前言 机器学习是计算机研究领域的一个重要分支,已经成为人工智能的核心基础。一方面,机器学习是人工智能理论和应用研究的桥梁;另一方面,模式识别与数据挖掘的核心算法大都与机器学习有关。机器学习在计算机发展过程中日益完善,目前是人工智能领域最具活力的研究方向之一。 机器学习作为人工智能理论研究的一部分,以数学理论知识为基础,以解决实际问题为实践场景,与社会生产息息相关。在众多领域,机器学习正展现其巨大的潜力,扮演着日益重要的角色。 本书系统介绍了经典的机器学习算法。在编写过程中,尽量减少数学理论知识,将数学公式转换成原理示意图、步骤解析图、流程图、数据图表和源程序等表达方式,帮助读者理解算法原理。本书注重理论联系实际,将算法应用于实际案例场景,培养理论研究能力和分析、解决问题能力。 本书选取典型的问题作为实践案例,借助案例对算法进行系统解析。在解决实际任务的过程中,读者能够掌握机器学习算法并灵活运用。本书带领读者循序渐进,从Python数据分析与挖掘入门,在实践中掌握机器学习基本知识,最终将机器学习算法运用于预测、判断、识别、分类、策略制定等人工智能领域。 本书内容包含三部分: 第一部分(第1章和第2章)为入门篇,着重介绍Python开发基础及数据分析与处理;第二部分(第3章和第4章)为基础篇,着重介绍机器学习的理论框架和常用机器学习模型;第三部分(第5~11章)为实战篇,介绍经典机器学习算法及应用,包括KNN分类算法、KMeans聚类算法、推荐算法、回归算法、支持向量机算法、神经网络算法以及深度学习理论及项目实例。 本书提供丰富的配套资源,包括教学大纲、教学课件、习题答案、程序源码、教学进度表、混合式教学设计和微课视频。资源下载提示 课件等资源: 扫描封底的“课件下载”二维码,在公众号“书圈”下载。 素材(源码)等资源: 扫描目录上方的二维码下载。 视频等资源: 扫描封底刮刮卡中的二维码,再扫描书中相应章节中的二维码,可以在线学习。 本书以培养人工智能与机器学习初学者的实践能力为目标,适用范围广,可作为高等院校计算机、软件工程、大数据、通信、电子等相关专业的教材,也可作为成人教育及自学考试用书,还可作为机器学习相关领域开发人员、工程技术人员和研究人员的参考用书。 本书第1章由刘艳、韩龙哲编写,第2章由李哲编写,第3章由刘艳、李沫沫编写,第4~11章由刘艳编写。全书由刘艳担任主编,完成全书的修改及统稿。 感谢阿里天池AI平台提供的云计算开发环境,极大地提升了模型训练效率。感谢华东师范大学精品教材建设专项基金对本书编写过程的支持。感谢英特尔公司的支持,本书作为英特尔公司Intel AI for Future Workforce教育项目的参考用书。感谢郑骏、王伟、陈志云、黄波、刘小平、常丽、陈宇皓、李小露等多位老师和同学对本书提出的宝贵意见。 由于编者水平有限,内容难免有不足之处,欢迎广大读者批评指正。 编者2021年6月