增强现实建模技术

项目3

5 项目介绍

三维建模技术在增强现实领域主要用于构建虚拟环境、建筑、人物角色和产品道具等,主流的三维建模软件有 3ds Max、Maya、Blender、Zbrush。三维对象建模是实现虚拟现实与增强现实的基础工作之一。

增强现实是数字世界的增强版本,真实世界和数字世界同步以三维的形式表示,增强 现实内容的开发主要以模型、材质、空间和照明实现。增强现实应用对三维模型的要求更 高,必须以增强现实输出端口的参数要求去优化模型,在不损失逼真度的情况下减少三维 内容在终端设备上的性能占用,是增强现实应用中对于三维建模技术的规范。

三维建模是计算机图形的核心技术应用之一,广泛应用在技术与艺术领域。本项目主要 针对增强现实应用项目中常见的模型需求,完成工业产品、三维场景建筑和人物模型制作的 实例训练,以满足增强现实领域中三维仿真模型及数字创意模型的需求。由于三维建模软件 能够高效地支持增强现实应用的开发,所以需要对不同类型模型的制作方式进行探索与实践。

👸 知识目标

- 了解什么是增强现实建模技术。
- 掌握增强现实应用中三维建模的方法。
- 结合增强现实应用项目开发需求,在实践中模拟三维产品、三维场景和人物角色 模型的制作。

🚯 职业素养目标

- 培养学生了解、传承、弘扬中国文化, 增强民族自信。
- 培养学生严谨细致、踏实耐心、刻苦钻研的职业素养。
- 培养学生能够善于发现三维造型的美感,提升自身的制作水平和审美情趣。
- 培养学生创造性思维,能创作符合市场需求的增强现实应用素材。

。 1991年1991年 1991年1991年 1991年 1991 19

🎽 职业能力目标

- 具有清晰的项目策划思路,善于沟通与提炼项目需求。
- 学会结合三维建模技巧和数字化技术开发增强现实产品。
- 理论知识与项目需求相结合,培养岗位职能意识。

💉 项目重难点

项目内容	工作任务	建议学时	知 识 点	重难点	重要程度
增强现实建模 技术	产品模型制作	4	产品模型制作原理 和方法	素材搜集	★★★☆☆
				模型规范	★★★★☆
				技术原理	****
	三维场景模型制作	4	三维场景建模技术 应用	三维内容	★★★☆☆
				模型优化	★★★★☆
	增强现实人物角色 模型的制作	8	增强现实人物角色 建模制作规范	人物角色模型的制作	****

■ 任务要求

本任务主要探索工业产品建模技术、理解产品模型制作的原理和方法、熟悉 三维建模技术在增强现实工业产品模型制作中的典型应用。掌握三维建模和增强 现实产品的关系,理解三维工业产品模型设计与制作的原理及方法。能够从项目 中学习三维建模技术的方式及应用技巧、提高三维造型的能力。

■ 建议学时

4课时。

任务知识

知识点 三维模型处理方式及规范

传统三维软件建模方法主要分为 NURBS 建模法和多边形网格建模法,目前常用的 3D 设计与建模软件有 3ds Max、Maya、Cinema 4D、ZBrush 和 Blender 等。

项目3 增强现实建模技术 💽

Maya 是目前国际上最先进的高端三维动画制作软件,拥有最先进的三维动画制作 体系,能够方便快捷地创作出电影级别的视觉效果,魔幻史诗巨片《指环王》中的咕 噜,科幻电影《金刚》中的金刚,以及《阿凡达》中的纳威人,都是利用该软件制作出 的经典银幕形象。

三维模型处理方式及规范如下。

1. 掌握单位设置操作方法

为实时程序建模,必须在软件当中将系统单位(不是显示单位)设置为米。

2. 掌握命名规则

(1)为实时程序建模时,模型对象/组/虚拟物体/贴图/材质球的命名不能使用 中文。根据模型本身的名称统一命名,切不可随意命名(如111/222/123123)。不要用 模型中自带的名称(如box/Cylinder/line)。

(2)不要使用空格和特殊字符/标点符号。如果需要分隔多个单词,请使用下画线(通用于模型、贴图、材质球)

(3)模型物体之间严禁重名。无特别要求时,模型中不得存在 A-或 A_这样的前缀命名(因为配合产品程序使用,所以有这样的命名约束)。

(4)不同材质严禁重名。同一类型的材质可以通过加编号或使用位置区分,例如杯子01、桌子01、手机01等。尽量保证在同一个模型前后版本时材质命名的一致性。

3. 掌握贴图要求

(1)材质球:首先,需要将材质调整为系统默认的标准和多维/子对象材质球(多维/子对象材质球子材质只能使用标准材质);其次,材质球中不可存在特殊材质效果,如3ds Max 自带效果或者 Vray 材质。

(2)贴图命名:可用英文、数字,或英文数字混合的方式命名。严禁使用 "*、#%\$"与空格等特殊符号。

(3) 贴图格式:要根据模型实际情况对模型进行贴图,格式为 JPG 或 PNG。

(4) 材质规格: 2 的 n 次方, 纹理尺寸规格为 4px×4px 至 512px×512px 即可。

(5)区域内不同建筑物立面用到相同或类似纹理贴图时,必须采用同一张纹理贴图。不可出现同图不同名或同名不同图的贴图。

(6) Diffuse 通道不得有空材质。

(7) 贴图路径:所有关联贴图应放在和模型同一文件夹下的 map 文件夹内。

(8) 模型中心点:在场景中,如果没有特殊要求的,模型中心点均为物体中心,坐标可中心归底。

4. 掌握最终模型塌陷要求

(1)单个建筑或单个小品塌陷为一个物体,并用标准物体(新建box)塌陷这个物体,然后在子物体层级删除原box,如包含不同属性物体,则按属性代号作为前缀进行塌陷。

(2)不同场景的文件避免有命名相同的情况出现,最好所有模型合并为一个场景文件交付。

增强现实引擎技术

5. 掌握模型制作面数

(1)在大场景建模中,模型制作要严格节省面数,避免面数过多,做到能表现物体即可。尽量使用贴图代替模型,模型应尽量减少零碎对象。

(2) 对于复杂但非重要模型,可以用贴图表现,如栏杆、管线等。

(3) 若场景模型在程序中涉及地面路网模型,则需遵循以下原则:绿化地带与路网为同平面上的物体,不应存在地面绿化带上叠加路网的情况,路网与地块是拼合切割。

任务实施1: 灯具模型制作

1. 创建灯具模型

1) 灯头的制作

(1)创建一个圆柱体对象,用它来制作灯头,如图 3-1 所示。按 R 键调整圆柱体对象 比例尺寸,选择点级别模式调整灯头造型,如图 3-2 所示。选择面级别模式删除圆柱体对 象上下底面,如图 3-3 所示。

(2)选中灯头模型,在面级别模式下按 Ctrl+E 组合键,给灯头模型添加一定的厚度,如图 3-4 所示。在边级别模式下,选中灯头模型上下内外边缘循环边,按 "Shift+右击"选择"倒角边"命令,如图 3-5 所示。

图 3-4 添加灯头厚度

图 3-5 倒角边

项目3 增强现实建模技术 💽

2) 支架的制作

(1)新建一个立方体对象,调整其位置,使其位于灯头模型下面,并且与灯头居中对 齐,继续调整模型形成支架。选择多切割工具,如图 3-6 所示。按"Ctrl+单击"环切加 线,再选择面按 Ctrl+E 组合键挤出,如图 3-7 所示。

图 3-6 多切割

图 3-7 挤出

(2) 切割支架模型, 添加线条, 如图 3-8 所示。调整造型, 如图 3-9 所示。

图 3-8 切割支架模型

图 3-9 调整造型

(3)选择支架的一个支脚,按下 Ctrl+D 组合键予以复制,并按 D 键调整坐标轴到 支架中心,如图 3-10 所示。调整缩放 Z 轴为 -1,完成模型支脚的旋转,如图 3-11 所示。 再复制出一个支架的支脚并将其旋转 90°,调整造型,完成支架三支脚的制作,如图 3-12 所示。

(4)新创建两个圆柱体对象,将其拉长并交叉垂直摆放,添加灯头上方支架。灯头支架结构如图 3-13 所示。灯头造型整体效果如图 3-14 所示。

增强现实引擎技术

图 3-10 调整坐标轴

平移 X	0
平移 Υ	1.859
平移 Z	0.504
旋转 X	0
旋转 Y	0
旋转 Z	8.379
缩放 X	0.245
缩放 Y	0.245
缩放 Z	-1
可见性	启用

图 3-11 调整缩放

图 3-12 调整造型完成制作

图 3-13 灯头支架结构

图 3-14 灯头造型整体效果

3) 灯线的制作

(1)单击菜单栏"曲线/曲面" 🛽 按钮创建曲线,如图 3-15 所示。选择曲线,右击 调整曲线,如图 3-16 所示。

图 3-15 创建曲线

图 3-16 调整曲线

项目3 増强现实建模技术 💽

(2)创建圆柱,选择所有模型按4键,完成线框显示,将圆柱对齐曲线,如图 3-17 所示。选择圆柱进入面级别模式,选择底面和曲线,选择"挤出"命令并增加分段数,完 成灯线制作,如图 3-18 所示。

图 3-17 线框显示

图 3-18 增加分段完成灯线制作

如果不需要调整灯线的造型,想要清除曲线,不可以直接删除曲线,需要先选择灯线模型,然后单击菜单栏 💽 按钮 (删除选定对象上的构建历史)之后,再删除曲线。

4) 开关的制作

(1)新建立方体,调整其长、宽、高度,选择高度上4条边,执行"倒角边"命令并调整参数,如图 3-19 所示。选择侧面、底面,执行"全部删除"命令,如图 3-20 与图 3-21 所示。

图 3-19 倒角边

图 3-20 删除侧面

图 3-21 删除底面

(2)选择多切割工具,将多边形面处理成四边面或三角面,如图 3-22 所示。全选整 个多边形面,按 Ctrl+E 组合键挤压出厚度,选择上下边缘进行倒角边并调整参数完成造 型,如图 3-23 所示。选择上面中间部分的面,进行缩小调整,再按 Ctrl+E 组合键往内挤 压出凹槽,如图 3-24 所示。

。 1991年1995年 增强现实引擎技术

(3)使用"插入循环边"工具,给凹槽边缘包裹完成凹槽卡线,如图 3-25 所示。选择凹槽底面,执行复制命令,如图 3-26 所示。适当缩小复制出的面并执行挤出,调整造型,完成开关按钮制作,如图 3-27 所示。

图 3-25 凹槽卡线

图 3-26 复制面

图 3-27 挤出开关按钮

(4)选择开关按钮模型,按 Shift+I 组合键,孤立显示当前选中对象,给造型边缘卡线,如图 3-28 所示。取消对象选择,再按 Shift+I 组合键显示全部模型(取消孤立显示),选择两个对象,按 Ctrl+G 组合键编组,完成开关制作,如图 3-29 所示。将开关调整到台灯位置进行组合,如图 3-30 所示。

图 3-28 孤立显示

图 3-29 取消孤立并编组

图 3-30 调整造型

5) 插头的制作

(1)新建立方体,利用它来制作插头,调整插头造型,如图 3-31 所示。选择插头边缘面,按 Ctrl+E 组合键挤出,再按 G 键重复挤出操作,如图 3-32 所示。

图 3-31 插头造型

图 3-32 制作插头边缘

(2)选择边按"Ctrl+鼠标右键"→环形边工具→到环形边并分割,如图 3-33 所示。 再执行倒角边命令,如图 3-34 所示。选择插头切面执行挤出命令,禁用"保持面的连接 性",调整插头造型,如图 3-35 所示。

图 3-33 到环形边并分割

图 3-34 倒角边

图 3-35 挤出

(3)执行挤出命令调整插头造型并卡线倒角,如图 3-36 所示。最后将插头调整到台 灯位置进行组合,如图 3-37 所示。完成灯具模型制作,整体效果如图 3-38 所示。

图 3-36 卡线倒角

图 3-37 调整插头造型

图 3-38 整体效果

2. 灯具模型的 UV 调整与贴图制作

1) 灯头模型的 UV 展开与贴图制作

(1)选择灯罩,展开UV。选择UV菜单,打开UV编辑器,如图 3-39 所示。展开并显示UV,如图 3-40 所示。UV 需要重新展开,选择UV 编辑器左侧UV 工具包面板中的"创建"栏,使用"平面"选项,将模型原本的UV 进行平面映射,如图 3-41 所示。

图 3-39 打开 UV 编辑器

图 3-41 对模型 UV 进行平面映射

(2)选择循环边。在 UV 编辑器中按"Shift+右击",单击"剪切"命令,如图 3-42 所示。剪切开之后,单击"展开"栏中的"展开"键,完成 UV 展开,将外灯罩 UV 面积 放大,内灯罩 UV 面积缩小,优化资源,如图 3-43 所示。