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Electric Currents

5—1 Introduction
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In Chapters 3 and 4 we dealt with electrostatic problems, field problems associated
with electric charges at rest. We now consider the charges in motion that constitute
current flow. There are several types of electric currents caused by the motion of free
charges.! Conduction currents in conductors and semiconductors are caused by drift
motion of conduction electrons and/or holes; electrolytic currents are the result of
migration of positive and negative ions; and convection currents result from motion
of electrons and/or ions in a vacuum. In this chapter we shall pay special attention to
conduction currents that are governed by Ohm’s law. We will proceed from the point
form of Ohm’s law that relates current density and electric field intensity and obtain
the V = IR relationship in circuit theory. We will also introduce the concept of elec-
tromotive force and derive the familiar Kirchhoff’s voltage law. Using the principle
of conservation of charge, we will show how to obtain a point relationship between
current and charge densities, a relationship called the equation of continuity from
which Kirchhoff’s current law follows.

When a current flows across the interface between two media of different con-
ductivities, certain boundary conditions must be satisfied, and the direction of cur-
rent flow is changed. We will discuss these boundary conditions. We will also show
that for a homogeneous conducting medium, the current density can be expressed
as the gradient of a scalar field, which satisfies Laplace’s equation. Hence, an analo-
gous situation exists between steady-current and electrostatic fields that is the basis
for mapping the potential distribution of an electrostatic problem in an electrolytic
tank.

The electrolyte in an electrolytic tank is essentially a liquid medium with a low
conductivity, usually a diluted salt solution. Highly conducting metallic electrodes

¥ In a time-varying situation there is another type of current caused by bound charges. The time-rate of
change of electric displacement leads to a displacement current. This will be discussed in Chapter 7.
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are inserted in the solution. When a voltage or potential difference is applied to the
electrodes, an electric field is established within the solution, and the molecules of
the electrolyte are decomposed into oppositely charged ions by a chemical process
called electrolysis. Positive ions move in the direction of the electric field, and nega-
tive ions move in a direction opposite to the field, both contributing to a current
flow in the direction of the field. An experimental model can be set up in an electro-
lytic tank, with electrodes of proper geometrical shapes simulating the boundaries in
electrostatic problems. The measured potential distribution in the electrolyte is then
the solution to Laplace’s equation for difficult-to-solve analytic problems having
complex boundaries in a homogeneous medium.

Convection currents are the result of the motion of positively or negatively
charged particles in a vacuum or rarefied gas. Familiar examples are electron beams
in a cathode-ray tube and the violent motions of charged particles in a thunderstorm.
Convection currents, the result of hydrodynamic motion involving a mass transport,
are not governed by Ohm’s law.

The mechanism of conduction currents is different from that of both electrolytic
currents and convection currents. In their normal state the atoms of a conductor
occupy regular positions in a crystalline structure. The atoms consist of positively
charged nuclei surrounded by electrons in a shell-like arrangement. The electrons in
the inner shells are tightly bound to the nuclei and are not free to move away. The
electrons in the outermost shells of a conductor atom do not completely fill the shells;
they are valence or conduction electrons and are only very loosely bound to the nuclei.
These latter electrons may wander from one atom to another in a random manner.
The atoms, on the average, remain electrically neutral, and there is no net drift mo-
tion of electrons. When an external electric field is applied on a conductor, an orga-
nized motion of the conduction electrons will result, producing an electric current.
The average drift velocity of the electrons is very low (on the order of 10™* or
1073 m/s) even for very good conductors because they collide with the atoms in the
course of their motion, dissipating part of their kinetic energy as heat. Even with the
drift motion of conduction electrons, a conductor remains electrically neutral. Elec-
tric forces prevent excess electrons from accumulating at any point in a conductor.
We will show analytically that the charge density in a conductor decreases expo-
nentially with time. In a good conductor the charge density diminishes extremely
rapidly toward zero as the state of equilibrium is approached.

Current Density and Ohm’s Law

Consider the steady motion of one kind of charge carriers, each of charge ¢ (which
is negative for electrons), across an element of surface As with a velocity u, as shown
in Fig. 5-1. If N is the number of charge carriers per unit volume, then in time At
each charge carrier moves a distance u A¢, and the amount of charge passing through
the surface As is

AQ = Nqu-a,AsAt (C). 5-1)
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FIGURE 5-1
Conduction current due to drift motion of charge carriers across a surface.

Since current is the time rate of change of charge, we have

A
Al =A—g=Nqu-a,,As=Nqu-As (A). (5-2)

In Eq. (5-2) we have written As = a,As as a vector quantity. It is convenient to
define a vector point function, volume current density, or simply current density, J,
in amperes per square meter,

J=Nqu  (A/m?), (5-3)
so that Eq. (5-2) can be written as
Al =J - As. (5-4)

The total current I flowing through an arbitrary surface S is then the flux of the J
vector through S:

= fs J-ds (A (5-5)

Noting that the product Ngq is in fact free charge per unit volume, we may rewrite
Eq. (5-3) as

J=pu (A/m?, (5-6)

which is the relation between the convection current density and the velocity of the
charge carrier.

EXAMPLE 5-1 In vacuum-tube diodes, electrons are emitted from a hot cathode
at zero potential and collected by an anode maintained at a potential V;, resulting
in a convection current flow. Assuming that the cathode and the anode are parallel
conducting plates and that the electrons leave the cathode with a zero initial veloc-
ity (space-charge limited condition), find the relation between the current density J
and V.
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Solution The region between the cathode and the anode is shown in Fig. 5-2, where
a cloud of electrons (negative space charge) exists such that the force of repulsion
makes the electrons boiled off the hot cathode leave essentially with a zero velocity.
In other words, the net electric field at the cathode is zero. Neglecting fringing effects,
we have

dv(y)

E@0)=aE0)= —a =0. (5-7
y=y y dy =0
In the steady state the current density is constant, independent of y:
J= _ay‘I = ayp(y)u(y)z (5_8)

where the charge density p(y) is a negative quantity. The velocity u = a u(y) is related
to the electric field intensity E(y) = a E(y) by Newton’s law of motion:

d d
m% = —eE(y)=e Z;y)

where m = 9.11 x 1073* (kg) and —e = —1.60 x 10~*° (C) are the mass and charge,
respectively, of an electron. Noting that

du dudy du

_i 1mu2
T dy\2 ]

s (5 _9)

we can rewrite Eq. (5-9) as

4 1mu2 —eEK (5-10)
dy\2 T T dy’
Integration of Eq. (5-10) gives
Imu? = eV, (5-11)

where the constant of integration has been set to zero because at y = 0,u(0) = V(0) = 0.
From Eq. (5-11) we obtain

2e¢  \1/2
u= (— V) ) (5-12)

m
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o al
T =W
T FIGURE 5-2

Cathode

—  Space-charge-limited vacuum diode (Example 5-1).




202

5 Steady Electric Currents

In order to find V(y) in the interelectrode region we must solve Poisson’s equa-
tion with p expressed in terms of V(y) from Eq. (5-8):

p= —g =—-J /;—"; -1z, (5-13)
We have, from Eq. (4-6),

azv p J /m
—_——= —— = — — V- 1/2. -
dy? € €0\ 2e (5-14)

Equation (5-14) can be integrated if both sides are first multiplied by 2dV/dy. The

result is A ag
Y Py (5-15)
dy € \ 2e

Aty =0,V =0, and dV/dy = 0 from Eq. (5-7), so ¢ = 0. Equation (5-15) becomes

1/4
yoUidy =2 /i<ﬂ> dy. (5-16)
€y \2e

Integrating the left side of Eq. (5-16) from V = 0 to ¥, and the right side from y = 0

to d, we obtain
4 J [m\'*
—V3t=2 | —|{ = d

de, [2e
T 9d%\m
Equation (5-17) states that the convection current density in a space-charge limited
vacuum diode is proportional to the three-halves power of the potential difference
between the anode and the cathode. This nonlinear relation is known as the Child-
Langmuir law. -

or

J V32 (A/m?). (5-17)

In the case of conduction currents there may be more than one kind of charge
carriers (electrons, holes, and ions) drifting with different velocities. Equation (5-3)
should be generalized to read

J= Z Ngu;  (A/m?). (5-18)

As indicated in Section 5-1, conduction currents are the result of the drift motion
of charge carriers under the influence of an applied electric field. The atoms remain
neutral (p = 0). It can be justified analytically that for most conducting materials the
average drift velocity is directly proportional to the electric field intensity. For metal-
lic conductors we write

u=—upE  (m/s), (5-19)

where p, is the electron mebility measured in (m?2/V-s). The electron mobility for
copperis3.2 x 1073 (m?/V-s). Itis 1.4 x 10~* (m?/Vs) for aluminum and 5.2 x 1073
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(m?/V-s) for silver. From Egs. (5-3) and (5-19) we have
J= —pe:ueE’ (5_20)

where p, = — Ne is the charge density of the drifting electrons and is a negative
quantity. Equation (5-20) can be rewritten as

J = oE (A/m?), (5-21)

where the proportionality constant, ¢ = —p,u,, is a macroscopic constitutive pa-
rameter of the medium called conductivity.

For semiconductors, conductivity depends on the concentration and mobility of
both electrons and holes:

G = — Polte t Pullns (5-22)

where the subscript & denotes hole. In general, u, # u,. For germanium, typical
values are p, = 0.38, u, = 0.18; for silicon, u, = 0.12, g, = 0.03 (m?/V-s).

Equation (5-21) is a constitutive relation of a conducting medium. Isotropic
materials for which the linear relation Eq. (5-21) holds are called ohmic media. The
unit for ¢ is ampere per volt-meter (A/V-m) or siemens per meter (S/m). Copper, the
most commonly used conductor, has a conductivity 5.80 x 107 (S/m). On the other
hand, the conductivity of germanium is around 2.2 (S/m), and that of silicon is
1.6 x 1073 (S/m). The conductivity of semiconductors is highly dependent of (increases
with) temperature. Hard rubber, a good insulator, has a conductivity of only
10713 (S/m). Appendix B4 lists the conductivities of some other frequently used
materials. However, note that, unlike the dielectric constant, the conductivity of ma-
terials varies over an extremely wide range. The reciprocal of conductivity is called
resistivity, in ohm-meters (Q-m). We prefer to use conductivity; there is really no
compelling need to use both conductivity and resistivity.

We recall Ohm’s law from circuit theory that the voltage V;, across a resistance
R, in which a current I flows from point 1 to point 2, is equal to RI; that is,

V,, = RL (5-23)

Here R is usually a piece of conducting material of a given length; V;, is the voltage
between two terminals 1 and 2; and I is the total current flowing from terminal 1 to
terminal 2 through a finite cross section.

Equation (5-23) is not a point relation. Although there is little resemblance
between Eq. (5-21) and Eq. (5-23), the former is generally referred to as the point
form of Ohm’s law. 1t holds at all points in space, and ¢ can be a function of space
coordinates.

Let us use the point form of Ohm’s law to derive the voltage-current relationship
of a piece of homogeneous material of conductivity g, length £, and uniform cross
section S, as shown in Fig. 5-3. Within the conducting material, J = oE, where both
J and E are in the direction of current flow. The potential difference or voltage



204

5 Steady Electric Currents

FIGURE 5-3
Homogeneous conductor with a constant cross section.

between terminals 1 and 2 is'

V,, = E¢
or
Via
E=-12. 5-24
7 (5-24)

The total current is
Fus fs J-ds=JS

or
I
J==. 5-25
S ( )
Using Egs. (5-24) and (5-25) in Eq. (5-21), we obtain
I _ghz
s ¢
or
Vy, = £ I=RI (5-26)
12— aS e ’

which is the same as Eq. (5-23). From Eq. (5-26) we have the formula for the
resistance of a straight piece of homogeneous material of a uniform cross section for
steady current (d.c.):

R=— (@ (5-27)

We could have started with Eq. (5-23) as the experimental Ohm’s law and applied
it to a homogeneous conductor of length ¢ and uniform cross-section S. Using the
formula in Eq. (5-27), we could derive the point relationship in Eq. (5-21).

t We will discuss the significance of ¥, and E more in detail in Section 5-3.
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mmmmm EXAMPLE 5-2  Determine the d-c resistance of 1-(km) of wire having a 1-(mm) radius
(a) if the wire is made of copper, and (b) if the wire is made of aluminum.

Solution  Since we are dealing with conductors of a uniform cross section, Eq. (5-27)
applies.

a) For copper wire, g, = 5.80 x 107 (S/m):
£ = 103 (m), S =mn(10"3)2 =10"%r (m?).

We have
3 103
R = — = = I .
“ g5 580x107 x 10~ °x >4 @)
b) For aluminum wire, o, = 3.54 x 107 (S/m):
.80
£ _Gup 380 s49-39 () —

4TS o, v 354

al

The conductance, G, or the reciprocal of resistance, is useful in combining resis-
tances in parallel. The unit for conductance is (Q~!), or siemens (S).

G=—=0> (S) (5-28)

From circuit theory we know the following:

a) When resistances R; and R, are connected in series (same current), the total
resistance R is

R, =R, +R,. (5-29)

b) When resistances R; and R, are connected in paraliel (same voltage), we have

1 + 1 (5-30a)
R, R, R,
or

5-3 Electromotive Force and Kirchhoff’s Voltage Law

In Section 3-2 we pointed out that static electric field is conservative and that the
scalar line integral of static electric intensity around any closed path is zero; that is,

9Sc E-de=0. (5-31)
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FIGURE 5-4
Electric battery Electric fields inside an electric battery.

For an ohmic material J = oE, Eq. (5-31) becomes
1
98 —J-de=0. (5-32)
co

Equation (5-32) tells us that a steady current cannot be maintained in the same direc-
tion in a closed circuit by an electrostatic field. A steady current in a circuit is the
result of the motion of charge carriers, which, in their paths, collide with atoms and
dissipate energy in the circuit. This energy must come from a nonconservative field,
since a charge carrier completing a closed circuit in a conservative field neither gains
nor loses energy. The source of the nonconservative field may be electric batteries
(conversion of chemical energy to electric energy), electric generators (conversion of
mechanical energy to electric energy), thermocouples (conversion of thermal energy
to electric energy), photovoltaic cells (conversion of light energy to electric energy),
or other devices. These electrical energy sources, when connected in an electric circuit,
provide a driving force for the charge carriers. This force manifests itself as an equiv-
alent impressed electric field intensity E;.

Consider an electric battery with electrodes 1 and 2, shown schematically in Fig.
5-4. Chemical action creates a cumulation of positive and negative charges at elec-
trodes 1 and 2, respectively. These charges give rise to an electrostatic field intensity
E both outside and inside the battery. Inside the battery, E must be equal in magni-
tude and opposite in direction to the nonconservative E; produced by chemical action,
since no current flows in the open-circuited battery and the net force acting on the
charge carriers must vanish. The line integral of the impressed field intensity E; from
the negative to the positive electrode (from electrode 2 to electrode 1 in Fig. 5-4)
inside the battery is customarily called the electromotive force' (emf) of the bat-
tery. The SI unit for emf is volt, and an emf is not a force in newtons. Denoted by
¥, the electromotive force is a measure of the strength of the nonconservative source.
We have

v = f; E,-de = —f; E-de. (5-33)

Inside
the source

t Also called electromotance.
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The conservative electrostatic field intensity E satisfies Eq. (5-31):

ﬁna=fna+ﬂna=& (5-34)

Outside Inside
the source the source

Combining Egs. (5-33) and (5-34), we have

v =[lE-ae (5-35)
Outside
the source

or
V=Vo=V-" (5-36)

In Egs. (5-35) and (5-36) we have expressed the emf of the source as a line integral
of the conservative E and interpreted it as a voltage rise. In spite of the nonconserva-
tive nature of E;, the emf can be expressed as a potential difference between the posi-
tive and negative terminals. This was what we did in arriving at Eq. (5-24).

When a resistor in the form of Fig. 5-3 is connected between terminals 1 and 2
of the battery, completing the circuit, the total electric field intensity (electrostatic
E caused by charge cumulation, as well as impressed E; caused by chemical action),
must be used in the point form of Ohm’s law. We have, instead of Eq. (5-21),

J =0 + E), (5-37)
where E,; exists inside the battery only, while E has a nonzero value both inside and
outside the source. From Eq. (5-37) we obtain

J
E+E =" (5-38)
o
The scalar line integral of Eq. (5-38) around the closed circuit yields, in view of Egs.
(5-31) and (5-33),
1
V:gﬁC(E+E,.)-de=gﬁC;J-de. (5-39)
Equation (5-39) should be compared to Eq. (5-32), which holds when there is no
source of nonconservative field. If the resistor has a conductivity g, length #, and

uniform cross section S, J = I/S and the right side of Eq. (5-39) becomes RI. We
have'

¢ =RI. (5-40)

If there are more than one source of electromotive force and more than one resistor
(including the internal resistances of the sources) in the closed path, we generalize

t We assume the battery to have a negligible internal resistance; otherwise, its effect must be included in
Eq. (5-40). An ideal voltage source is one whose terminal voltage is equal to its emf and is independent
of the current flowing through it. This implies that an ideal voltage source has a zero internal resistance.
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Eq. (5-40) to

Z ¥, = Z R, (V). (5-41)
J k

Equation (5—41) is an expression of Kirchhoff’s voltage law. 1t states that, around a
closed path in an electric circuit, the algebraic sum of the emf’s (voltage rises) is equal
to the algebraic sum of the voltage drops across the resistances. It applies to any
closed path in a network. The direction of tracing the path can be arbitrarily assigned,
and the currents in the different resistances need not be the same. Kirchhoff’s voltage
law is the basis for loop analysis in circuit theory.

Equation of Continuity and Kirchhoff’s Current Law

The principle of conservation of charge is one of the fundamental postulates of physics.
Electric charges may not be created or destroyed; all charges either at rest or in
motion must be accounted for at all times. Consider an arbitrary volume V bounded
by surface S. A net charge Q exists within this region. If a net current I flows across
the surface out of this region, the charge in the volume must decrease at a rate that
equals the current. Conversely, if a net current flows across the surface into the region,
the charge in the volume must increase at a rate equal to the current. The current
leaving the region is the total outward flux of the current density vector through the
surface S. We have

dQ d
IzgiJ-ds:—E——aprdv. (5-42)

Divergence theorem, Eq. (2—-115), may be invoked to convert the surface integral of
J to the volume integral of V - J. We obtain, for a stationary volume,

fV V-Jdv = —fV %’tﬁ dv. (5-43)

In moving the time derivative of p inside the volume integral, it is necessary to use
partial differentiation because p may be a function of time as well as of space co-
ordinates. Since Eq. (5—43) must hold regardless of the choice of ¥V, the integrands
must be equal. Thus we have

Ved=——  (A/m’) (5-44)

This point relationship derived from the principle of conservation of charge is called
the equation of continuity.
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For steady currents, charge density does not vary with time, dp/dt = 0. Equation
(5-44) becomes
V-J=0 (5-45)

Thus, steady electric currents are divergenceless or solenoidal. Equation (5-45) is a
point relationship and holds also at points where p = 0 (no flow source). It means
that the field lines or streamlines of steady currents close upon themselves, unlike
those of electrostatic field intensity that originate and end on charges. Over any
enclosed surface, Eq. (5-45) leads to the following integral form:

565‘] - ds = 0, (5-46)
which can be written as

Z =0 (A). (5-47)

Equation (5—47) is an expression of Kirchhoff’s current law. 1t states that the algebraic
sum of all the currents flowing out of a junction in an electric circuit is zero.! Kirchhoff’s
current law is the basis for node analysis in circuit theory.

In Section 3-6, we stated that charges introduced in the interior of a conductor
will move to the conductor surface and redistribute themselves in such a way as to
make p = 0 and E = 0 inside under equilibrium conditions. We are now in a position
to prove this statement and to calculate the time it takes to reach an equilibrium.
Combining Ohm’s law, Eq. (5-21), with the equation of continuity and assuming a
constant o, we have

op
V-E= -, 5-48
o a1 ( )
In a simple medium, V + E = p/e, and Eq. (5-48) becomes
p o
S Tor=0 (5-49)
The solution of Eq. (5-49) is
p=poe” " (C/m), (5-50)

where p,, is the initial charge density at t = 0. Both p and p, can be functions of the
space coordinates, and Eq. (5-50) says that the charge density at a given location
will decrease with time exponentially. An initial charge density p, will decay to 1/e

' This includes the currents of current generators at the junction, if any. An ideal current generator is
one whose current is independent of its terminal voltage. This implies that an ideal current source has an
infinite internal resistance.
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or 36.8% of its value in a time equal to
T=— () (5-51)

The time constant 7 is called the relaxation time. For a good conductor such as
copper—a = 5.80 x 107 (S/m), e=¢,=8.85x 10"*2(F/m)—t equals 1.52 x
10722 (s), a very short time indeed. The transient time is so brief that, for all practical
purposes, p can be considered zero in the interior of a conductor—see Eq. (3—69) in
Section 3-6. The relaxation time for a good insulator is not infinite but can be hours
or days.

Power Dissipation and Joule’s Law

In Section 5-1 we indicated that under the influence of an electric field, conduction
electrons in a conductor undergo a drift motion macroscopically. Microscopically,
these electrons collide with atoms on lattice sites. Energy is thus transmitted from
the electric field to the atoms in thermal vibration. The work Aw done by an electric
field E in moving a charge g a distance A¢is gE * (A€), which corresponds to a power

Aw
= lim — =¢E *u, (5-52)
P At—=0 At 1

where u is the drift velocity. The total power delivered to all the charge carriers in a

volume dv is
dP = Z pi=E- <Z Niqiui> dv,

which, by virtue of Eq. (5-18), is

dP =E-Jdv
or
dp
—=E-J (W/m?). (5-53)
dv

Thus the point function E - J is a power density under steady-current conditions.
For a given volume V the total electric power converted into heat is

P:LEnmu (W). (5-54)

This is known as Joule’s law. (Note that the SI unit for P is watt, not joule, which is
the unit for energy or work.) Equation (5-53) is the corresponding point relationship.

In a conductor of a constant cross section, dv = dsd/, with d/ measured in the
direction J. Equation (5-54) can be written as

szLEdffsts:VI,
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where I is the current in the conductor. Since V = RI, we have

P=1I°R (W). (5-55)

Equation (5-55) is, of course, the familiar expression for ohmic power representing
the heat dissipated in resistance R per unit time.

Boundary Conditions for Current Density

When current obliquely crosses an interface between two media with different con-
ductivities, the current density vector changes both in direction and in magnitude. A
set of boundary conditions can be derived for J in a way similar to that used in
Section 3-9 for obtaining the boundary conditions for D and E. The governing
equations for steady current density J in the absence of nonconservative energy
sources are

Governing Equations for Steady Current Density
Differential Form Integral Form
V-I=0 ,3-ds=0 (5-56)
J 1
Vx<—>=0 ~J-dt =0 (5-57)
o Cao

The divergence equation is the same as Eq. (5—45), and the curl equation is obtained
by combining Ohm’s law (J = ¢E) with V x E = 0. By applying Eqgs. (5-56) and
(5-57) at the interface between two ohmic media with conductivities o, and a,, we
obtain the boundary conditions for the normal and tangential components of J.

Without actually constructing a pillbox at the interface as was done in Fig. 3-23,
we know from Section 3-9 that the normal component of a divergenceless vector
field is continuous. Hence from V- J = 0 we have

Jin=Jm  (A/m?). (5-58)

Similarly, the tangential component of a curl-free vector field is continuous across an
interface. We conclude from V x (J/o) = 0 that

Q Y (5-59)
']21 )
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FIGURE 5-5
Boundary conditions at interface between two
conducting media (Example 5-3).

Equation (5-59) states that the ratio of the tangential components of J at two sides
of an interface is equal to the ratio of the conductivities. Comparing the boundary
conditions Eqgs. (5-58) and (5-59) for steady current density in ohmic media with
the boundary conditions Egs. (3—123) and (3—119), respectively, for electrostatic flux
density at an interface of dielectric media where there are no free charges, we note
an exact analogy of J and ¢ with D and e.

EXAMPLE 5-3 Two conducting media with conductivities o, and ¢, are separated
by an interface, as shown in Fig. 5-5. The steady current density in medium 1 at point
P, has a magnitude J; and makes an angle «; with the normal. Determine the
magnitude and direction of the current density at point P, in medium 2.

Solution Using Eqgs. (5-58) and (5-59), we have

Jycosay =J,cosa, (5-60)
and
0,Jsin oy = a,J, sin a,. (5-61)

Division of Eq. (5-61) by Eq. (5-60) yields

tano, 0,

(5-62)
tano; 0,

If medium 1 is a much better conductor than medium 2 (¢, > g, or g,/a,; — 0), a5
approaches zero, and J, emerges almost perpendicularly to the interface (normal to
the surface of the good conductor). The magnitude of J, is

Jy = I3+ I3, = U, sin a,)? + (J, cos a,)?

0, . 2 1/2
=[(—=J;sina; | +(J; cos ocl)z]
0
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or
o 2 1/2
I, = J1[<2 sin oc1> + cos? oc1:| . (5-63)
01
By examining Fig. 5-5, can you tell whether medium 1 or medium 2 is the better
conductor? -

For a homogeneous conducting medium the differential form of Eq. (5-57) sim-
plifies to
VxJ=0. (5-64)

From Section 2—-11 we know that a curl-free vector field can be expressed as the
gradient of a scalar potential field. Let us write

J=—Vy. (5-65)
Substitution of Eq. (5-65) into V -J = 0 yields a Laplace’s equation in y; that is,
V2 = 0. (5-66)

A problem in steady-current flow can therefore be solved by determining y (A/m)
from Eq. (5-66), subject to appropriate boundary conditions and then by finding J
from its negative gradient in exactly the same way as a problem in electrostatics is
solved. As a matter of fact, y and electrostatic potential are simply related: = oV
As indicated in Section 51, this similarity between electrostatic and steady-current
fields is the basis for using an electrolytic tank to map the potential distribution of
difficult-to-solve electrostatic boundary-value problems."

When a steady current flows across the boundary between two different lossy
dielectrics (dielectrics with permittivities €; and €, and finite conductivities o and o,),
the tangential component of the electric field is continuous across the interface as
usual; that is, E,, = E,,, which is equivalent to Eq. (5-59). The normal component
of the electric field, however, must simultaneously satisfy both Eq. (5-58) and Eq.
(3—121b). We require

Jln = J2n =¥ alEln = 62E2n, (5_67)
Dln - D2n =pPs €1E1n - €2E2n = Ps> (5_68)

where the reference unit normal is outward from medium 2. Hence, unless o,/0, =
€,/€,, a surface charge must exist at the interface. From Egs. (5-67) and (5-68) we

find
py= (el L. €2>E2n = <61 — & 2)El,.. (5-69)
(251 0,

T See, for instance, E. Weber, Electromagnetic Fields, John Wiley and Sons, 1950, Vol. I: Mapping of
Fields, pp. 187-193.
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a0 b e 4, FIGURE 5-6 .
___________ 2 _ _ Parallel-plate capacitor with two lossy

dielectrics (Example 5-4).

Again, if medium 2 is a much better conductor than medium 1 (6, > ¢, or o/, — 0),
Eq. (5-69) becomes approximately

Ps = 6lEln = Dlm (5_70)
which is the same as Eq. (3-122).

EXAMPLE 5-4 An emf 7" is applied across a parallel-plate capacitor of area S. The
space between the conducting plates is filled with two different lossy dielectrics of
thicknesses d; and d,, permittivities €, and €,, and conductivities g, and 7,, respec-
tively. Determine (a) the current density between the plates, (b) the electric field
intensities in both dielectrics, and (c) the surface charge densities on the plates and
at the interface.

Solution Refer to Fig. 5-6.

a) The continuity of the normal component of J assures that the current densities
and therefore the currents in both media are the same. By Kirchhoff’s voltage

law we have
d 4,
v = (R R) =—+—= I
(R; + Ry) <alS + ‘725>
Hence,
1 i v
F 5o (A/m?). (5-71)

s” (di/o,) + (d3/0,) - 0yd, +0,d,

b) To determine the electric field intensities E; and E, in both media, two equations
are needed. Neglecting fringing effect at the edges of the plates, we have

v =Ed; + E,d, (5-72)
and
0.E; =0,E,. (5-73)
Equation (5-73) comes from J, = J,. Solving Egs. (5-72) and (5-73), we obtain
V" :
E,=—2* — (V 5-74
1 O_2d1+0_1d2 ( /m) ( )
and
v
E,=— 27 (V/m). (5-75)

0,d; +0.d,
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¢) The surface charge densities on the upper and lower plates can be determined by
using Eq. (5-70):

€0,
L =eE, =Y C/m? 5-76
Ps1 = €15 o,d, + 0,d, (C/m*) ( )
€,0.V
=—gE,=——21__  (C/m?). 5-77
Ps2 €8, o,d, + 0yd, (C/m?) ( )

The negative sign in Eq. (5—-77) comes about because E, and the outward normal
at the lower plate are in opposite directions.

Equation (5-69) can be used to find the surface charge density at the inter-
face of the dielectrics. We have

(e g, . .7
Psi = ‘6, Y)o,dy + 0,d,

(€201 — €,0,)7" 2
= C .
o,dy +0,d, (C/m?)

From these results we see that p,, # —p,; but that py; + py, + p = 0. —

(5-78)

In Example 5-4 we encounter a situation in which both static charges and a
steady current exist. As we shall see in Chapter 6, a steady current gives rise to a
steady magnetic field. We have, then, both a static electric field and a steady mag-
netic field. They constitute an electromagnetostatic field. The clectric and magnetic
fields of an electromagnetostatic field are coupled through the constitutive relation
J = oF of the conducting medium.

Resistance Calculations

In Section 310 we discussed the procedure for finding the capacitance between two
conductors separated by a dielectric medium. These conductors may be of arbitrary
shapes, as was shown in Fig. 3-27, which is reproduced here as Fig. 5-7. In terms
of electric field quantities the basic formula for capacitance can be written as

o ¢, D -ds _gSSeE-ds .

—V——fLE-df_ ~fLE-d€,

where the surface integral in the numerator is carried out over a surface enclosing
the positive conductor and the line integral in the denominator is from the negative
(lower-potential) conductor to the positive (higher-potential) conductor (see Eq. 5-35).

When the dielectric medium is lossy (having a small but nonzero conductivity),
a current will flow from the positive to the negative conductor, and a current-density
field will be established in the medium. Ohm’s law, J = oK, ensures that the stream-
lines for J and E will be the same in an isotropic medium. The resistance between
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L
b +] I ’ V= D FIGURE 5-7

Vi Two conductors in a lossy dielectric medium.

the conductors is

K_—:fE de —fE de 550
i

9€J ds *SBSJE ds

where the line and surface integrals are taken over the same L and S as those in
Eq. (5-79). Comparison of Egs. (5-79) and (5-80) shows the following interesting
relationship:

(5-81)

Equation (5-81) holds if € and ¢ of the medium have the same space dependence or
if the medium is homogeneous (independent of space coordinates). In these cases, if
the capacitance between two conductors is known, the resistance (or conductance)
can be obtained directly from the €/o ratio without recomputation.

EXAMPLE 5-5 Find the leakage resistance per unit length (a) between the inner
and outer conductors of a coaxial cable that has an inner conductor of radius a, an
outer conductor of inner radius b, and a medium with conductivity ¢, and (b) of a
parallel-wire transmission line consisting of wires of radius a separated by a distance
D in a medium with conductivity o.

Solution

a) The capacitance per unit length of a coaxial cable has been obtained as Eq.
(3—139) in Example 3-18:
_ 2rme
' " In (b/a)

(F/m).
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Hence the leakage resistance per unit length is, from Eq. (5-81),

e/ 1 1 b
R, = - <a> =3 In <5> (Q-m). (5-82)

The conductance per unit length is G; = 1/R;.

b) For the parallel-wire transmission line, Eq. (4—47) in Example 4-4 gives the
capacitance per unit length:

C,=—>" _  (F/m).

1
D
h™* | —
cos < 2a>
Therefore the leakage resistance per unit length is, without further ado,
€1 1 D
Rl = — = — h7 LN
T (C’1> no €08 <2a>
| D D\?
=—In|-— — —1 Q-m).
no t [261 * <2a> ] (@-m)

The conductance per unit length is G| = 1/R]. -

(5-83)

It must be emphasized here that the resistance between the conductors for a
length # of the coaxial cable is R,//, not /R,; similarly, the leakage resistance of a
length £ of the parallel-wire transmission line is R} /£, not /R}. Do you know why?

In certain situations, electrostatic and steady-current problems are not exactly
analogous, even when the geometrical configurations are the same. This is because
current flow can be confined strictly within a conductor (which has a very large o in
comparison to that of the surrounding medium), whereas electric flux usually cannot
be contained within a dielectric slab of finite dimensions. The range of the dielectric
constant of available materials is very limited (see Appendix B-3), and the flux-
fringing around conductor edges makes the computation of capacitance less accurate.

The procedure for computing the resistance of a piece of conducting material
between specified equipotential surfaces (or terminals) is as follows:

1. Choose an appropriate coordinate system for the given geometry.

2. Assume a potential difference 1, between conductor terminals.

3. Find electric field intensity E within the conductor. (If the material is homoge-
neous, having a constant conductivity, the general method is to solve Laplace’s
equation V2V = 0 for V in the chosen coordinate system, and then obtain E =
—-VV)

4. Find the total current
1=fSJ-ds=fSaE-ds,
where S is the cross-sectional area over which I flows.
5. Find resistance R by taking the ratio Vy/I.
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It is important to note that if the conducting material is inhomogeneous and if the
conductivity is a function of space coordinates, Laplace’s equation for V does not
hold. Can you explain why and indicate how E can be determined under these
circumstances?

When the given geometry is such that J can be determined easily from a total
current I, we may start the solution by assuming an I. From I, J and E = J/o are
found. Then the potential difference Vj is determined from the relation

Vo=—[E-de

where the integration is from the low-potential terminal to the high-potential terminal.
The resistance R = V,/I is independent of the assumed I, which will be canceled in
the process.

msssmm EXAMPLE 5-6 A conducting material of uniform thickness h and conductivity o
has the shape of a quarter of a flat circular washer, with inner radius a and outer
radius b, as shown in Fig. 5-8. Determine the resistance between the end faces.

Solution Obviously, the appropriate coordinate system to use for this problem is
the cylindrical coordinate system. Following the foregoing procedure, we first assume
a potential difference V;, between the end faces, say V' = 0 on the end face at y =0
(¢ =0) and V =V, on the end face at x =0 (¢ = n/2). We are to solve Laplace’s
equation in V subject to the following boundary conditions:

V=0 at ¢ =0, (5-84a)
V=V, at ¢=mn/2 (5-84b)

Since potential V is a function of ¢ only, Laplace’s equation in cylindrical coordinates
simplifies to

v
—=0. 5-85
e (5-85)
The general solution of Eq. (5-85) is
V=ci¢+c,,
Va4
. P
b-a
0
o]
b g ® FIGURE 5-8
X A quarter of a flat conducting circular washer (Example
o »x  5-6).
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which, upon using the boundary conditions in Eqs. (5-84a) and (5-84b), becomes

V=""4¢. (5-86)

The current density is

ov 2V, (5-87)
_— = —a¢ .
ré¢ r

The total current I can be found by integrating J over the ¢ = 7/2 surface at which

ds = —agzhdr. We have
20-V0 b dr
zszJ ds == hfa =

26hV, b -89
= o ° ln —
T a
Therefore,
V.
R="0 n (5-89)

T~ 20hin(bja)

Note that, for this problem, it is not convenient to begin by assuming a total
current [ because it is not obvious how J varies with r for a given I. Without J, E
and V¥, cannot be determined. -

Review Questions

R.5-1 Explain the difference between conduction and convection currents.

R.5-2 Explain the operation of an electrolytic tank. In what ways do electrolytic currents
differ from conduction and convection currents?

R.5-3 Define mobility of the electron in a conductor. What is its SI unit?
R.5-4 What is the Child-Langmuir law?

R.5-5 What is the point form for Ohm’s law?

R.5-6 Define conductivity. What is its SI unit?

R.5-7 Why does the resistance formula in Eq. (5-27) require that the material be
homogeneous and straight and that it have a uniform cross section?

R.5-8 Prove Egs. (5-29) and (5-30b).

R.5-9 Define electromotive force in words.

R.5-10 What is the difference between impressed and electrostatic field intensities?
R.5-11 State Kirchhoff ’s voltage law in words.

R.5-12 What are the characteristics of an ideal voltage source?

R.5-13 Can the currents in different branches (resistors) of a closed loop in an electric
network flow in opposite directions? Explain.
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R.5-14 What is the physical significance of the equation of continuity?
R.5-15 State Kirchhoff ’s current law in words.
R.5-16 What are the characteristics of an ideal current source?
R.5-17 Define relaxation time. What is the order of magnitude of the relaxation time in
copper?
R.5-18 In what ways should Eq. (5-48) be modified when ¢ is a function of space
coordinates?
R.5-19 State Joule’s law. Express the power dissipated in a volume

a) in terms of E and o,
b) in terms of J and o.

R.5-20 Does the relation V x J = 0 hold in a medium whose conductivity is not constant?
Explain.
R.5-21 What are the boundary conditions of the normal and tangential components of
steady current at the interface of two media with different conductivities?
R.5-22 What quantities in electrostatics are analogous to the steady current density vector
and conductivity in an ohmic medium?
R.5-23 What is the basis of using an electrolytic tank to map the potential distribution of
electrostatic boundary-value problems?
R.5-24 What is the relation between the resistance and the capacitance formed by two
conductors immersed in a lossy dielectric medium that has permittivity € and conductivity ¢?
R.5-25 Under what situations will the relation between R and C in R.5-24 be only
approximately correct? Give a specific example.

Problems

P.5-1 Assuming S to be the area of the electrodes in the space-charge-limited vacuum
diode in Fig. 5-2, find
a) V(y) and E(y) within the interelectrode region,
b) the total amount of charge in the interelectrode region,
¢) the total surface charge on the cathode and on the anode,
d) the transit time of an electron from the cathode to the anode with V;, = 200 (V) and
d =1 (cm).
P.5-2 Starting with Ohm’s law as expressed in Eq. (5-26) applied to a resistor of length ¢/,
conductivity g, and uniform cross-section S, verify the point form of Ohm’s law represented
by Eq. (5-21).
P.5-3 A long, round wire of radius a and conductivity ¢ is coated with a material of
conductivity 0.1a.
a) What must be the thickness of the coating so that the resistance per unit length of
the uncoated wire is reduced by 50%?

b) Assuming a total current [ in the coated wire, find J and E in both the core and
the coating material.

P.5-4 Find the current and the heat dissipated in each of the five resistors in the network
shown in Fig. 5-9 if

R =1(©Q), R,=20(Q), R;=30(Q), R,=8(Q), R;=10(Q),
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Ry R; R3
1 ng
2 FIGURE 5-9
A network problem (Problem P.5-4).

and if the source is an ideal d-c voltage generator of 0.7 (V) with its positive polarity at
terminal 1. What is the total resistance seen by the source at terminal pair 1-2?

P.5-5 Solve Problem P.5-4, assuming that the source is an ideal current generator that
supplies a direct current of 0.7 (A) out of terminal 1.

P.5-6 Lightning strikes a lossy dielectric sphere—e = 1.2 €3, ¢ = 10 (S/m)—of radius 0.1 (m)
at time t = 0, depositing uniformly in the sphere a total charge 1 (mC). Determine, for all ¢,
a) the electric field intensity both inside and outside the sphere,
b) the current density in the sphere.

P.5-7 Refer to Problem P.5-6.

a) Calculate the time it takes for the charge density in the sphere to diminish to 19} of
its initial value.

b) Calculate the change in the electrostatic energy stored in the sphere as the charge
density diminishes from the initial value to 1% of its value. What happens to this
energy?

¢) Determine the electrostatic energy stored in the space outside the sphere. Does this
energy change with time?

P.5-8 A d-c voltage of 6 (V) applied to the ends of 1 (km) of a conducting wire of 0.5 (mm)
radius results in a current of 1/6 (A). Find

a) the conductivity of the wire,

b) the electric field intensity in the wire,

c) the power dissipated in the wire,

d) the electron drift velocity, assuming electron mobility in the wire to be 1.4 x 1073

(m?2/V-s).

P.5-9 Two lossy dielectric media with permittivities and conductivities (€, ¢,) and (€,, 05)
are in contact. An electric field with a magnitude E, is incident from medium 1 upon the
interface at an angle o, measured from the common normal, as in Fig. 5-10.

FIGURE 5-10

Boundary between two lossy dielectric media (Problem
P.5-9).
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a) Find the magnitude and direction of E, in medium 2.

b) Find the surface charge density at the interface.

¢) Compare the results in parts (a) and (b) with the case in which both media are
perfect dielectrics.

P.5-10 The space between two parallel conducting plates each having an area § is filled
with an inhomogeneous ohmic medium whose conductivity varies linearly from ¢, at one

plate (y = 0) to o, at the other plate (y = d). A d-c voltage V, is applied across the plates
as in Fig. 5-11. Determine

a) the total resistance between the plates,
b) the surface charge densities on the plates,
¢) the volume charge density and the total amount of charge between the plates.

a(y) -V

0 FIGURE 5-11
ZZ 2272727 227 L LLL

L Inhomogeneous ohmic medium with
Area = § conductivity a(y) (Problem P.5-10).

S

P.5-11 Refer to Example 5-4.
a) Draw the equivalent circuit of the two-layer, parallel-plate capacitor with lossy
dielectrics, and identify the magnitude of each component.
b) Determine the power dissipated in the capacitor.

P.5-12 Refer again to Example 5-4. Assuming that a voltage V, is applied across the
parallel-plate capacitor with the two layers of different lossy dielectrics at t = 0,
a) express the surface charge density p; at the dielectric interface as a function of ¢,
b) express the electric field intensities E, and E, as functions of t.

P.5-13 A d-c voltage V is applied across a cylindrical capacitor of length L. The radii of the
inner and outer conductors are a and b, respectively. The space between the conductors is
filled with two different lossy dielectrics having, respectively, permittivity €, and conductivity
o, in the region a < r < ¢, and permittivity €, and conductivity ¢, in the region ¢ < r < b.
Determine

a) the current density in each region,

b) the surface charge densities on the inner and outer conductors and at the interface

between the two dielectrics.

P.5-14 Refer to the flat conducting quarter-circular washer in Example 5-6 and Fig. 5-8.
Find the resistance between the curved sides.

P.5-15 Find the resistance between two concentric spherical surfaces of radii R, and
R, (R{ < R,) if the space between the surfaces is filled with a homogeneous and isotropic
material having a conductivity a.
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P.5-16 Determine the resistance between two concentric spherical surfaces of radii R, and
R, (R, < R,), assuming that a material of conductivity ¢ = a4(1 + k/R) fills the space between
them. (Note: Laplace’s equation for V' does not apply here.)

P.5-17 A homogeneous material of uniform conductivity ¢ is shaped like a truncated
conical block and defined in spherical coordinates by

R, <R<R, and 0<0<0,.
Determine the resistance between the R = R; and R = R, surfaces.

P.5-18 Redo Problem P.5-17, assuming that the truncated conical block is composed

of an inhomogeneous material with a nonuniform conductivity a(R) = o,R,/R, where

R, <R <R,.

P.5-19 Two conducting spheres of radii b; and b, that have a very high conductivity are
immersed in a poorly conducting medium (for example, they are buried very deep in the
ground) of conductivity ¢ and permittivity €. The distance, d, between the spheres is very
large in comparison with the radii. Determine the resistance between the conducting spheres.
(Hint: Find the capacitance between the spheres by following the procedure in Section 3—10
and using Eq. (5-81).)

P.5-20 Justify the statement that the steady-current problem associated with a conductor
buried in a poorly conducting medium near a plane boundary with air, as shown in Fig.
5-12(a), can be replaced by that of the conductor and its image, both immersed in the
poorly conducting medium as shown in Fig. 5-12(b).

( ) Boundary
e removed

g=0 o

(a) Conductor in a poorly (b) Image conductor in conducting

conducting medium near medium replacing the
a plane boundary. plane boundary.
FIGURE 5-12

Steady-current problem with a plane boundary (Problem P.5-20).

P.5-21 A ground connection is made by burying a hemispherical conductor of radius
25 (mm) in the earth with its base up, as shown in Fig. 5-13. Assuming the earth
conductivity to be 107¢ S/m, find the resistance of the conductor to far-away points in
the ground. (Hint: Use the image method in P.5-20.)

>
o =10"%(S/m)

FIGURE 5-13
Hemispherical conductor in ground (Problem P.5-21).
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P.5-22 Assume a rectangular conducting sheet of conductivity o, width a, and height b. A
potential difference ¥, is applied to the side edges, as shown in Fig. 5-14. Find
a) the potential distribution,
b) the current density everywhere within the sheet. (Hint: Solve Laplace’s equation in
Cartesian coordinates subject to appropriate boundary conditions.)

aV
i
: T
V=0 v="w| »
v _,
an
| [ FIGURE 5-14
| e > A conducting sheet (Problem P.5-22).

P.5-23 A uniform current density J = a,J, flows in a very large rectangular block of
homogeneous material of a uniform thickness having a conductivity . A hole of radius
b is drilled in the material. Find the new current density J' in the conducting material.
(Hint: Solve Laplace’s equation in cylindrical coordinates and note that V approaches
—(Jor/o) cos ¢ as r —» oo, where ¢ is the angle measured from the x-axis.)



