $10\ 000$,5 级移位寄存器的逻辑反馈图

如图题解 5-23 所示。

移位寄存器状态转移流程图如表题解 5-23 所示。

表题解 5-23

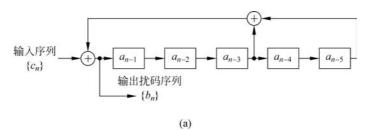
移位时 第 1 级 第 2 级 第 3 级 第 4 级 第 5 级 反馈值 钟节拍 a_{n-1} a_{n-2} a_{n-3} a_{n-4} a_{n-5} $a_{n}=a_{n-3} \oplus a_{n-5}$ a	1X N区 用于 3						
0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1	移位时	第1级	第2级	第3级	第4级	第 5 级	反馈值
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1	钟节拍	a_{n-1}	a_{n-2}	a_{n-3}	a_{n-4}	a_{n-5}	$a_n = a_{n-3} \oplus a_{n-5}$
2 0 0 1 0 0 1 3 1 0 0 1 0 0 4 0 1 0 0 1 1 5 1 0 1 0 0 1 1 6 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1	0	1	0	0	0	0	0
3 1 0 0 1 0 0 4 0 1 0 0 1 1 5 1 0 1 0 0 1 6 1 1 0 1 0 0 7 0 1 1 0 1 0 1 8 0 0 1 1 0 1 1 0 1 9 1 0 0 1	1	0	1	0	0	0	0
4 0 1 0 0 1 1 5 1 0 1 0 0 1 6 1 1 0 1 0 0 7 0 1 1 0 1 0 1 8 0 0 1 1 0 1 1 1 0 1	2	0	0	1	0	0	1
5 1 0 1 0 0 1 6 1 1 0 1 0 0 7 0 1 1 0 0 1 0 8 0 0 1 1 0 1 1 0 1 1 1 0 1	3	1	0	0	1	0	0
6 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1	4	0	1	0	0	1	1
7 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1	5	1	0	1	0	0	1
8 0 0 1 1 0 1 0 1 1 1 1 1 0 1	6	1	1	0	1	0	0
9 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0	7	0	1	1	0	1	0
10 1 1 0 0 1 1 11 1 1 1 0 0 1 12 1 1 1 1 0 1 13 1 1 1 1 1 0 0 14 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 </td <td>8</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td>	8	0	0	1	1	0	1
11 1 1 1 0 0 1 12 1 1 1 1 1 0 1 13 1 1 1 1 1 1 0 0 14 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 <td>9</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td>	9	1	0	0	1	1	1
12 1 1 1 1 0 1 13 1 1 1 1 1 0 0 14 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1	10	1	1	0	0	1	1
13 1 1 1 1 1 0 14 0 1 1 1 1 0 15 0 0 1 1 1 0 16 0 0 0 1 1 1 1 17 1 0 0 0 1 <td>11</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td>	11	1	1	1	0	0	1
14 0 1 1 1 1 0 15 0 0 1 1 1 0 16 0 0 0 1 1 1 17 1 0 0 0 1 1 18 1 1 0 0 0 0 19 0 1 1 0 0 1 20 1 0 1 1 0 1 21 1 1 0 1 1 1 21 1 1 0 1 1 1 1 22 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>12</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td></td<>	12	1	1	1	1	0	1
15 0 0 1 1 1 0 16 0 0 0 1 1 1 17 1 0 0 0 1 1 18 1 1 0 0 0 0 19 0 1 1 0 0 1 20 1 0 1 1 0 1 21 1 1 0 1 1 1 21 1 1 1 0 1 1 1 22 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13	1	1	1	1	1	0
16 0 0 0 1	14	0	1	1	1	1	0
17 1 0 0 0 1	15	0	0	1	1	1	0
18 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1	16	0	0	0	1	1	1
19 0 1 1 0 0 1 20 1 0 1 1 0 1 21 1 1 0 1 1 1 22 1 1 1 0 1 0 0 23 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td>17</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td>	17	1	0	0	0	1	1
20 1 0 1 1 0 1 21 1 1 0 1 1 1 22 1 1 1 0 1 0 1 23 0 1 1 1 0 1 0 1 24 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 <td>18</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	18	1	1	0	0	0	0
21 1 1 0 1 1 1 22 1 1 1 0 1 0 23 0 1 1 1 0 1 24 1 0 1 1 1 0 25 0 1 0 1 1 1 1 26 1 0 1 0 1 0 </td <td>19</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td>	19	0	1	1	0	0	1
22 1 1 1 0 1 0 23 0 1 1 1 0 1 24 1 0 1 1 1 0 25 0 1 0 1 1 1 26 1 0 1 0 1 0 27 0 1 0 1 0 0 28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 0 0 31 1 0 0 0 0 0	20	1	0	1	1	0	1
23 0 1 1 1 0 1 24 1 0 1 1 1 0 25 0 1 0 1 1 1 26 1 0 1 0 1 0 27 0 1 0 1 0 0 28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 1 1 31 1 0 0 0 0 0	21	1	1	0	1	1	1
24 1 0 1 1 1 0 25 0 1 0 1 1 1 1 26 1 0 1 0 1 0 0 27 0 1 0 1 0 0 0 28 0 0 1 0 1 0 0 29 0 0 0 1 0 0 0 30 0 0 0 0 1 1 1 31 1 0 0 0 0 0 0	22	1	1	1	0	1	0
25 0 1 0 1 1 1 26 1 0 1 0 1 0 27 0 1 0 1 0 0 28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 1 1 31 1 0 0 0 0 0	23	0	1	1	1	0	1
26 1 0 1 0 1 0 27 0 1 0 1 0 0 28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 1 1 31 1 0 0 0 0 0	24	1	0	1	1	1	0
27 0 1 0 1 0 0 28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 1 1 1 31 1 0 0 0 0 0 0	25	0	1	0	1	1	1
28 0 0 1 0 1 0 29 0 0 0 1 0 0 30 0 0 0 0 1 1 31 1 0 0 0 0 0	26	1	0	1	0	1	0
29 0 0 0 1 0 0 30 0 0 0 0 1 1 31 1 0 0 0 0 0	27	0	1	0	1	0	0
30 0 0 0 0 1 1 31 1 0 0 0 0 0	28	0	0	1	0	1	0
31 1 0 0 0 0 0	29	0	0	0	1	0	0
	30	0	0	0	0	1	1
	31	1	0	0	0	0	0
32 0 1 0 0 1	32	0	1	0	0	0	1

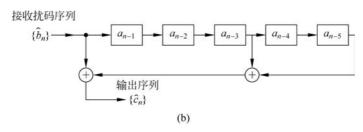
末级输出序列 a_{n-5} = 00001001011001111110001101110101。 此序列一个周期内的所有游程数

$$2^{5-1} = 16$$

其中,

长度为5个码的游程1个:11111


长度为4个码的游程1个:0000


长度为3个码的游程2个:111;000

长度为 2 个码的游程 4 个: 00; 00; 11; 11

长度为1个码的游程8个:1;1;1;1;0;0;0;0

- 5.24 设计一个由5级移位寄存器组成的扰码和解扰系统:
- (1) 画出扰码器和解扰器框图;
- (2) 若输入为全1码,试写出扰码器前35拍的输出序列。
- 解 (1) 扰码器和解扰器框图如图题解 5-24 所示。

图题解 5-24

(2) 输入为全1码,设初始状态为全0,扰码器前35拍的状态转移及输出序列如表题解5-24所示。

表题解	5-24
-----	------

移位时 钟节拍	输入	第 1 级 a _{n-1}	第2级 a _{n-2}	第3级 a _{n-3}		第 5 级 a _{n-5}	反馈值 $a_n = a_{n-3} \oplus a_{n-5}$	输出
0	1	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	1
2	1	1	1	0	0	0	0	1
3	1	1	1	1	0	0	1	0
4	1	0	1	1	1	0	1	0
5	1	0	0	1	1	1	0	1

续表

移位时	输入	第1级	第2级	第3级	第4级	第5级	反馈值	输出
钟节拍	1111 / \	a_{n-1}	a_{n-2}	a_{n-3}	a_{n-4}	a_{n-5}	$a_n = a_{n-3} \oplus a_{n-5}$	100 111
6	1	1	0	0	1	1	1	0
7	1	0	1	0	0	1	1	0
8	1	0	0	1	0	0	1	0
9	1	0	0	0	1	0	0	1
10	1	1	0	0	0	1	1	0
11	1	0	1	0	0	0	0	1
12	1	1	0	1	0	0	1	0
13	1	0	1	0	1	0	0	1
14	1	1	0	1	0	1	0	1
15	1	1	1	0	1	0	0	1
16	1	1	1	1	0	1	0	1
17	1	1	1	1	1	0	1	0
18	1	0	1	1	1	1	0	1
19	1	1	0	1	1	1	0	1
20	1	1	1	0	1	1	1	0
21	1	0	1	1	0	1	0	1
22	1	1	0	1	1	0	1	0
23	1	0	1	0	1	1	1	0
24	1	0	0	1	0	1	0	1
25	1	1	0	0	1	0	0	1
26	1	1	1	0	0	1	1	0
27	1	0	1	1	0	0	1	0
28	1	0	0	1	1	0	1	0
29	1	0	0	0	1	1	1	0
30	1	0	0	0	0	1	1	0
31	1	0	0	0	0	0	0	1
32	1	1	0	0	0	0	0	1
33	1	1	1	0	0	0	0	1
34	1	1	1	1	0	0	1	0
35	1	0	1	1	1	0	1	0

由扰码器输出序列可知,扰码后输出为周期很长的伪随机码。

MATLAB 仿真题: 试用 MATLAB 程序求二进制序列 $x(n) = \{0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 1\}$ 对应的 AMI 码和 HDB₃ 码。

分析: AMI 码编码规则:

- (1) 消息代码中的 0 传输码中的 0;
- (2) 消息代码中的1传输码中的+1、-1交替。

HDB₃ 码编码规则:

- (1) 连 0 的个数不超过 3 时,规则与 AMI 相同,即 0 不变,1 变为-1、+1 交替;
- (2) 若连 0 的个数超过 3,则将每 4 个 0 看作一小节,定义为 B00V,B 可以是一1、0、+1,

V可以是-1、+1:

- (3) B和 V具体值满足以下条件: V和前面相邻非 0符号极性相同;不看 V时极性交 替; V 与 V 之间极性交替;
 - (4) 一般第一个 B 取 0,第一个非 0 符取-1。

```
解:
```

```
% AMI
xn = [0111001000010011];
yn = xn;
num = 0;
for k = 1: length(xn)
    if xn(k) == 1
        num = num + 1;
         if num/2 == fix(num/2)
             yn(k) = 1;
         else
             yn(k) = -1;
         end
    end
end
% HDB3
num = 0;
yh = yn;
sign = 1;
V = zeros(1, length(yn));
for k = 1:length(yn)
    if yn(k) == 0
        num = num + 1;
         if num == 4
             v(1) = yh(k-4); break
         end
    else
        num = 0;
    end
for k = 1:length(yn)
    if yn(k) == 0
         num = num + 1;
         if num == 4
             num = 0;
             yh(k) = v(sign);
             v(sign + 1) = -v(sign);
             if yh(k) == yh(k-4)
             else
                  yh(k-3) = yh(k);
                  yh(k+1:length(yn)) = -1 * yh(k+1:length(yn));
```

```
sign = sign + 1;
end
else
    num = 0;
end
end
```

程序运行结果中的 yn 和 yh 分别为 AMI 码和 HDB3 码,输出如下: