前言

近年来,随着计算机技术及互联网技术的发展,人工智能技术也取得了重要的突破。作为人工智能的核心技术,机器学习已经广泛地应用于各行各业中,如图像识别、语言识别、文本分类、智能推荐、网络安全等。未来,伴随着信息技术的进一步发展,机器学习技术将会更加深入地应用到生产、生活的方方面面。

机器学习是高校计算机、电子信息、工商管理、金融分析等相关专业的必修课程。在学习机器学习之初,不少读者被其中的大量数学公式或众多算法名称吓得退避三舍,进而迷茫和无从下手,主要原因在于学习相关算法前,未对各类算法进行框架式的分类,或者未结合实例进行算法的理解。
针对上述问题,本书将分三部分介绍。第一部分为机器学习概念篇(第1章),为读者构建机器学习方法的基本概念、方法分类、基本处理流程等;第二部分为Python机器学习基础篇(第2章和第3章),为读者详细讲解如何使用Python语言及相应的工具包实现机器学习算法; 第三部分为机器学习算法与Python实践篇(第4~19章),依次讲解常用的机器学习算法,包括算法推导过程、算法优缺点、Python实例等。

本书特点: 

(1) 内容循序渐进,从基础概念到分类,再到详细讲解,便于读者构建知识体系。

(2) 算法讲解由浅入深,重点突出,通俗易懂。

(3) 理论与实践结合,通过大量实例阐述各类算法的基本原理,使读者不仅掌握理论知识,而且掌握实用案例。

(4) 本书配套提供了实例源代码,扫描目录上方的二维码可以下载。

本书的出版得到了清华大学出版社工作人员的大力支持,作者在此表示衷心的感谢。此外,学术界、产业界同仁们的不断探索推动机器学习技术走到今天,本书的完成得力于此,作者在此一并表示衷心感谢。

一方面,机器学习内容极为庞大和复杂,存在大量的交叉算法,且依据的应用领域不同,不同的算法也会有不同的表现; 另一方面,机器学习领域的发展极其迅速,不断取得新的研究成果。因此,作者只能尽力将现有机器学习的框架关系以及主要算法原理和其实现展现给读者,以起到抛砖引玉的作用,给机器学习的初学者提供一定的指导。读者在后期的机器学习中需要阅读大量的文献,并在实践中进行摸索。

由于作者学识有限,本书疏漏和不当之处在所难免,敬请读者和同行们批评、指正。



作者2023年3月