本章,我们通过实例操作来综合应用前面章节所讲到一些【效果】命令,命 令间的随机组合可以创造出不同的画面效果,这也是软件编写人员所不能预见到 的。我们在看到一个效果时可以将其融合进作品中。该章节中前5个实例较为简 单,如果是初学者,请务必学习完这几个实例再开始后面的学习。后面的实例因 操作复杂,一些简单的操作就会直接调取工具,基础的操作如创建【合成】和 【纯色】层、设置动画关键帧等将不再复述。

5.1 调色实例

在After Effects中有许多重要的效果都是针对色彩的调整,但单一地使用一个 工具调整画面的颜色,并不能对画面效果带来质的改变,需要综合应用手中的工 具,进行色彩调整。我们可以使用菜单【效果】>【颜色校正】下的效果进行调 色,也可以使用特殊的方法改变画面颜色。

- 1 执行【合成】>【新建 合成】命令,弹出【合 成设置】对话框,创建 一个新的合成面板,命 名为"调色实例", 设置控制面板参数,如 图5.1.1所示。
- 执行【文件】>【导入】>【文件】>【导入】>【文件】命令,导入配套资源"工程文件"相关章节的"调色"素材,在【项目】面板选中导入的素材文件,将其拖入【时间轴】面板,图像将被添加到合成影片中,在合成窗口中将显示出图像,如图5.1.2所示。
- 这下快捷键Ctrl+Y,在 【时间轴】面板中创建 一个【纯色】图层,弹 出【纯色层设置】对话 框,创建一个蓝色的纯

合成设置	×
合成名称: 调色实例	
基本 高级 3D 渲染器	
預设:HDTV 1080 29.97 🛛 🗧 🍵	
寛度: 1920 px 高度: 1060 px 高度: 1060 px	
像素长宽比: 方形像素 ~ 画面长宽比.	
帧速率: 2997 ─ 帧/秒 丢帧 ~	
分辨率:完整 ~ 1920 x 1080, 79 MB(每 8bpc	
开始时间码: 0,00,00,00 是 0,00;00,00 基础 30 下拉	
持续时间: 0,00,06,00 是 0,00,06,00 基础 30 下拉	
背景颜色: 🔜 🖋 黑色	
	<u>能定</u> (取消)

图5.1.2

色层,颜色尽量饱和一些。在【时间轴】面板中将蓝色的纯色层放在素材的 上方,如图5.1.3所示。

內茲色纯色层的层融合模式改为【叠加】模式,注意观察素材金属的颜色已经变成蓝色,这是为了下一步更好地叠加调色,如图5.1.4所示。

➡ 选中建立的纯色层,可以通过为蓝色纯色层 添加【效果】>【颜色校正】>【色相/饱和度】效 果修改纯色层的色相,从而改变树叶的颜色,如 图5.1.5所示。

图5.1.3

图5.1.5

在【效果控件】面板中,将【色相/饱和度】效果下的【主色相】旋转,从而调整颜色,如图5.1.6 和图5.1.7所示。

图5.1.6

图5.1.7

- 除了对黑白图像用图层模式改变色调,【色相/饱和度】效果还可以针对某一个颜色进行调整。使用同样的方式把另一张调色素材调进来,并为其添加【色相/饱和度】效果,如图5.1.8所示。
- 在【效果控件】面板中,将【通道控制】选项调整为【红色】,需要做的是将要调整的颜色选出, 如果想调整红色就选择【红色】通道,如果是调整背景的绿色就选择【绿色】通道,如图5.1.9 所示。
- 选中了红色通道,图标选中的范围为正红色,通过调整三角图标和【通道范围】可以将玫红色部分的颜色选取出来,如图5.1.10所示。
- 10 移动左侧的⊒三角图标,将玫红色的部分选取进来,如图5.1.11所示。
- 这时调整【主色调】的转轮,可以看到只有文字的颜色发生变化,背景中的绿色没有改变,如 图5.1.12所示。

130

5.2 画面颗粒

- 11 执行【合成】>【新建合成】命令,弹出【合 成设置】对话框,创建一个新的合成面板, 命名为"画面颗粒",设置控制面板参数, 如图5.2.1所示。
- 执行【文件】>【导入】>【文件】命令,导入配套资源"工程文件"相关章节的"画面颗粒"素材,在【项目】面板中选中导入的素材文件,将其拖入【时间轴】面板,图像将被添加到合成影片中,在合成窗口中将显示出图像,如图5.2.2所示。

合成设置 ×
合成名称。而周期校
基本 高级 3D 渲染器
預设: HDTV 1080 29.97 ~ 🧐 🍵
寛度: 1920 px 高度: 1000 px
像素长览比: 方形像素 ~ 画面长宽比: 16.9 (1/2)
執速率: 2997 ○ 航/秒 丢敏 ○
分辨率:完整 ~ 1920 x 1080, 79 MB(每 8bpc 帧)
开始时间码: 0,00,00,00 是 0,00,00 基础 30 下拉
持续时间: 0;00;06;00 是 0;00;06;00 基础 30 下拉
〒東頭色· タ 黒色.
□ 預式 載定 取消
图5.2.1

AfterEffects 2020完全实战技术手册 四校 正文5-6.indd 131

After Effects 2020 完全实战技术手册

这是一段电影的素材,而老电影因为当时技术手段的限制,拍摄的画面都是黑白的,并且很粗糙,下面就来模拟这些效果。在【时间轴】面板中,选中素材,执行【效果】>【杂色与颗粒】>【添加颗粒】命令,调整【查看模式】为【最终输出】模式,展开【微调】属性,修改【强度】参数为3,【大小】参数为0.5,如图5.2.3所示。

fx	添加顆粒	重置
	♂ 查看模式	最终输出 >
	Ö 预设	[无] ~
	预览区域	
	微调	
	> 💍 强度	
	〉 Ö 大小	
	> 💍 柔和度	
	> 💍 长宽比	
	> 通道强度	
	> 通道大小	
	颜色	
	应用	
	动画	
	与原始图像混合	

图5.2.3

- ☑ 观察画面可以看到明显的颗粒。After Effects还提供了很多预设模式,用于模拟某些胶片的效果,如 图5.2.4所示。
- 在【时间轴】面板中选中素材,执行【效果】>【颜色校正】>【色相/饱和度】命令,选择【彩色化】选项,调整【着色色相】的参数为0*+35.0,将画面变成单色,如图5.2.5所示。

5.3 云层模拟

- M 执行【合成】>【新建合成】命令,弹出【合成设置】对话框,创建一个新的合成面板,命名为
 "云层",设置控制面板参数,如图5.3.1所示。
- 02〉 按下快捷键Ctrl+Y,在【时间轴】面板中创建一个【纯色】图层,弹出【纯色设置】对话框,设置

颜色可以为任何颜色,如图5.3.2所示。

		*DEXE			<u></u>
合成设置	×	名称	黑色纯色1		
合成名称 云周		大小			
基本 高级 3D 渲染器		宽度:	1920 像素	□数と産比減会もいる(いか)	
預设: HDTV 1080 29.97 ~	1 8	高度:	1080 像素	□村、東山、東定月16.9 (1/6)	
寛度: 1920 px ■ 高度: 1060 px ■ 領定长寛比为 16.9 (178)		单位:	像素~		
像素长宽比: 方形 像素 ~	画面长宽比。 16.9(178)	像素长宽比:	方形像素		
·航速率: 2997 - 航/秒 丢帧 ~		宽度: 高度:	合成的100.0% 合成的100.0%		
分辨率: 完整 ~ 1920 x 1000,	. 7.9 MB(毎 8bpc 航)	面面长宽比:			
开始时间码: 0,00,00,00 是 0,00,00 基础 30 下拉			(制作	作合成大小	
持续时间: 0,00,10,00 是0,00,10,00 差储30 下拉		颜色			
背景颜色 🗾 🍠 黑色				0	
	- 确定 取消	口预算		<u>确定</u> 取	消
图5.3.1	1		图5	5.3.2	

○3 在【时间轴】面板选中该层,执行【效果】>【杂色和颗粒】>【分形杂色】命令,可以看到【纯 色】层被变为黑白的杂色,如图5.3.3所示。

fx 分形杂色	£П	关于	COMPACTAL MARCH	STATE OF STREET
Ô 分形类型	基本		Section satisfies	
○ 杂色类型	柔和线性		1000000000	121 440
Ŏ	□反转		1790 BURK	
▶ Ö 对比度			0.05.00000	
▶ Ô 亮度			Salar Parks	
・ 〇 道出	允许 HDR 结	果 ~	A State Street	1. 1. 1. 1.
▶ 变换			1000	25.0
▶ Ö 复杂度			10000	100000
▶ 子设置			2802284	2.9629
▼ Ö 演化			100000000	1
	\frown		10.025.00005	0.3565
	Ö		1000 C 8000	
▶ 演化选项			-40.000	Service in
▶ Ö 不透明度			の方のためのです。	100000
○ 混合模式	正常		and the second second	1000

图5.3.3

Ⅰ④ 修改【分形杂色】效果的参数,【分形类型】为【动态】模式,【杂色类型】为【柔和线性】模式,加强【对比度】为200,降低【亮度】为-25,如图5.3.4所示。

图5.3.4

① 在【时间轴】面板,展开【分形杂色】下的【变换】属性,为云层制作动画,执行【透视位移】命令,分别在时间起始处和结束处,设置【偏移(湍流)】值的关键帧,使云层横向运动,值越大运动速度越快。同时设置【子设置】>【演化】属性,分别在时间起始处和结束处,设置关键帧,其值为5*+0.0。然后按下空格键播放动画观察效果,可以看到云层在不断地滚动,如图5.3.5所示。

图5.3.5

应 在工具栏中选中■【矩形工具】,在【时间轴】面板选中云层,在【合成】面板中创建一个矩形蒙版,并调整【蒙版羽化】值,执行【反转】命令,使云层的下半部分消失,如图5.3.6所示。

图5.3.6

 • 执行【效果】>【扭曲】>【边角定位】命令,【边角定位】效果使平面变为带有透视的效果,在 【合成】面板中调整云层四角圆圈十字图标的位置,使云层渐隐的部分缩小,产生空间的透视效 果,如图5.3.7所示。

执行【效果】>【色彩调整】>【色相/饱和度】命令,为云层添加颜色。在【效果控件】面板【色相/饱和度】效果下,执行【彩色化】命令,使画面产生单色的效果,修改【着色色相】的值,调整云层为淡蓝色,如图5.3.8所示。

134

图5.3.8

执行【效果】>【色彩校正】>【色阶】命令,为云层添加闪动效果。【色阶】效果主要用来调整画面亮度,为了模拟云层中电子碰撞的效果,可以提高画面亮度。设置【色阶】效果的【直方图】值的参数(移动最右侧的白色三角图标)。为了得到闪动的效果,画面加亮后要再调回原始画面,回到原始画面的关键帧的间隔要小一些,才能模拟出闪动的效果,如图5.3.9所示。

图5.3.9

● 最后创建一个新的黑色【纯色】层,执行【效果】>【模拟】> CCRainfall命令,将黑色的【纯
 ● 】层的层融合模式改为【相加】模式,可以看到雨被添加到了画面里,如图5.3.10所示。

图5.3.10

Sealer Effects 2020 完全实战技术手册

5.4 发光背景

- M 执行【合成】>【新建合成】命令,弹出【合成设置】对话框,创建一个新的合成面板,命名为 "背景",设置控制面板参数,如图5.4.1所示。
- ☑ 按下快捷键Ctrl+Y,在【时间轴】面板中创建一个【纯色】图层,弹出【纯色设置】对话框,命名 为"光效",如图5.4.2所示。

					~~
合成设置	×	名称:	光效		
合成名称 背影		大小			
基本 高级 3D 渲染器		宽度:	1920 像素	□ 收上帝以继会为 √	
預设: HDTV 1080 29.97 ~	1 8	高度:	1080 像素	□ 符 区 见 比 钡 足 乃 16:	9 (1.78)
完度: 1920 px ☑ 镇定长宽比为 16-9 (178) 高度: 1060 px		单位:	像素 ~		
像素长宽比: 方形像素 ~	画面长宽比: 169(178)	像素长宽比:	方形像素		
· 航速率: 2997		宽度: 高度:	合成的100.0% 会成的100.0%		
分辨率:完整 ~ 1920 x 1000	,79 MB(毎 8bpc 航)	画面长宽比:			
开始时间码: 0,00,00,00 是 0,00,00,00 基础 30 下拉			(制作	合成大小	
持续时间: 0,00,10,00 是 0,00,10,00 基础 30 下拉					
背景颜色 📃 🥒 黑色				Ø	
<u></u>		C 375 U/s			HIT.NK
口用或	确定 取消				
图5.4.	1		图5	5.4.2	

○ 在【时间轴】面板选中"光效"层,执行【效果】>【杂色和颗粒】>【湍流杂色】命令,设置 【湍流杂色】效果属性参数,如图5.4.3和图5.4.4所示。

图5.4.3

- Ⅰ 执行【效果】>【模糊和锐化】>【方向模糊】命令,将【模糊长度】的值调整成为100,对画面实施方向性模糊,使画面产生线型的光效,如图5.4.5所示。
- 下面调整一下画面的颜色,执行【效果】>【颜色校正】>【色相饱和度】命令,我们需要的画面是单色的,所以要执行【彩色化】命令,调整【着色色相】的值为260,画面呈现蓝紫色,如图5.4.6所示。

图5.4.5

图5.4.6

○⑥ 执行【效果】>【风格化】>【发光】命令,为画面添加发光效果。为了得到丰富的高光变化,【发光颜色】设置为【A和B颜色】类型,并调整其他相应的值,如图5.4.7和图5.4.8所示。

▼ fx	发光	重置 选项	关于	
	Ō 发光基于	颜色通道	\sim	
►	Ö 发光阈值			
►	Ö 发光半径			
►	Ô 发光强度			
	Ö 合成原始项目	后面	\sim	
-	Ӧ 发光操作	相加	\sim	
	Ö 发光颜色	A和B颜色	\sim	
	Ö 颜色循环	三角形 A>B>A	\sim	the second states in the secon
►	Ö 颜色循环			
▼	Ō 色彩相位			
		\frown		
		\bigcirc		
►	Ӧѧ和в中点			
	Ö 颜色 A			
	Ö 颜色 B			
	〇 发光维度	水平和垂直	~	

图5.4.7

图5.4.8

▼	fx	极坐标	重置	关于
	V	Ö 插值		
		0.0%		100.0%
		중 나나 가 가 ㅠ ㅠ !		0
		O 转换类型	2211月10日10月11日11日11日11日11日11日11日11日11日11日11日11日11日	~
			<u>_</u>	

图5.4.10

 ● ● ● ● ※ 遊名称
 模式
 T TrieMat

 ● ▼ 1
 死效
 正常
 ●

 ◆ 效果
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

下面为光效设置动画,找到【湍流急色】效果的【演化】属性,单击属性左边的码表图标,在时间 起始处和结束处分别设置关键帧,然后按下空格键,播放动画观察效果,如图5.4.11所示。

图5.4.11

我们一共使用了五种效果,根据不同的画面要求,可以使用不同的效果,最终所呈现的效果是不一样的。用户还可以通过【色相/饱和度】的【着色色相】属性设置光效颜色变化的动画。

5.5 粒子光线

- 执行【合成】>【新建合成】命令, 弹出【合成设置】对话框, 创建一个新的合成面板, 命名为 "粒子光线", 设置控制面板参数, 如图5.5.1所示。
- 在【时间轴】面板中右击,在弹出的快捷菜单中选择【新建】>【纯色】选项(或在弹出的快捷菜 单中选择【图层】>【新建】>【纯色】选项),创建一个纯色层,并命名为"白色纯色1",将 【宽度】值改为2,将【高度】值改为1080,将【颜色】改为白色,如图5.5.2所示。

138

- 还 在【时间轴】面板中,执行【图层】>【新建】>【纯色】命令,创建一个纯色层并命名为"发射器",如图5.5.3所示。
- ☑ 在【时间轴】面板中选中"发射器"层,执行【效果】>【模拟】>【粒子运动场】命令,按下空格 键,预览播放动画效果,如图5.5.4所示。

图5.5.3

图5.5.4

- D5 在【效果控件】面板中设置参数,展开【发射】属性,将【圆筒半径】值改为900,【每秒粒子数】值改为60,【随机扩散方向】值改为20,【速率】值改为130,如图5.5.5所示。
- 6 将【图层映射】属性展开,将【使用图层】改为"2白色线",按下空格键,预览播放动画效果。 再将【重力】属性展开,将【力】值改为0,如图5.5.6所示。

			王卓 超級・・・ 入力・・・
		▶ 发射	
		► 网格	
▼ fx 粒子运动场	重置 选项 关于	▶ 图层爆炸	
▼ 发射		▶ 粒子爆炸	
○ 位置	960.0,540.0	▼ 图层映射	
▶ Ö 圆筒半径		使用图层	2.白色线~ 源 ~
▶ Ö 每秒粒子数		○ 时间偏移类型	相对 ~
▶ Ö 方向		▶ Õ 时间偏移	
▶ 〇 随机扩散方向		▶ 影响	
► Ô 速率		▼ 重力	
		▶ Õ 力	
▶ ○ 随机打 散速率	20.00	▶ Õ 随机扩散力	
() () () () () () () () () () () () () (
▶ Ô 粒子半径	2 00	▶ 0 万両	
		▶ 影响	
▶ 网格		▶ 排斥	
图5	5.5	图5	56

⋯ 在【时间轴】面板中选中"发射器"层,按下快捷键Ctrl+D复制该层,如图5.5.7所示。

◇ ● ● ● ●	#	图层名称	模式	т	TrkMat	
• •		[发射器]	正常、			
• •	2	[发射器]	正常、		无	
• •	3	白色线条	正常		无	

AfterEffects 2020完全实战技术手册 四校 正文5-6.indd 139

After Effects 2020 完全实战技术手册

● 使用工具箱中的■【旋转工具】,选中复制出来的"白色线条"层,在【合成】面板中将其旋转 180度。在【时间轴】面板中将"白色线条"层右侧的眼睛图标单击取消。按下空格键,预览播放 动画效果,如图5.5.8所示。

执行【图层】>【新建】>【调整图层】命令,将新建的调整层放置在【时间轴】面板中最上层的 位置,该层并没有实际的图像存在,只是对位于该层以下的层做出相关的调整,如图5.5.9所示。

 在【时间轴】面板中选中【调整图层】调节层,执行【效果】>Trapcode>Statglow命令,在【效果 控件】面板中,将Preset改为White Star内置效果,如图5.5.10所示。

下面的几个实例都需要运用较多的效果,操作相对复杂,一些简单的操作就不再复述了。如果 读者不知道如何创建一个合成层和纯色层,如何设置动画关键帧之类的操作,请认真学习前面 的几个实例,再开始这几个案例的学习。

5.6 路径应用

在这个小节中,我们会对【形状图层】进行详细的讲解,特别是针对路径动画,以及可以被运用到 路径动画的效果。我们要创建一条沿路径滑动的水流效果。

- • 创建一个合成,【预设】设置为【HDTV 1080 29.97】,【持续时间】为3秒。使用【钢笔工具】绘制一段曲线,如图5.6.1所示。
- 在【时间轴】面板中展开【形状图层】左侧的三角图标,在【形状1】属性下有4个默认属性。展开 【描边1】,调整【描边宽度】为50,【颜色】改为白色,将【线段端点】切换为【圆头端点】, 如图5.6.2和图5.6.3所示。
- 在【时间轴】面板中单击右上角的【添加】旁边的符号,在弹出菜单中执行【修剪路径】命令,为路径添加【修剪路径】属性,如图5.6.4所示。

展开【修剪路径】属性,设置【开始】和【结束】的关键帧,【开始】调整为0%至100%,时长为0.5秒,【结束】调整为0%至100%,时长为1秒。播放动画,可以看到线段随着曲线而出现、划过、消失。【开始】属性后面的关键帧控制了线段的长度,如图5.6.5所示。

这时再设置【描边】属性下【描边宽度】的关键帧,设置4个关键帧分别为:0%、100%、100%、 0%。这样就会形成曲线从细变粗、从粗又变细的过程,如图5.6.6~图5.6.8所示。

图5.6.6

图5.6.7

图5.6.8

在【时间轴】面板中选中【开始】和【结束】属性最右侧 关键帧,右击,在弹出的快捷菜单中选择【关键帧辅助】> 【缓入】选项,需要注意一定要把鼠标悬停在关键帧上右击,才会弹出关键帧菜单。可以看到加入【缓入】动画 后,关键帧图标也有所变化。【缓入】命令只改变了动画的曲线,动画大致的运动方向并没有改变,如图5.6.9~ 图5.6.11所示。

图5.6.9

图5.6.11

在【时间轴】面板单击右上角【添加】旁边的符号,在弹出的菜单中执行【摆动路径】命令,为路
 径添加【摆动路径】属性。调整【大小】和【详细信息】的参数,如图5.6.12所示。

图5.6.12

08) 在【时间轴】面板选中【形状图层1】,按下快捷键Ctrl+D,复制一个图形层放置在图层下方。选 中两个层,按下快捷键U,只显示带有关键帧的属性,如图5.6.13所示。

0	D	• 🔒	♥ #	源名称	₽∻∖∱��⊘⊘♡				12
•			▼ 1	★ 形状图层 1	₽.☆/				Standa and
•	۵	Þ		⊘ № 描边宽度		+	•	•	
•	٥			う 🗠 开始		+	>		
•	¢	Þ		◎ ≥ 結束		+			>
•			V 2	★ 形状图层 2	₽.☆/				State and
< <	\$	Þ		🧑 🗠 描边宽度		+	•	•	
•	۵			🙋 🗠 开始		+	>		
•	٥	Þ		◎ ≥ 結束		+			>

图5.6.13

调整【形状图层1】的【开始】和【结束】的关键帧位置,让动画变为前后两段线段的动画,如
 图5.6.14和图5.6.15所示。

 • 在【时间轴】面板选中【形状图层2】,按下快捷键Ctrl+D,复制一个图形层放置在图层下方。选
 中【形状图层3】的【摆动路径】属性,按下Delete键,删除该属性。关闭【形状图层1】和【形状
 图层2】的显示,方便我们观察【形状图形3】的情况,如图5.6.16所示。

图5.6.16

- 11 按下【虚线】属性右侧的+号图标,为其添加虚线,再次按下+号图标,添加【间隙】属性,如 图5.6.17所示。
- 12 调整【虚线】的数值为0,调大【间隙】的数值,直至出现圆形的点。播放动画,可以看到虚线的 点也是由小到大地变化,如图5.6.18所示。

▼ 3 ★ <u>形状图层 3</u>	₽ ∻ /
▼ 内容	添加 : 🕑
▼ 形状 1	正常 ~
▶ 路径 1	
▼ 描边 1	正常 ~
- 合成	在同组中前一个之"~
・ Ö 顔色	
○ 不透明度	
⊘ № 描边宽度	
线段端点	圆头端点 ~
线段连接	斜接连接 ~
〇 尖角限制	
▼ 虚线	+ -
0 虚线	
「「」」の「「」」で	
・ 〇 偏移	
▶ 填充 1	正常 ~
▶ 変換:形状 1	
▶ 修剪路径 1	
▶ 变换	重置
图5.6.17	7

图5.6.18

Ⅰ 在【时间轴】面板单击右上角【添加】旁边的符号,在弹出的菜单中执行【扭转】命令,为 路径添加【扭转】属性。调整【角度】和【中心】的参数值,让虚线运动得更加随意,如图 5.6.19和图5.6.20所示。

11 打开【形状图层1】和【形状图层2】的显示,再次调整【形状图形3】,也就是虚线的【修剪路 径】的【开始】和【结束】的关键帧位置,让路径动画的过程中,每一个画面3个层的画面不相互 重叠。也可以调整3个层的前后位置来调整路径动画的时间,如图5.6.21和图5.6.22所示。

● ▶ 1 ★ 形状图层 1 + * /	
● ▶ 2 ★ 形状图层 2 ₽ ☆ /	
○ ▶ 3 ★ 形状图层 3 ₽ ※ /	

Ⅰ 执行【合成】>【新建】>【调整图层】命令,创建一个调整层,放置在3个图层上方,选中该调整 层,执行【效果】>【风格化】>【毛边】命令,调整【边界】和【边缘锐度】的参数值,让几层线 条融合在一起,如图5.6.23和图5.6.24所示。

16 选中调整层,执行【效果】>【扭曲】>【湍流置换】命令,调整【数量】和【大小】的参数值,可 以看到圆形的点已经开始变形,并且融合到了路径中,如图5.6.25和图5.6.26所示。

图5.6.25

图5.6.26

17 在【时间轴】面板中启用【运动模糊】功能,首先激活面板上的◙【运动模糊】选项,再在所有图 层选择【运动模糊】图标,可以看到激活前后动画的差别,如图5.6.27~图5.6.30所示。

图5.6.29

高光滚动 5.7

- OI 创建一个新的合成,命名为"高光滚动",【预设】设置为【HDV/HDTV 720 25】,【持续时 间】为5秒,如图5.7.1所示。
- ☑≥ 执行【文件】>【导入】>【文件】命令,导入配套资源"工程文件"相关章节的"高光滚动"素 材,在【项目】面板中选中导入的素材文件,将其拖入【时间轴】面板,图像将被添加到合成影片 中,在合成窗口中将显示出图像。选中图层,按下快捷键Cttl+D复制一个图层,如图5.7.2所示。

图5.7.1

- Ⅰ3 选中上面的图层,执行【效果】>【风格化】>【查找边缘】命令,再执行【反转】命令,画面形成 黑白对比的边缘,如图5.7.3所示。
- ⑭ 执行【效果】>【颜色校正】>【色调】命令,将【将白色映射到】改为紫色,可以看到画面的边缘 颜色改成了紫色,如图5.7.4所示。

- □ 2 在【时间轴】面板,将融合模式调整为【屏幕】模式,可以看到画面中紫色的线条被显现出来,黑 色部分的颜色则显示背景,如图5.7.5和图5.7.6所示。

	-		
屏幕	× 📃		
正常			
	模式 屏幕 正常	模式 T <i>屏幕 ~</i> 正常 ~	模式 T TrkMat 屏幕 V 正常 V 无

06 执行【效果】>【风格化】>【发光】命令,调整【发光半径】为100.0,【发光强度】为1.3,可以 看到画面的线条发出一定的光效,如图5.7.7和图5.7.8所示。

Open Steel Ste

\sim	fx	Ē.	查找边缘	重置
		Ō		🔽 反转
		Ō	与原始图像混合	
\sim	fx	Ē	色调	重置
		Ō	将黑色映射到	
		Ō	将白色映射到	
		Ō	着色数量	
				交换颜色
\sim	fx	Ē	发光	重置 选项
		Ō	发光基于	颜色通道 ~
		Ō	发光阈值	
		Ō	发光半径	
		Ō	发光强度	
		Ō	合成原始项目	后面 ~
		Ō	发光操作	相加 ~
		Ō	发光颜色	原始颜色 ~
		Ō	颜色循环	三角形 A>B>A ~
		Ō	颜色循环	
		Ō	色彩相位	
				\bigcirc
				\bigcirc
		Ō	A 和 B 中点	50%
		Ō	颜色 A	
		Ō	颜色 B	
		ð	发光维度	水平和垂直 ~

图5.7.7

- 在【时间轴】面板选中上层的光效图片, 使用【钢笔工具】创建一个长方形的【蒙 版】,切记路径封闭。需要注意的是,一定 要选中图层绘制路径,否则建立的是形状图 层,如图5.7.9所示。
- 08 在【时间轴】面板展开【蒙版1】属性,将
 【蒙版羽化】调整为100.0,可以看到【蒙
 版】的边缘产生了羽化效果,如图5.7.10和
 图5.7.11所示。

图5.7.9

图5.7.10

图5.7.11

- 使用【选取工具】选中蒙版,将其移动到画面之外,把【时间指示器】移动到第一帧,按下【蒙版路径】右侧的秒表图标,如图5.7.12所示。
- 10 将【时间指示器】移动到3s的位置,移动蒙版至画面左上方,如果看不到路径,可以通过鼠标滚轴 键缩放操作区域的大小,如图5.7.13和图5.7.14所示。

图5.7.12

图5.7.13

○ () ● 🔒 🛛 🤻	▶ # / 源名称	模式 T TrkMat	
• ~	📕 1 🛛 🛋 高光滚动. jpg	屏幕 ~	
	~ 蒙版		Ĭ
	~ 📕 蒙版 1	相加 ~ 反转	Į
◀ ♦ ►	🖸 🗠 蒙版路径		♦
	○ 蒙版羽化	础 100.0,100.0 像素	Į
	○ 蒙版不透明度		Į
	う 蒙版扩展	0.0 像素	Į
	> 效果		Ĭ
	> 变换	重置	Ĭ
• >	🗖 2 🛛 🖬 高光滚动. jpg	正常 ~ 无 ~	

图5.7.14

播放动画可以看到一道紫色的光线滚动过画面。下面单击【时间轴】面板中的图【图表编辑器】图
 标,编辑动画曲线,如图5.7.15所示。

0:00:03:00 00075 (25.00 fps)	, ₽ •	☜ 🏷 🛳 🛡 🖉 🖾	:00s 02s 💎 04s
◇ �) ● 읍 🎙	# 源名称	模式 T TrkMat	
•	1 🛛 🛋 <u>高光滚动. jpg</u>	屏幕 ~	1.0 单位/秒
~			T I I I
	~ 📕 蒙版 1	相加 ~ 反转	0.8
∢ ♦ ►	🖸 🗠 蒙版路径	形状	
	ひ 蒙版羽化		0. 6
	Ŏ 蒙版不透明度		
	○ 蒙版扩展	0.0 像素	0. 4
>			
>		重置	0.2
	2 🛛 🛋 高光滚动, ipg		
			0. 0
		图5.7.15	

12 还可以使用【图表编辑器】里的プロ【缓入】和王国《缓出】工具调整曲线,如图5.7.16所示。

After Effects 2020 完全实战技术手册

0:00:03:00 00075 (25.00 fps)		▝₹ *8 ₽ ₽ ₽ ₽	:00s 01s 02s
◇ �) ● 🔒 🛛 🔖	# 源名称	模式 T TrkMat	
●	1 🛛 🛋 <u>高光滚动. jpg</u>	屏幕 ~	
~			4.0 单位/秒
	~ 📕 蒙版 1	相加 ~ 反转	
∢ ◆ ►	び 🗠 蒙版路径		3.0
		◎ 100.0,100.0 像素	
	○ 蒙版不透明度		2.0
	○ 蒙版扩展	0.0 像素	/
>	效果		
>	变换	重置	
\bullet \rightarrow	2 🛛 🛋 高光滚动. jpg	正常 ~ 无 ~	

图5.7.16

预览动画,可以看到画面光线滚动过车辆。动画曲线的调整技巧有很多,优秀的动画师可以通过观察曲线发现动画的问题,如图5.7.17所示。

图5.7.17

5.8 爆炸背景

- 创建一个新的合成,命名为"爆炸",【预设】设置为【HDTV 1080 29.97】,【持续时间】为3秒,我们需要做一个爆炸效果所以时间不需要很长,如图5.8.1所示。
- ① 创建一个新的纯色层,命名为"爆炸1",这 个案例需要做3层效果,请注意命名规范。 选择"爆炸1",执行【效果】>【杂色和 颗粒】>【分形杂色】命令,可以看到纯色 层被变为黑白的杂色。【分形杂色】是非常 常用的效果之一。设置【分形类型】为【动 态渐进】,其他参数设置如图5.8.2和图5.8.3 所示。

合成设置	×
合成名称: 爆炸	
基本 高级 3D 渲染器	
預设: HDTV 1080 29.97 ~	11.8
宽度: 1920 px 高度: 1080 px □ 锁定长宽比为 16-9 (178)	
像素长宽比: 方形像素 ~	
· 帧速率: 2997	
分辨率:完整 ~ 1920 x 1080	
开始时间码: 0,00,00,00 是 0,00,00,00 基础 30 下拉	
持续时间: 0,00,03,00 是 0,00,03,00 基础 30 下拉	
脊景颜色 📃 🍠 黑色	
日形成	确定 取消
歴日の	

图5.8.5

图5.8.6

展开【分形杂色】属性,设置【亮度】、【偏移(湍流)】和【演化】3个参数的动画关键帧。如果需要只显示带有关键帧的属性,可以选中该层,按下快捷键U,就会在【时间轴】面板只显示带 有关键帧的属性,这样可以方便我们直接调整和观察关键帧。需要注意的是,【亮度】动画的设 置要多出一个关键帧,起始的亮度为完全不可见,猛然调亮,然后渐渐消失不见。而【偏移(湍 流)】和【演化】参数是表现杂色的图案变化,【偏移(湍流)】也设置为由上至下的运动,如 图5.8.7所示。

0;0)0;02;(51 (29.97 fps)1	-	⁺€*8 ₽		100f	10f	20f	01:00f
•	• 🖬 👘	♥ #	源名称	模式	T TrkMat				
•		/ 1	爆炸1	正常 ~					
		▼	📕 蒙版 1	相加 ~	反转				
∢ ♦			🧿 🗠 蒙版路径			•			
∢ ♦			🧿 🗠 蒙版羽化	🗢 260.0,260.0	0 像素	•			
fx		▼	分形杂色	重置					
∢ ♦			👌 🗠 亮度			• •	•		
∢ ♦			🛛 🖸 🗠 偏移 (湍流) 960.0,1102.0		•			
• •			🛛 🖸 🗠 演化			•			

图5.8.7

- 06 在【时间轴】面板选中最右侧所有的关键帧,右击, 在弹出的快捷菜单中选择【关键帧辅助】>【缓入】选 项,需要注意一定要把鼠标指针悬停在关键帧上右击, 才会弹出关键帧菜单,如图5.8.8所示。
- ☑ 【关键帧辅助】相关命令十分重要,在调节动画时经常 使用, 它可以自动优化动画曲线。我们打开曲线观察 就可以看到,添加命令前后动画曲线的变化,这些轻 微的动画调整会使运动更加真实和优美。观察和编辑 动画曲线是动画制作的基础,十分重要,需要多加练 习,如图5.8.9和图5.8.10所示。

图5.8.8

图5.8.10

③ 调整好的动画效果突然出现一道灰色的区域,又快速消散,之所以使用【亮度】作为出现和消失的动画属性,而没有使用【不透明度】,是因为【亮度】的变化更具层次感,而【不透明度】则会统一出现和消失,如图5.8.11~图5.8.13所示。

D> 执行【合成】>【新建】>【调整图层】命令,创建一个调整层,命名为"变形"。选中"变形"
 图层,执行【效果】>【扭曲】>【极坐标】命令。将【插值】设置为100%,而【转换类型】设置为
 【矩形到极线】。播放动画,可以看到光波从中心发射出来,如图5.8.14和图5.8.15所示。

V	fx	极坐标		重置	关于
	V	<mark>う</mark> 插	值		
		0.0%			100.0%
					0
		び 转	换类型	矩形到极线	\sim

图5.8.15

 选中"爆炸1"层,按下快捷键Ctrl+D,复制一个图形层放置在图层上方,命名为"爆炸2"。将 "爆炸1"层的右侧关键帧移动拉长动画,这样会形成两道冲击波,读者也可以对【演化】和【亮 度】参数进行微调,达到需要的效果,尽量让冲击波出现的瞬间亮度提高,如图5.8.16所示。

\odot			爆炸2	相加 👻	无义					
			蒙版 1	相加 ~						
4										
4				a 261.0,261.0		٠				
f×				重置						
4										
4										
4										
•		۲ 5	爆炸1	正常 >						
			🧮 蒙版 1	相加 ~						
4										
•				🕶 261. 0 , 261. 0		٠.				
f×				H.W.						
•										
۹.										
۹.										

 ● 选中"爆炸1"层,按下快捷键Ctrl+D,复制一个图形层放置在"爆炸2"层上方,命名为"爆炸 3"。执行【效果】>【风格化】>CC Glass命令,选择Bump Map选项为【无】,Displacement数值 为-260,如图5.8.17和图5.8.18所示。

▼ fx	CC Glass	重置	
▼	Surface		
	Bump Map	无 ~	源 ~
	- Ö Property	Lightness	
	► Ŏ Softness		
	▶ Ŏ Height		
	► Ŏ Displacement		
►	Light		
•	Shading		

图5.8.17

图5.8.18

- 12 我们可以看到在冲击波12点指针的位置,有着很明显的分切,这是因为【极坐标】扭曲时边界无法 对齐,如图5.8.19所示。
- 送闭"变形"调整层的眼睛图标,关闭3个爆炸层中的两个,只剩下一个爆炸层。执行【合成】>
 【新建】>【调整图层】命令,创建一个调整层,命名为"偏移",放置在"变形"层的下方。为了观察前后的效果,可以在【时间轴】面板中关闭图层左侧的"眼睛"图标,用于暂时关闭其效果,如图5.8.20所示。

•••	🇣 //	图层名称	模式	T TrkMat
	► 1	安形	正常~	
•	▶ 2	偏移	正常 ~	/ 无 /
۲	▶ 3	//////////////////////////////////////	屏幕、	
	F 4	爆炸2	相加、	
	► 5	//////////////////////////////////////	正常、	

图5.8.19

图5.8.20

13 选中"偏移"调整层,执行【效果】>【扭曲】>【偏移】命令,调整【将中心转换为】的数值,将
 一侧的中缝偏移到中心的位置,如图5.8.21和图5.8.22所示。

154

图5.8.22

15 选中"偏移"层,使用【矩形工具】绘制一个长方形蒙版,蒙版的类型选择【相减】,调整【蒙版 羽化】的数值,直至边界消失不见,如图5.8.23和图5.8.24所示。

2 偏移	正常 ~ 无 ~					
▼ 蒙版						
▼ 📕 蒙版 1	相减 ~ 反转					
○ 蒙版路径						
○ 蒙版羽化	∞ 102.0,102.0 像素					
○ 蒙版不透明度						
Ŏ 蒙版扩展	0.0 像素					

 图5.8.23
 图5.8.24

 16 激活 "变形"调整层,可以看到冲击波的边界消失不见,如图5.8.25所示。

图5.8.25

☞ 下面我们调整冲击波的颜色,一般使用【效果】调整光线和粒子的色彩。选中"变形"调整层, 执行【效果】>【颜色校正】>CC Toner命令,该【效果】有5层色彩设置,可以调出复杂的色彩变 化,如图5.8.26和图5.8.27所示。 😡 🕲 🌑 After Effects 2020 完全实战技术手册

- 但是这种【效果】都无法解决光线和光波的透明度问题,因为爆炸是立体的、有层次的,3个层之间的色彩会混合在一起。我们还可以使用插件来进行调整。VC Color Vibrance是一款非常好用的色彩插件,并且是免费的,读者可以在搜索引擎中找到,下载后放置到软件所在盘符"\Program Files\Adobe\Adobe After Effects CC 2020\Support Files\Plug-ins\Effects"文件夹下就可以使用了。选中爆炸层,执行【效果】>Video Copilot>VC Color Vibrance命令,如图5.8.28所示。
- VC Color Vibrance效果的参数很简单,Gamma值是最重要的参数,可以使光线重叠的地方产生自然的高光。如果觉得冲击波亮度不够,可以执行【效果】>【颜色校正】>【曲线】命令把画面调亮。由于是由三层爆炸组成,可以使用不同的颜色区分层次画面效果,如图5.8.29所示。

5.9 切割文字

 • 创建一个新的合成,命名为"切割文字",【预设】设置为【HDTV 1080 29.97】,【持续时间】 为5秒。创建一段文字,可以是单词也可以是一段话,这些文字我们在后期还能修改。可以使用 Arial字体,该字体为系统默认字体,笔画较粗,适于该特效,如图5.9.1所示。

156

- 在【时间轴】面板选中文字层,使用【钢笔 工具】绘制一个封闭的三角形,遮挡住文字 的一部分,如图5.9.2所示。
- 选中文字层,执行【效果】>【模拟】>CC Pixel Polly命令,不用调整任何参数,直接播 放动画,可以看到文字已经有了碎裂效果, 如图5.9.3所示。

图5.9.1

图5.9.3

☑ 选中文字层,按下快捷键Ctrl+D,复制文字层,系统自动命名为2,放在上方。删除该层的CC Pixel Polly效果(选中按下Delete键),展开蒙版属性,选择【反转】复选项,播放动画可以看到文字的 一角被切掉,如图5.9.4和图5.9.5所示。

- 如果只是简单的文字效果现在已经做好了,我们接着让它变得更加丰富而有趣。使用【路径工具】绘制一条【形状图层】与切掉的部分重合,可以使用【选取工具】调整其位置,如图5.9.6所示。
- 在【时间轴】面板展开该【形状图层】的属性,将【描边宽度】设置为6,设置为白色与字体颜色
 一致,如图5.9.7所示。

图5.9.6

图5.9.7

After Effects 2020 完全实战技术手册

在【时间轴】面板单击右上角【添加】旁边的符号,在弹出的菜单中执行【修剪路径】命令,为路 径添加【修剪路径】属性。展开【修剪路径】属性,设置【开始】和【结束】的关键帧,设置【开 始】的第一个关键帧参数为100%,第二个关键帧参数为0%,两个关键帧间隔两帧。设置【结束】 的第一个关键帧参数为100%,第二个关键帧参数为0%,两个关键帧间隔两帧。【结束】的关键帧 位置比【开始】整体靠后一帧,播放动画,可以看到线段随着线段出现、划过、消失,如图5.9.8 所示。

0	~ 修剪路径:			I					
∢ ♦ ►	· ⊘ ⊵	开始		•		•			
< ♦ ►	<u>v</u> ∑	结束			•		•		
	○ 偏利			1					
	修剪多	重形状	同时	~					
图5.9.8									
◎ 执行【图层】>【新建】>【摄像机】命令,创建一个默认设置的摄像机,打开所有图层的三维图标									
❷,如图5.9.9所示。									
0	\rightarrow 1	➡ 摄像	机 1		<u>₽</u>				
0	> 2	★ 形状	图层 1		₽∻∕		Θ		
•	> 3	T EFFE	CT 2		₽∻∕		\bigcirc		
0	> 4	T EFFE	ст		₽∻∕f×	Ø	Θ		
			图599						
► ····································									
▶ 让应出现所的人子伝, 师铨该层UC Pixel Polly周性, 通过师登Force和Direction Kandomne等相大参									
双,止中	F기 池미가 八파			[3.9.10小日国[3.9.1	1))) 0				
~ fx CC Pixe	1 Polly	重置							
> Ö Ford									
> Ö Grav	ity								
~ O Spir	ning	1 x +0.0 °					•		
		(1)				•	•		
<u>ب</u> ه ا			<u>^</u>		- 4	`	-4		
· Orura	e center	₩ 960.0,540.	U			_ ;	,		
、 つ Shire	d Randomnass	72.0%				· • • • • •			
-) の Spee	Spacing	25			· · · ·				
つ Obje	ect.	Textured Polygon		~					

图5.9.10

> 💍 Start Time (sec)

图5.9.11