第3章 绑定与约束动画

在Maya软件中,绑定操作与约束工具常常是密不可分的。在实际的动画制作过程中,几乎要给所有的 角色模型设置大量的约束并对其进行绑定以便使接下来的动画制作流程易于操作。绑定操作可能不仅只限 于各种各样的生物模型,还有可能是一组机械,又或是一本可以打开的书。本章就一步一步、由浅入深地 学习相关知识及应用技巧。

本实例中我通过"父子关系"制作一个翻书的动画,如图3-1所示为动画完成渲染效果。

图3-1

① 启动中文版Maya 2020软件,并打开本书配套资源"打开的书.mb"文件,场景中有一个设置了材质的图书模型,如图3-2所示。

🕐 选择场景中的书页模型, 如图3-3所示。

🚯 执行"变形"|"非线性"|"弯曲"命令,为书页模型添加一个弯曲控制柄,如图3-4所示。

😡 在"属性编辑器"面板中,调整弯曲控制柄的"旋转"属性,如图3-5所示。

图3-3

图3-4

 (b) 展开"非线性变形器属性"卷展栏,设置 "曲率"为-60, "上限"为0,如图3-6所 示。这样,可以得到书页的弯曲效果,如图3-7 所示。

图3-6

 № 在"通道盒/层编辑器"面板中,设置弯曲控制柄的"平移X"为13,"平移Y"为0,如 图3-8所示,使得书页从底部开始产生弯曲效 果,如图3-9所示。

通道 编辑 对象	显示		
bend1Hand1e			פ ג
		13	A HE
	平移 Y	0	ţ
		-10.05	Ĭ
	旋转 X	-90	
	旋转 Y	0	
	旋转 Z	90	∦∦ ⊨
	缩放 X	13	X
	缩放 Y	13	
	缩放 Z	13	
	可见性	启用	j.
形状			Ĥ
bend1Hand1eShap	e		18-12
	曲率	-60	1
输入			
bend1			

图3-8

U3 第3章

绑定与约束动画

Ω

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 1 **20**

图3-13

- 14 14 14 🔺 🕨

- **b** i bb bbl

{;}

们将时间滑块移动至第20帧,并为书页的"旋转X"属性设置关键帧,如图3-14所示。

图3-14

12 在第40帧位置,设置书页的"旋转X"为-180,并设置关键帧,如图3-15所示。

图3-15

🚯 接下来,制作弯曲控制柄的动画。选择场景中的弯曲控制柄,在第20帧位置,为"旋转X"属性设 置关键帧,如图3-16所示。

33

03

绑定与约束动画

图3-16

① 在第30帧位置,设置"旋转X"为-60,并为其设置关键帧,如图3-17所示,制作出书页一角卷 起来的效果。

15 展开"非线性变形器属性"卷展栏,在第35帧位置,为"曲率"设置关键帧,如图3-18所示。

图3-18

⑦ 为"曲率"设置关键帧后,在时间滑块上看不到关键帧标记。将光标放置在"曲率"属性上并右击,在弹出的快捷菜单中选择bend1_curvature.output选项,如图3-20所示。

03

bend1Handle bend1		bend1		
			5	聚焦
nonLinear:	bend1			
				显示隐藏
▼ 非线性变形器属性				
曲率	0.000	bond1 cu		output
下限	-1.000	设置关键帧		.output
上限	0.000	设置受驱动	, ì关键帧	
▶ 变形器属性		新开连接		
▶ 节点行为		锁定属性		
▶ UUID		這染时忽略		
▶ 附加属性				

18 切换至bend1_curvature选项卡,展开"动画 曲线属性"卷展栏,即可看到为"曲率"属性设 置的关键帧信息,如图3-21所示。

本实例通过综合运用"父子关系""父约束""目标约束"等,制作气缸运动的动画,最终完成效果 如图3-23所示。

🔟 启动中文版Maya 2020软件,打开本书配套资源"气缸.mb"文件,场景中有一组气缸的简易模 型,如图3-24所示。

图3-24

⑩ 场景中共有4个气缸,先设置好其中的一个气缸装置,再进行动画的制作。选择场景中的一个连杆模型,按住Shift键,加选场景中的与其配套的曲轴模型,如图3-25所示。

图3-25

3 按P键,将连杆模型设置为曲轴模型的子对象。设置完成后,旋转曲轴模型,可以看到连杆也会跟着旋转,如图3-26所示。

图3-26

⑭ 单击"绑定"工具架中的"创建定位器"按钮,如图3-27所示。在场景中创建一个定位器。

(5) 先选择定位器,再加选场景中的气缸模型, 执行"修改" | "对齐工具"命令,将定位器的 位置与气缸模型对齐,如图3-28所示。 02

03

05

06

● 为了方便观察,将定位器的"缩放X""缩放 Y"和"缩放Z"都设置为5,如图3-29所示。 ⑦ 先选择定位器,再加选场景中与其对应的连 杆模型,如图3-30所示。 钮,如图3-31所示。为连杆模型设置约束关系, 设置完成后,在"大纲视图"中可以看到连杆

模型名称的下方出现一个约束节点,如图3-32 所示。

图3-30

图3-31

◆ quzhou2
◆ huosai3
◆ qigang3
○ ◆ quzhou3
□ ◆ liangan3
□ ◆ liangan3_aimConstraint1
* locator1
③ defaultLightSet
④ defaultObjectSet

图3-32

⑩ 旋转曲轴模型,可以看到连杆模型连接活 塞模型的一侧会始终朝向气缸模型的方向,如 图3-33所示。

10 按Z键,复原曲轴模型的旋转角度。先选择连 杆模型,再加选场景中与其对应的活塞模型,如 图3-34所示。

 单击"绑定"工具架中的"父约束"按钮, 如图3-35所示,为气缸模型设置约束。

图3-33

12 设置完成后,在"大纲视图"中可以看到活塞 模型的下方多了一个约束节点,如图3-36所示。

图3-36

(3) 在场景中旋转曲轴模型,可以看到曲轴模型的旋转会带动连杆模型和气缸模型的运动,如 图3-37所示。

 13 选择活塞模型,在"通道盒/层编辑器"面板 中可以看到该模型的"平移X""平移Y""平 移Z""旋转X""旋转Y"和"旋转Z"这6个属 性都出现了蓝色方块标记,说明这些属性受到父 约束的影响,如图3-38所示。

图3-37

(5)选择如图3-39所示的属性,右击,在弹出的 快捷菜单中选择"断开连接"选项,取消这些属 性的约束控制。这样,活塞模型仅X轴向上的平 移会受连杆模型的影响,活塞模型只能在一个方 向上运动。

huosai3 平移) 一 平移) 一 平移 2 一 神社	9.532	
平移) 平移) 平移 2 平移 2 佐枝)	9.532	
平移 1 平移 2 施共 1		
平移 2	0	
the table of	13.773	
	0	
旋转 \	0	
旋转 2	0	
缩放 \	0.745	
缩放 V	0.745	
编故 2	0.745	
·····································	白田	
12.44		
121A		
nuosaissnape		
nuosa13_parentConstraint	1 工業	
节点状态	: 正吊	
插值类型	平均	
旋转分解目标 》	0	
旋转分解目标 Y	0	
旋转分解目标 2	0	
Liangan 3WC		

图3-39

16 设置完成后,再次旋转曲轴模型,活塞模型 和连杆模型的运动效果如图3-40所示。

13 第3章

 选择场景中的定位器,沿X轴向进行微调,以 确保连杆模型不会出现穿透活塞模型的情况,如
 图3-41所示。这样,一个气缸的装置就制作完成了。

18 以同样的操作制作场景里其他3个活塞的动 画装置后,调整中间的两个曲轴的旋转角度至 如图3-42的状态所示。

图3-42

(9)将4个曲轴模型和曲轴杆模型选中,再加选场 景中的飞轮模型,按P键,对所选择的模型设置 父子关系,如图3-43所示。

20 选择飞轮模型,在第1帧位置为其"旋转Z"
 属性设置关键帧,如图3-44所示。

图3-44

22 执行"窗口" | "动画编辑器" | "曲线图编辑器" 命令,在弹出的"曲线图编辑器"中观察飞轮模型的动画曲线,如图3-46所示。

₩ 曲线图编辑器		-		×
编辑 视图 选择 曲线 关键帧 切线	列表 显示 帮助			
- 🕆 🚹 🎬 😱 🥅 统计信息 20	🔜 360 🔲 🗖 🔲 🗊 🗊 🎇 💒 🗤 🔨 🛶 💒	"> (7.1 (7.1)		20
[] 搜索 ▼ 0	1 5 10		2	•
➡ • 旋转 Z				
	300			
	-100			

23 单击"线性切线"按钮,调整动画曲线至如图3-47所示的形态。

图3-47

第3章

绑定与约束动画

24 在"曲线图编辑器"中,执行"曲线"|"后方无限"|"循环"命令,如图3-48所示。

图3-48

25 设置完成后,播放场景动画,最终动画效果如图3-49所示。

图3-49

<mark>3.3</mark> 实例: 蝴蝶飞舞动画

本实例使用"运动路径"约束制作蝴蝶飞舞的动画,如图3-50所示为最终完成效果。

① 启动中文版Maya 2020软件,打开本书配套资源"蝴蝶.mb"文件,场景中有一只蝴蝶的模型,如图3-51所示。

2 单击"绑定"工具架中的"创建定位器"按钮,如图3-52所示,在场景中创建一个定位器。

(3) 在"大纲视图"中,将蝴蝶模型设置为定位器的子对象,这样一个简单的绑定就制作完成了,如图3-53所示。

图3-51

=	曲线	/曲面	多过	也形建植	き 周	鼤	绑定
۵	*	<	-<Î	C	Å	• • •	

图3-52

④ 在第1帧位置,旋转蝴蝶的翅膀模型至如图3-54所示的角度。

(5) 在"通道盒/层编辑器"面板中,分别为蝴蝶的两个翅膀模型的"旋转Z"属性设置关键帧,如图3-55和图3-56所示。

UI

02

图3-56

66 在第12帧位置,旋转蝴蝶的翅膀模型至如
 83-57所示的角度,并分别再次设置关键帧,如图3-58和图3-59所示。

图3-57

一 接下来,为蝴蝶的翅膀设置动画循环效果。执行"窗口"|"动画编辑器"|"曲线图编辑器"命令,打开"曲线图编辑器",如图3-60所示。

图3-60

01

)2

UJ

④ 在"曲线图编辑器"中,执行"曲线"|"后方无限"|"往返"命令,如图3-61所示。设置完成后,拖动时间滑块,即可看到蝴蝶的翅膀有了不断来回扇动的动画效果。

图3-61

(9) 单击"曲线/曲面"工具架中的"EP曲线工具"按钮,如图3-62所示。在场景中绘制一条曲线作为蝴蝶飞行的路径,如图3-63所示。

Maya动画特效从新手到高手

执行"约束"|"运动路径"|"连接到运动路径"命令,使蝴蝶模型沿绘制的曲线移动,如图3-65所示。

图3-65

① 在默认状态下,蝴蝶的移动方向并非与路径相一致,需要修改蝴蝶的运动方向。在"属性编辑器"中切换至motionPath1选项卡,在"运动路径属性"卷展栏内,将"前方向轴"更改为Z,并勾选"反转前方向"复选框,如图3-66所示。

(3) 设置完成后,观察场景,可以看到蝴蝶模型的运动方向与路径的方向已经相匹配,如图3-67所示。

(4) 执行"可视化"|"为选定对象生成重影"命 令,还可以在场景中观察蝴蝶的运动重影效果, 如图3-68所示。

图3-68 15本实例的最终动画效果如图3-69所示。

16 单击Arnold工具架中的Create Physical Sky (创建物理天空)按钮,如图3-70所示。

🕧 在Physical Sky Attributes(物理天空属 性)卷展栏中,设置Intensity(强度)为4, 如图3-71所示。

18 在"渲染设置"对话框中,勾选Motion Blur (运动模糊)卷展栏内的Enable(启用),如 图3-72所示。

第 3 章 绑定与约束动画

04

图3-73

3.4 实例: 直升机飞行动画

本实例通过综合运用多种约束工具制作直升机 飞行的动画,最终完成效果如图3-74所示。

图3-74

⑪ 启动中文版Maya 2020软件,打开本书配套 资源"直升机.mb"文件,场景有一架直升机的 模型,如图3-75所示。

(1) 单击"绑定"工具架中的"创建定位器"按钮,如图3-76所示,在场景中创建定位器。

图3-76

(13) 在"大纲视图"中,将直升机模型的各个组成 部分均设置为定位器的子对象,如图3-77所示。

图3-77

04 选择直升机上方的螺旋桨模型,如图3-78
所示。

图3-78

① 在"属性编辑器"中,展开"变换属性"卷展栏,将光标放置在"旋转"的Y属性上,右击,在弹出的快捷菜单中选择"创建新表达式"选项,如图3-79所示。

luoxuanjiang luoxuar	njiangShape				
				聚焦	
transform:	luoxuanjiang	9			
				記示 隐藉	
▼ 变换属性					
平移	0.000	0.000	0.000		
旋转	0.000	0.000			
缩放	1.000	1.000	创建新表达	≤式 ►	
斜切	0.000	0.000	设直大键则 (八里平)[[2]	贝 十 	
旋转顺序			以且文池石	小大键帜… ∃	
旋转轴	0.000	0.000	的建新软度 输完属性	±	
	✔ 继承变换				
	图3	-79			

66 在"表达式编辑器"面板下方的"表达式" 文本框内输入:

luoxuanjiang.rotateY=time*300

输入完成后,单击该面板下方左侧的"创建"按 钮,如图3-80所示。

▶ 表达式编辑器				-		×
选择过滤器 对象过滤器 属性过	認器 插入函数	帮助				
▼ 选择						
luoxuanjiang		rotateY				^
		rotateZ scaleX scaleY scaleZ				
	: luoxuanjiang.rot	tateY				
	: luoxuanjiang					
	:● 全部		● 无		● 仅角	
			 运行时动力 		● 创建	
	表达式编辑器					
luoxuanjiang.rot	ateY=tim	e*300				
	图3	-80				

① 设置完成后,关闭"表达式编辑器"。播放场景动画,可以看到直升机的螺旋桨随着时间滑块的移动而旋转。单击"动画"工具架中的"重影"按钮,如图3-81所示。在视图中观察直升机螺旋桨因旋转产生的重影效果,如图3-82所示。

01

02

04

图3-82 18 以同样的操作步骤为直升机尾部的螺旋桨模型设置旋转动画,效果如图3-83所示。

图3-83

⑨ 单击"曲线/曲面"工具架中的"EP曲线工 具"按钮,如图3-84所示。在"前视图"中绘 制一条曲线作为直升机飞行的路径,如图3-85 所示。

 ① 先选择定位器,再加选曲线,执行"约束"|"运动路径"|"连接到运动路径"命令, 使直升机模型沿绘制的曲线移动,如图3-86 所示。

图3-85

图3-86

① 在默认状态下,直升机行进的方向并非与路径相一致,而且直升机上升时的方向也不正确,如图3-87所示。因为在默认状态下运动路径约束会影响被约束对象的"位移"和"旋转"属性。在"属性编辑器"面板中,可以看到这两个属性的背景色为黄色,如图3-88所示。

图3-87

12 在"运动路径属性"卷展栏中,取消勾选
 "跟随"复选框,如图3-89所示,即可解除运
 动路径约束对被约束对象的"旋转"影响。

列表 选定 关注 層	性[展示]显示	₹ 帮助		通道	列表选定	关注 属性	[展示]显示	帮助			Ĩ
locator1 locatorS		nPath1		盒/	locator1		e1 motion	Path1			1盒//
			聚焦	影						聚焦	調
	n: locator1		1 → 预设	盟	n	notionPath:	motionPath1				開設
			□ 显示 隐藏	222						显示隐藏	×N
▼ 变换属性				陸横工	▼ 运动路径	属性					世
직	移 0.997	0.088	0.000	具色		U值	0.000				
	转 180.000	0.000	91.261				■ 参数化长周				ļ
	放 1.000	1.000	1.000	画			跟随				逦
	切 0.000	0.000	0.000	出	世界						臣論
				輺	世界						輻
	轴 0.000	0.000	0.000		世界						190
	✔ 继承变换						反转上方向	0	反转前	方向	

图3-88

(3) 在"通道盒/层编辑器"面板中,将定位器的"旋转X""旋转Y"和"旋转Z"属性都设置为0,如 图3-90所示,即可恢复直升机的初始方向。

图3-90

(4) 设置完成后,播放场景动画,最终动画效果如图3-91所示。

01

02

本实例使用"铆钉"约束制作机器虫在地上翻滚前进的动画,如图3-92所示为本实例的动画完成渲染 效果。

图3-92

① 启动中文版Maya 2020软件,打开本书配套资源"机器虫.mb"文件,场景中有一个机器虫模型,如图3-93所示。

⑩ 场景中的机器虫模型由多个独立的零件模型 组成。在制作动画之前,先对场景中的模型进行 合理的约束设置,这样可以大大简化后面的动 画制作及修改步骤。选择场景中的连杆模型, 如图3-94所示。

13 在"顶点选择"层级中,选择如图3-95所示的顶点。执行"约束"|"铆钉"命令,在所选择的顶点位置建立定位器,如图3-96所示。

图3-96

(5) 单击"动画"工具架中的"父约束"按钮,如图3-98所示。在所选择的两个对象之间建立"父约束"关系。

图3-98

● 选择腿部模型,在"通道盒/层编辑器"面板中选择"旋转X""旋转Y"和"旋转Z"属性,可以发现这3个属性有蓝色的方块标记,说明这3个属性受其他对象的约束影响,如图3-99所示。

⑰ 右击,在弹出的快捷菜单中选择"断开连接"选项,可以看到这3个属性的蓝色方块标记 消失了,如图3-100所示。

18 设置完成后,旋转连杆模型,腿部模型的约束效果如图3-101所示。

01

02

04

05

U/

通道 编辑 对象	显示	â 🗛 🖄	通道盒/
pCube8	平我 y	0.342	题
		0	鸜
		0	58
	旋转 X	0	
			建
	旋转 Z	0	
			洄
			g
		启用	逦
形状 pCube8Shape			性编辑
pCube8_parentCo	onstraint1		
		正常 平均	
旋转			
旋转			
旋转			
Pir			

图3-100

图3-101 (9) 选择连杆模型上如图3-102所示的顶点。

10 执行"约束" | "铆钉"命令,在所选择的顶 点位置建立定位器,如图3-103所示。

 先选择刚创建的定位器,再加选机器虫的头 部模型,如图3-104所示。以相同的操作步骤, 将机器虫的头部模型约束至该定位器上,并取消 其旋转属性的约束。

图3-103

图3-104

 先选择组成机器虫身体的各个部分,最后加 选头部模型,如图3-105所示。按P键,为所选 择的模型设置"父子关系"。

图3-105

③ 接下来进行动画关键帧的设置。在第1帧位置,为连杆模型的"旋转X"属性设置关键帧,如图3-106所示。

pCylinder5	
平移 x -13.193	影
平移 ү 1.333	輯
平移 Z4.804	訪
旋转 X -90	
	建
	避
	洫
	ġ
可见性 启用	逦
形状	斑
pCylinderShape5	聖
输出	器
uvPin2	
uvPin1	

图3-107

选择连杆模型,按快捷键Ctrl+G,创建组对象,并在"透视视图"中调整组对象的轴心点至如图3-108所示的位置。

图3-108 16 在第20帧位置,为组对象的"旋转X"设置关 键帧,如图3-109所示。

① 在第40帧位置,将组对象的"旋转X"设置 为-180,并设置关键帧,如图3-110所示。

图3-109

通道 group1	编辑	对象	显示	â, 6	• 🗠	通道盒/扂
						影
						韥
			平移			<u>تا</u> رة
			旋转:	-180		
						種
						一堂
						汕
				启用		ì
						扁輯器
		冬	3-110			

(18) 以同样的操作步骤设置多次后,播放动画, 机器虫的向前翻滚动画效果就制作完成了,如 图3-111所示。

U

3.6 实例: 汽车直线行驶动画

汽车在不同的行驶条件下产生的运动效果差 异较大。比如,在雨雪天气中行驶,车轮可能因打 滑而产生漂移效果;在沙地上行驶,可能会尘土飞 扬;在凹凸不平的路面上行驶,会有明显的上下颠 簸现象。在三维软件中制作汽车在不同行驶条件下 的动画效果时,使用的工具和方法也是大不相同 的。本实例制作汽车在笔直的公路上直线行驶的动 画效果,如图3-112所示为本实例的动画完成渲染 效果。

图3-112

① 启动中文版Maya 2020软件,打开本书配套 资源"皮卡车.mb"文件,场景中有一辆已赋予 材质皮卡车的模型,如图3-113所示。

图3-113

2 单击"曲线/曲面"工具架中的"NURBS方形"按钮,如图3-114所示。

(3) 在"顶视图"中创建一个长方形图形,为了 方便观察汽车模型,可以将视图切换至"使用默 认材质"显示效果,如图3-115所示。

图3-115

 • ④ 在"属性编辑器"面板中,设置长方形图形

 的"侧面长度1"为80,"侧面长度2"为220,

 如图3-116所示。

图3-116

(5) 单击"曲线/曲面"工具架中的"NURBS圆形"按钮,如图3-117所示。在场景中创建一个圆形,如图3-118所示。

● 在"属性编辑器"面板中,设置圆形图形
 的"半径"为100,"次数"为Linear,"分段
 数"为3,如图3-119所示。这样,就得到了三角形。

 ⑪ 使用"对齐工具"将三角形与场景中的方形 进行居中对齐,如图3-120所示。

(18) 复制得到一个三角形,调整其位置和旋转角度至如图3-121所示的状态。

图3-118

图3-119

图3-120

图3-121

03 第3章 绑定与约束

04

05

10 将所有曲线选中,单击"曲线/曲面"工具架 中的"附加曲线"按钮,如图3-124所示。

图3-125

曲线并删除, 仅保留刚刚合并生成的最后一根曲 线即可,一个简单的双箭头图形就制作完成了, 如图3-126所示。

图3-126

13 在"透视视图"中对双箭头图形的位置进行 调整,如图3-127所示,接下来,使用它作为汽 车前进的图形控制器。

图3-127

🚺 选择图形控制器,单击"多边形建模"工具 架中的"冻结变换"按钮,如图3-128所示。将 其"变换属性"中的"平移"和"旋转"设置为 0,将"缩放"设置为1,如图3-129所示。

① 在"大纲视图"中,更改图形控制器的名称 为kzq,以方便后期对其进行表达式设置。选择 场景中构成汽车模型的所有多边形模型,并设置 为图形控制器的子对象,如图3-130所示。

大纲视图
展示 显示 帮助
🗖 persp
■• top
■• front
■4 side
⊟ ~ kzq
🟳 🐟 zuoyi
cheshen_hongse
🗠 🐟 weideng
┝● � boli
┝● � chelun1
⊢• ◆ chelun
┝━ � chelun3
┝━ � chelun2
A cheshen_huise
heishi
() defaultLightSet
 ØdefaultObjectSet

图3-130

6 在 "右视图"中创建圆形图形,并在"属性编辑器"面板中调整其"半径"为33.5,如
 图3-131所示。

图3-131

 ① 使用"对齐工具"将圆形与汽车前方的一个 轮胎对齐,再沿X轴向微调其位置至如图3-132
 所示的状态。

(18) 在"大纲视图"中,将圆形图形也设置为图形控制器的子对象,如图3-133所示。

图3-132

大纲视图						
展示 显示 帮助						
貸 搜索 ▼						
🗖 persp						
■4 top						
■4 front						
■4 side						
⊑						
🛏 🐟 zuoyi						
🛏 🐟 cheshen_hongse						
🗝 🐟 weideng						
🛏 🐟 boli						
🗝 🐟 chelun1						
🗝 🐟 chelun						
🗝 🐟 chelun3						
🗝 🐟 chelun2						
🗝 🐟 cheshen_huise						
🛏 🐟 neishi						
🖵 🥜 nurbsCircle1						
🕥 defaultLightSet						
💽 defaultObjectSet						
图3-133						

(9)选择图形控制器,将光标放置于"平移"属性的Z值上,右击,在弹出的快捷菜单中选择 "创建新表达式"选项,在弹出的"表达式编 辑器"对话框中将对应的表达式复制出来,如 图3-134所示。

20 同理,找到代表圆形曲线半径的表达式,如图3-135所示。

UΖ

04

2 在圆形图形"旋转"属性的X值上右击,在弹出的快捷菜单中选择"创建新表达式"选项,如 图3-136所示。

图3-136

22 在弹出的"表达式编辑器"对话框中,在 "表达式"文本框内输入:

nurbsCircle1.rotateX=kzq.translateZ/ makeNurbCircle1.radius*180/3.14 如图3-137所示。

图3-137

23 在场景中先选择圆形图形,再加选车轮模型,如图3-138所示。

图3-138

29 单击"绑定"工具架中的"方向约束"按20 钮,如图3-139所示,使得车轮模型的旋转方向20 受圆形图形的旋转方向约束。

29 以同样的方法将其他3个车轮模型分别使用 "方向约束"工具约束到圆形图形上。设置完成 后,沿Z轴方向移动图形控制器,即可看到汽车 模型在前进行驶的过程中,车轮也会产生相应的 旋转,如图3-140所示。

图3-140

20 在第1帧位置,选择图形控制器,在"通道盒/ 层编辑器"面板中为其"平移Z"属性设置关键 帧,如图3-141所示。

 ⑦ 在第100帧位置,选择图形控制器,在"通道盒/层编辑器"面板中将"平移Z"设置为-700后, 再次为该属性设置关键帧,如图3-142所示。

图3-142

28 设置完成后,播放场景动画,一段汽车直线行驶的动画就制作完成了,如图3-143所示。

第3章

绑定与约束动画

3.7

实例:汽车曲线行驶动画

本实例讲解如何制作汽车在弯曲的公路上行驶 的动画。曲线行驶动画会使用路径约束,所以使用 的绑定技术及表达式与直线行驶动画有较大差别。 如图3-144所示为本实例的动画完成渲染效果。

01 启动中文版Maya 2020软件,打开本书配套 资源"小汽车.mb"文件,场景中有一辆已赋予 材质的小型汽车模型、几个图形控制器和一条弯

曲的路径,如图3-145所示。其中,图形控制器的制作方法可以参考3.6节。

图3-145

① 在"大纲视图"中,将构成汽车的所有零件 模型和汽车前方的箭头图形选中,设置为汽车顶 部四箭头方向图形控制器的子对象,如图3-146 所示。

13 先选择汽车前方的箭头图形控制器,再加选 汽车前方左侧的车轮模型,如图3-147所示。

④ 单击"绑定"工具架中的"方向约束"按钮,如图3-148所示。将车轮模型方向约束至箭头图形控制器上。

图3-146

图3-147

(5) 设置完成后,在"大纲视图"中可以观察到 车轮模型名称下方多了一个方向约束对象,如 图3-149所示。

16 选择车轮模型,在"通道盒/层编辑器"面板中,也可以看到"旋转X""旋转Y"和"旋转Z"属性会显示蓝色方形标记,说明这3个属性目前受到方向约束的影响,如图3-150所示。

01

02

① 在"通道盒/层编辑器"面板中,分别选择 "旋转X"和"旋转Z"属性,右击,在弹出的快 捷菜单中选择"断开连接"选项。设置完成后, 只有"旋转Y"属性有蓝色的方形标记,也即仅 需要箭头图形控制器影响车轮的"旋转Y"属 性,如图3-151所示。

图3-151

(18)使用相同的操作,为小汽车前方右侧的车轮 模型设置方向约束。设置完成后,旋转箭头图形 控制器,可以看到小汽车即将转弯时的车轮旋转 状态,如图3-152所示。

图3-152

09 先选择四箭头图形控制器,再加选路径曲线,执行"约束"|"运动路径"|"连接到运动路径"
 命令,可看到整辆小汽车模型跟随曲线产生位移和旋转,如图3-153所示。

 通过观察,发现小汽车的运动方向不太正确。在"属性编辑器"面板中,将"前方向轴" 设置为Z,并勾选"反转前方向"复选框,如 图3-154所示。这样,小汽车的方向就正确了, 如图3-155所示。

(1) 接下来,分别为4个车轮添加表达式以生成旋转动画效果。首先需要确定路径的长度,并将该值记录下来。执行"创建"|"测量工具"|"弧长工具"命令,测量路径的长度值,如图3-156所示。

	列表 选定 关注 属性	【展示】显示	帮助			通道
	kzq kzqShape mo	tionPath1				
					聚焦	影
	motionPath:	motionPath1			预设	雷器
					显示 隐藏	
▼ 沅动路经属性						
	U值	0.381				ЦЩ.
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●						
		✔ 跟随				M
	世界上方向类型					生論
	世界上方向向量	0.000	1.000	0.00	D	镭器
		📕 反转上方向		✔ 反转前方向		
	上方向轴	Y 🔻				
	前方向扭曲	0.000				
	上方向扭曲	0.000				
	侧方向扭曲	0.000				

①选择小汽车前方左侧的车轮模型,在"属性编辑器"面板中,将光标放置到"旋转"属性的X值上,右击,在弹出的快捷菜单中选择"创建表达式"选项,如图3-157所示。

13 在"表达式编辑器"面板中的"表达式"文本框内输入:

chelun1.rotateX=-1093.66*motionPath1. uValue/29.5*180/3.14

输入完成后,可以单击该面板下方左侧的"创 建"按钮,关闭该面板,如图3-158所示。

图3-158

(4) 以相同的方法为其他3个车轮分别设置表达式以控制车轮的旋转。制作完成后,播放动画,在小汽车运动的同时,车轮会产生相应的旋转。
(5) 最后,制作汽车在转弯时前方两个车轮的旋转动画。在第16帧位置,选择箭头图形控制器,为其"旋转Y"属性设置关键帧,如图3-159所示。

01

02

图3-159

16 在第32帧位置,将其"旋转Y"设置为-25,并设置关键帧,如图3-160所示。

🕕 在第60帧位置,再次为"旋转Y"属性设置关键帧,如图3-161所示。

图3-161

18 在第80帧位置,将其"旋转Y"设置为0,并设置关键帧,如图3-162所示。

😗 设置完成后,播放动画,本实例的最终动画完成效果如图3-163所示。

67

第3章

绑定与约束动画

图3-163