

 002

Part

1

Unit

1

Listening

&

Speaking

Dialogue:

Starting

a

Software

Project
(Kevin,

Sharon,

and

Jason

are

three

sophomores

in

the

school

of

software

in

Beihang

University.

Today,

they

are

attending

a

class

meeting

at

the

end

of

the

fourth

semester

before

starting

the

summer

vacation.)

Teacher:

Morning,

everyone.

In

this

vacation,

you

will

implement

a

real

project

as

your

course

project.

There

are

some

subjects

you

can

choose

in

terms

of

your

interests

and

experience.

Please

submit

your

decision

to

me

within

the

next

week.

Kevin:

Excuse

me,

teacher.

Is

it

a

single

task

or

can

it

be

a

cooperative

work?

Teacher:

Team

work

is

recommended,

because

it

benefits

you

to

learn

how

to

work

together

with

your

colleagues

in

the

future

and

how

to

communicate,

share,

express,

and

understand

ideas

as

a

team

member.

But

the

size

of

the

group

should

not

be

more

than

4

persons.

Sharon:

I􀆳m

interested

in

the

subject

of

Four

Seasons

Hotel

Management

Information

System,

what

about

you,

Kevin?

Kevin:

Oh,

it

is

my

opinion

too.

And

I

think

we

can

cooperate.

Hi,

Jason,

would

you

like

to

join

us?
 [1]

[1]

Replace

with:

1.

Would

you

like

to

cooperate

with

us?

2.

Would

you

like

to

collaborate

with

us?

3.

Would

you

like

to

work

together

with

us?

Jason:

Oh,

yes,

I􀆳d

like

to

very

much!

Sharon:

Ok,

now

let􀆳s

discuss

on

each

person􀆳s

responsibility.

003

Jason:

Kevin

is

good

at

organizing

and

has

lots

of

programming

experience,

so

I

think

he

can

be

our

team

leader

or

project

manager,

in

charge

of

instructing

our

team

and

programming

practice.

Sharon:

I

agree.

Kevin:

Thanks

for

your

trust.

Ok,

I

will

do

my

best.

Besides

coding,

I

think

it

is

necessary

to

create

a

database

and

implement

a

suite

of

user

interfaces

for

our

software.

Jason:

I

am

interested

in

databases

and

willing

to

be

responsible

for

database

building

and

management.

Sharon:

I

like

art

design,

so

I

think

I

can

do

the

UI

design

and

document

writing

for

our

project.

Kevin:

Oh!

It

seems

this

is

a

wonderful

team

and

makes

me

very

confident!

Now,

let􀆳s

divide

the

work

according

to

the

phases

of

the

project

in

general.

As

the

team

leader,

I

will

be

responsible

for

requirements,

Jason

will

be

in

charge

of

design

and

Sharon

will

take

charge

of

testing.

Jason:

Next,

we

can

talk

over

a

rough

progress

plan

for

our

project.

Kevin:

We

can

design,

and

then

accomplish

the

UI

operation

according

to

the

original

requirements

document

provided

by

our

teacher

first.

At

the

same

time,

Jason

can

be

building

the

database.

Finally,

we

can

accomplish

coding

together.

Sharon:

It

sounds

wonderful.

But

I

am

afraid

that

the

contents

of

the

original

requirements

document

will

not

be

sufficient

for

our

design.[2]

First

of

all,

we

must

do

the

requirements

analysis

based

on

the

original

requirements,

and

complete

a

formal

Software

Requirements

Specification

as

our

guidance

of

design.

[2]

Replace

with:

But

I

am

afraid

that

I

have

not

enough

business

knowledge

about

hotel

management.

 004

Kevin:

Oh,

yes.

Thanks

for

your

important

reminder.

What

do

you

think

about

it,

Jason?

Jason:

I

agree

with

you

completely.

(After

meeting,

Kevin

asked

for

a

document

from

the

teacher

about

the

hotel

business

requirements.)

Kevin:

Hi,

everybody.

I

have

just

got

the

business

requirements

of

the

hotel

from

our

teacher.

Jason:

Let

me

see.

Oh,

there

is

a

list

about

their

daily

business

and

a

table

of

related

requirements.

But

it

seems

a

little

rough

without

enough

detailed

procedures,

I

am

afraid.

Kevin:

I

see.

And

it

does

not

mention

the

data

flow

and

business

model

of

this

hotel.

Sharon:

So,

in

that

case,

I

think

we

need

some

communication

with

the

customer

(Four

Seasons

Hotel)

to

acquire

more

information.

Kevin:

Yes.

It􀆳s

very

necessary

and

I

will

call

the

customer

to

make

an

appointment

with

them.

Before

that,

I

think

there

is

something

we

should

do.

That

is,

we

had

better

do

some

homework

to

learn

some

knowledge

about

basic

hotel

business

and

management.

Sharon:

That􀆳s

right!

It

is

very

necessary

to

get

information

about

their

business,

and

will

be

valuable

for

us

to

adequately

and

accurately

understand

the

requirements.

Jason:

Ok,

I

believe

that

the

Internet

can

help

us

a

lot.

Exercises

Work

in

a

group,

and

make

up

a

similar

conversation

by

replacing

the

statements

with

other

expressions

on

the

right

side.

005

Words

􀪋􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋sophomore[̍sɔfəmɔː(r)]

n.

大学二年级

学生

rough[rʌf]

adj.

初步的,粗略的

specification[̩spesifi̍keiʃn]

n.

说明书,
规范

reminder[ri̍maində(r)]

n.

提醒,提示

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

Phrases

in

charge

of 负责,领导

a

suite

of 一系列,一套

take

charge

of 担任,监管

talk

over 商议,讨论

Abbreviations

UI User

Interface 用户界面

Listening

Comprehension:

Software

Engineering
Listen

to

the

article

and

the

following

3

questions

based

on

it.

After

you

hear

a

question,

there

will

be

a

break

of

15

seconds.

During

the

break,

you

will

decide

which

one

is

the

best

answer

among

the

four

choices

marked

(A),

(B),

(C)

and

(D).

Questions
1.

Which

is

correct

about

the

development

of

software

according

to

the

article?
(A)

It

emerged

with

software

engineering

at

the

same

time.
(B)

For

a

half-century

development,

it

has

almost

solved

problems

of

high-

quality,

on-time

and

within-budget.
(C)

It

was

just

a

specialized

problem

solving

and

information

analysis

tool

in

its

early

years

of

development.
(D)

The

laws

which

software

evolves

according

to

have

changed

absolutely

during

its

development.

2.

Which

point

does

not

belong

to

the

characteristics

of

software

according

to

the

article?
(A)

Easy

to

change

the

requirements

(B)

Easy

to

adapt

the

requirement

changes
(C)

Difficult

to

measure

the

progress

and

process

of

creating

 006

(D)

Difficult

to

test

the

correctness

exhaustively

3.

Where

was

the

phrase

“software

engineering”

first

used

in

1968?
(A)

In

a

conference
(B)

In

a

thesis
(C)

In

a

journal
(D)

In

a

magazine

Words

􀪋􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋demonstrate[̍demənstreit]v.

证明,论证

practice[̍præktis]

n.

实践,通常的做法,
惯例

assimilate[ə̍siməleit]v.透彻理解,消化

primarily[prai̍merəli]adv.

原来,根本上

exhaustive[i􀱹zɔːstiv]adj.详 尽 的,彻 底

的,全面的

address[ə̍dres]

v.

处理,满足,论述,重
点提出

law[lɔː]

n.

规则,法则

framework[̍freimwɜːk]

n.

构架,体系结

构,准则

prototype[̍prəutətaip]

n.

原型

discipline[̍disəplin]

n.

学科,方法

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

Abbreviations

NATO North

Atlantic

Treaty

Organization 北大西洋公约组织

Dictation:

Mythical

Man-Month

&

No

Silver

Bullet
This

article

will

be

played

three

times.

Listen

carefully,

and

fill

in

the

numbered

spaces

with

the

appropriate

words

you

have

heard.

Frederick

P.

Brooks,

Jr.,

is

a

Professor

of

Computer

Science

at

the

University

of

North

Carolina

at

Chapel

Hill.

He

is

best

 1 as

the

“father

of

the

IBM

System/

360,”

having

served

as 2 for

its

development

and

later

as

a

manager

of

the

 3 /360

software

project

during

its

design

phase.

His

book,

Mythical

Man-Month,

is

a

most

classic

book

on

the

 4 elements

of

software

engineering.

Since

the

first

 5

in

1975,

no

software

engineer􀆳s

 6

has

been

complete

without

it.

It

was

in

this

book

that

Brooks

made

the

now-
famous

 7 :

“Adding

 8 to

a

late

software

project

makes

it

 9 .”

This

has

since

come

to

be

known

as

“Brooks􀆳s

 10 .”

Software

tools

and

development

 11 may

have

changed

in

the

40

years

since

the

first

edition

of

this

book,

but

the

peculiarly

nonlinear

economies

of

scale

in

 12 work

and

the

nature

of

 13 and

groups

has

not

changed

an

epsilon.

007

In

addition,

Brooks

is

known

for

No

Silver

Bullet,

which

was

 14 a

1986

IFIPS

paper,

reprinted

in

1987

in

the

IEEE

Computer

magazine

and

 15 in

the

second

edition

of

The

Mythical

Man-Month

later.

Silver

bullet

is

used

to

compare

something

to

make

software

costs

 16 as

rapidly

as

computer

hardware

costs

do.

“No

Silver

Bullet”

had

wide

 17

and

proved

provocative.

It

predicted

that

a

decade

would

not

see

any 18

technique

that

would

by

itself

bring

an

order

of

magnitude

improvement

in

software

 19 .

The

author􀆳s

prediction

seems

safe.

“No

Silver

Bullet”

has

 20 more

and

more

spirited

discussion

in

the

literature

than

has

The

Mythical

Man-Month.

Words

􀪋􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋mythical[̍miθikl]

adj.

神话的,虚构的

peculiarly[pi̍kjuːliəli]

adv.

特 有 地,特

别地

epsilon[̍epsilɔn;

ep̍sailən]

n.

小(或近

于零)的正数

provocative[prə̍vɔkətiv]

n.

引 起 争 论

(议论,兴趣等)的

spirited[̍spiritid]

adj.

热烈的

literature[̍litrətʃə(r)]

n.

著作,文献

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

Phrases

order

of

magnitude 数量级

Abbreviations

IFIPS International

Federation

of

Information

Processing

Societies 国际信息处理学

会联合会

IEEE Institute

of

Electrical

and

Electronics

Engineers 美国电气和电子工程师协会

Part

2

Reading

&

Translating

Section

A:

Software

Engineering
Virtually

all

countries

now

depend

on

complex

computer-based

systems.

National

infrastructures

and

utilities

rely

on

computer-based

systems

and

most

electrical

products

 008

include

a

computer

and

controlling

software.

Industrial

manufacturing

and

distribution

is

completely

computerized,

as

is

the

financial

system.

Therefore,

producing

and

maintaining

software

cost-effectively

is

essential

for

the

functioning

of

national

and

international

economies.
Software

engineering

is

an

engineering

discipline

whose

focus

is

the

cost-effective

development

of

high-quality

software

systems.

Software

is

abstract

and

intangible.

It

is

not

constrained

by

materials

or

governed

by

physical

laws

or

by

manufacturing

processes.

In

some

ways,

this

simplifies

software

engineering

as

there

are

no

physical

limitations

on

the

potential

of

software.

However,

this

lack

of

natural

constraints

means

that

software

can

easily

become

extremely

complex

and

hence

very

difficult

to

understand.

The

notion

of

software

engineering

was

first

proposed

in

l968

at

a

conference

held

to

discuss

what

was

then

called

the

“software

crisis”.

This

software

crisis

resulted

directly

from

the

introduction

of

new

computer

hardware

based

on

integrated

circuits.

Their

power

made

hitherto

unrealizable

computer

applications

a

feasible

proposition.

The

resulting

software

was

orders

of

magnitude

larger

and

more

complex

than

previous

software

systems.
Early

experience

in

building

these

systems

showed

that

informal

software

development

was

not

good

enough.

Major

projects

were

sometimes

years

late.

The

software

cost

much

more

than

predicted,

was

unreliable,

was

difficult

to

maintain

and

performed

poorly.

Software

development

was

in

crisis.

Hardware

costs

were

tumbling

whilst

software

costs

were

rising

rapidly.

New

techniques

and

methods

were

needed

to

control

the

complexity

inherent

in

large

software

systems.
These

techniques

have

become

part

of

software

engineering

and

are

now

widely

used.

However,

as

our

ability

to

produce

software

has

increased,

so

has

the

complexity

of

the

software

systems

that

we

need.

New

technologies

resulting

from

the

convergence

of

computers

and

communication

systems

and

complex

graphical

user

interfaces

place

new

demands

on

software

engineers.

As

many

companies

still

do

not

apply

software

engineering

techniques

effectively,

too

many

projects

still

produce

software

that

is

unreliable,

delivered

late

and

over

budget.
We

have

made

tremendous

progress

since

1968

and

that

the

development

of

software

engineering

has

markedly

improved

our

software.

We

have

a

much

better

understanding

of

the

activities

involved

in

software

development.

We

have

developed

effective

methods

of

software

specification,

design

and

implementation

(Figure

1-1).

New

notations

and

tools

reduce

the

effort

required

to

produce

large

and

complex

systems.
We

know

now

that

there

is

no

single

“ideal

approach”

to

software

engineering.

The

wide

diversity

of

different

types

of

systems

and

organizations

that

use

these

systems

means

that

we

need

a

diversity

of

approaches

to

software

development.

However,

fundamental

notions

of

process

and

system

organization

underlie

all

of

these

techniques,

009

Figure

1-1 Iterative

Model

of

Software

Engineering

and

these

are

the

essence

of

software

engineering.
Software

engineers

can

be

rightly

proud

of

their

achievements.

Without

complex

software

we

would

not

have

explored

space,

would

not

have

the

Internet

and

modern

telecommunications,

and

all

forms

of

travel

would

be

more

dangerous

and

expensive.

Software

engineering

has

contributed

a

great

deal,

and

as

the

discipline

matures,

its

contributions

in

this

century

will

be

even

greater.

Words

􀪋􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋virtually[̍vɜːtʃuəli]

adv.

事实上,实质上

utility[juː̍tiləti]

n.

公用事业,公共事业

设备

distribution[distri̍bjuːʃn]

n.

经销,分销

cost-effective

 有成本效益的,划算的

notion[̍nəuʃn]

n.

概念,观念,看法

hitherto[̩hiðə̍tuː]

adv.

迄今,至今

proposition[̩prɔpə̍ziʃən]

n.

主张,提议,
建议

major[̍meidʒə]

adj.

较大的,较重要的

tumble[̍tʌmbl]

v.

使倒下,搅乱

convergence[kən̍vɜːdʒəns]

n.

一 体 化,
集中,收敛

markedly[̍mɑːkidli]

adv.

显 著 地,明

显地

notation[nəu̍teiʃn]

n.

符号

underlie[̩ʌndə̍lai]

v.

构成……的基础,
位于……之下

essence[̍esns]

n.

本质,实质

rightly[̍raitli]

adv.

确实地

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

Phrases

result

from 由……引起

integrated

circuits 集成电路

place

on

 寄托,把……放在……上

over

budget 超过预算

 010

Exercises

Ⅰ.

Read

the

following

statements

carefully,

and

decide

whether

they

are

true

(T)

or

false

(F)

according

to

the

text.
1.

The

focus

of

software

engineering

is

the

rapid

development

of

complex

software

systems.
2.

The

notion

of

software

engineering

was

first

proposed

in

a

paper

in

l968.
3.

This

software

crisis

resulted

directly

from

the

development

of

computer

hardware.
4.

New

notations

and

tools

contribute

to

higher

efficiency

and

less

workload

in

producing

large

and

complex

software

systems.
5.

As

an

engineering

discipline,

software

engineering

has

matured

adequately

today.

Ⅱ.

Choose

the

best

answer

to

each

of

the

following

questions

according

to

the

text.
1.

Which

of

the

following

descriptions

is

not

the

characteristic

of

software?
(A)

Abstract

and

intangible
(B)

Not

constrained

by

materials
(C)

Not

governed

by

physical

laws

or

by

manufacturing

processes
(D)

Easy

to

understand

and

simple

to

produce

as

there

are

no

physical

limitations

2.

What

problem(s)

existed

widely

in

informal

software

development

in

the

early

years?
(A)

Over

schedule
(B)

Cost

much

more

than

budget
(C)

Difficult

to

maintain
(D)

All

of

the

above

3.

Which

of

the

following

statements

is

wrong

about

the

techniques

in

software

engineering?
(A)

Techniques

are

needed

to

control

the

complexity

of

the

large

software

systems.
(B)

Techniques

are

the

essence

of

software

engineering.
(C)

Techniques

are

now

widely

used

in

software

engineering.
(D)

New

technologies

bring

new

challenges

to

software

engineers

continually.

011

Ⅲ.

Fill

in

the

numbered

spaces

with

the

words

or

phrases

chosen

from

the

box.

Change

the

forms

where

necessary.

developer connect behind need involve
collaborate cycle begin use refer

Software

Engineering

vs.

Software

Development
The

difference

between

software

engineering

and

software

development

 1
with

job

function.

A

software

engineer

may

be

 2

with

software

development,

but

few

software

 3

are

engineers.
To

explain,

software

engineering

 4

to

the

application

of

engineering

principles

to

create

software.

Software

engineers

participate

in

the

software

development

life

cycle

through

 5

the

client􀆳s

needs

with

applicable

technology

solutions.

Thus,

they

systematically

develop

processes

to

provide

specific

functions.

In

the

end,

software

engineering

means

 6

engineering

concepts

to

develop

software.
On

the

other

hand,

software

developers

are

the

driving

creative

force

 7

programs.

Software

developers

are

responsible

for

the

entire

development

process.

They

are

the

ones

who

 8

with

the

client

to

create

a

theoretical

design.

They

then

have

computer

programmers

create

the

code

 9

to

run

the

software

properly.

Computer

programmers

will

test

and

fix

problems

together

with

software

developers.

Software

developers

provide

project

leadership

and

technical

guidance

along

every

stage

of

the

software

development

life

 10 .

Ⅳ.

Translate

the

following

passages

into

Chinese.
Software

Evolution
In

software

engineering,

software

evolution

is

referred

to

as

the

process

of

developing,

maintaining

and

updating

software

for

various

reasons.

Software

changes

are

inevitable

because

there

are

many

factors

that

change

during

the

life

cycle

of

a

piece

of

software.

Some

of

these

factors

include:

•

Requirement

changes
•

Environment

changes
•

Errors

or

security

breaches
•

New

equipment

added

or

removed
•

Improvements

to

the

system
For

many

companies,

one

of

their

largest

investments

in

their

business

is

for

software

and

software

development.

Software

is

considered

a

very

critical

asset

and

management

wants

to

ensure

they

employ

a

team

of

software

engineers

who

are

devoted

to

ensuring

that

the

software

system

stays

up-to-date

with

ever

evolving

changes.

 012

Section

B:

5

Areas

of

Software

Engineering

AI

will

Transform
The

5

major

spheres

of

software

development—software

design,

software

testing,

GUI

testing,

strategic

decision

making,

and

automated

code

generation—are

all

areas

where

AI

can

help.

A

majority

of

interest

in

applying

AI

to

software

development

is

already

seen

in

automated

testing

and

bug

detection

tools.

Next

in

line

are

the

software

design

precepts,

decision-making

strategies,

and

finally

automating

software

deployment

pipelines.
Let􀆳s

take

an

in-depth

look

into

the

areas

of

high

and

medium

interest

of

software

engineering

impacted

by

AI

according

to

the

Forrester

Research

report

(Figure

1-2).

Figure

1-2 The

Areas

of

High

and

Medium

Interest

of

Software

Engineering

Impacted

by

AI

According

to

the

Forrester

Research

Report

1.

Software

design

In

software

engineering,

planning

a

project

and

designing

it

from

scratch

need

designers

to

apply

their

specialized

learning

and

experience

to

come

up

with

alternative

solutions

before

settling

on

a

definite

solution.
A

designer

begins

with

a

vision

of

the

solution,

and

after

that

retracts

and

forwards

013

investigating

plan

changes

until

they

reach

the

desired

solution.

Settling

on

the

correct

plan

choices

for

each

stage

is

a

tedious

and

mistake-prone

action

for

designers.
Along

this

line,

a

few

AI

developments

have

demonstrated

the

advantages

of

enhancing

traditional

methods

with

intelligent

specialists.

The

catch

here

is

that

the

operator

behaves

like

an

individual

partner

to

the

client.

This

associate

should

have

the

capacity

to

offer

opportune

direction

on

the

most

proficient

method

to

do

design

projects.
For

instance,

take

the

example

of

AIDA—the

Artificial

Intelligence

Design

Assistant,

deployed

by

Bookmark

(a

website

building

platform).

Using

AI,

AIDA

understands

a

user􀆳s

needs

and

desires

and

uses

this

knowledge

to

create

an

appropriate

website

for

the

user.

It

makes

selections

from

millions

of

combinations

to

create

a

website

style,

focus,

image

and

more

that

are

customized

for

the

user.

In

about

2

minutes,

AIDA

designs

the

first

version

of

the

website,

and

from

that

point

it

becomes

a

drag

and

drop

operation.

2.

Software

testing

Applications

interact

with

each

other

through

countless

APIs.

They

leverage

legacy

systems

and

grow

in

complexity

every

day.

Increase

in

complexity

also

leads

to

its

fair

share

of

challenges

that

can

be

overcome

by

machine-based

intelligence.

AI

tools

can

be

used

to

create

test

information,

explore

information

authenticity,

advancement

and

examination

of

the

scope

and

also

for

test

management.
Artificial

intelligence,

trained

right,

can

ensure

the

testing

performed

is

error

free.

Testers

freed

from

repetitive

manual

tests

thus

have

more

time

to

create

new

automated

software

tests

with

sophisticated

features.

Also,

if

software

tests

are

repeated

every

time

source

code

is

modified,

repeating

those

tests

can

be

not

only

time-consuming

but

extremely

costly.

AI

comes

to

the

rescue

once

again

by

automating

the

testing

for

you!

With

AI

automated

testing,

one

can

increase

the

overall

scope

of

tests

leading

to

an

overall

improvement

of

software

quality.
Take,

for

instance,

the

Functionize

tool.

It

enables

users

to

test

fast

and

release

faster

with

AI

enabled

cloud

testing.

The

users

just

have

to

type

a

test

plan

in

English

and

it

will

be

automatically

get

converted

into

a

functional

test

case.

The

tool

allows

one

to

elastically

scale

functional,

load,

and

performance

tests

across

every

browser

and

device

in

the

cloud.

It

also

includes

self-healing

tests

that

update

autonomously

in

real-
time.

SapFix

is

another

AI

Hybrid

tool

deployed

by

Facebook

which

can

automatically

generate

fixes

for

specific

bugs

identified

by

“Sapienz”
 [1].

It

then

proposes

these

fixes

to

engineers

for

approval

and

deployment

to

production.

3.

GUI

testing

Graphical

User

Interfaces

(GUI)

has

become

important

in

interacting

with

today􀆳s

 014

software.

They

are

increasingly

being

used

in

critical

systems

and

testing

them

is

necessary

to

avert

failures.

With

very

few

tools

and

techniques

available

to

aid

in

the

testing

process,

testing

GUIs

is

difficult.
Currently

used

GUI

testing

methods

are

ad

hoc.

They

require

the

test

designer

to

perform

humongous

tasks

like

manually

developing

test

cases,

identifying

the

conditions

to

check

during

test

execution,

determining

when

to

check

these

conditions,

and

finally

evaluate

whether

the

GUI

software

is

adequately

tested.

Phew!

Now

that

is

a

lot

of

work.
Also,

not

forgetting

that

if

the

GUI

is

modified

after

being

tested,

the

test

designer

must

change

the

test

suite

and

perform

re-testing.

As

a

result,

GUI

testing

today

is

resource

intensive

and

it

is

difficult

to

determine

if

the

testing

is

adequate.
Applitools

is

a

GUI

tester

tool

empowered

by

AI.

The

Applitools

Eyes

SDK

automatically

tests

whether

visual

code

is

functioning

properly

or

not.

Applitools

enables

users

to

test

their

visual

code

just

as

thoroughly

as

their

functional

UI

code

to

ensure

that

the

visual

look

of

the

application

is

as

you

expect

it

to

be.

Users

can

test

how

their

application

looks

in

multiple

screen

layouts

to

ensure

that

they

all

fit

the

design.
It

allows

users

to

keep

track

of

both

the

webpage

behavior,

as

well

as

the

look

of

the

webpage.

Users

can

test

everything

they

develop

from

the

functional

behavior

of

their

application

to

its

visual

look.

4.

Using

Artificial

Intelligence

in

Strategic

Decision-Making

Normally,

developers

have

to

go

through

a

long

process

to

decide

what

features

to

include

in

a

product.

However,

machine

learning

AI

solution

trained

on

business

factors

and

past

development

projects

can

analyze

the

performance

of

existing

applications

and

help

both

teams

of

engineers

and

business

stakeholders

like

project

managers

to

find

solutions

to

maximize

impact

and

cut

risk.
Normally,

the

transformation

of

business

requirements

into

technology

specifications

requires

a

significant

timeline

for

planning.

Machine

learning

can

help

software

development

companies

to

speed

up

the

process,

deliver

the

product

in

lesser

time,

and

increase

revenue

within

a

short

span.
AI

Canvas

is

a

well-known

tool

for

strategic

decision-making.

The

Canvas

helps

identify

the

key

questions

and

feasibility

challenges

associated

with

building

and

deploying

machine

learning

models

in

the

enterprise.
The

AI

Canvas

is

a

simple

tool

that

helps

enterprises

organize

what

they

need

to

know

into

seven

categories,

namely—Prediction,

Judgment,

Action,

Outcome,

Input,

Training

and

feedback.

Clarifying

these

seven

factors

for

each

critical

decision

throughout

the

organization

will

help

in

identifying

opportunities

for

AIs

to

either

reduce

costs

or

enhance

performance.

015

5.

Automatic

Code

Generation/Intelligent

Programming

Assistants

Coding

a

huge

project

from

scratch

is

often

labor

intensive

and

time

consuming.

An

intelligent

AI

programming

assistant

will

reduce

the

workload

by

a

great

extent.
To

combat

the

issues

of

time

and

money

constraints,

researchers

have

tried

to

build

systems

that

can

write

code

before,

but

the

problem

is

that

these

methods

aren􀆳t

that

good

with

ambiguity.

Hence,

a

lot

of

details

are

needed

about

what

the

target

program

aims

at

doing,

and

writing

down

these

details

can

be

as

much

work

as

just

writing

the

code.

With

AI,

the

story

can

be

flipped.
“Bayou”—an

AI—based

application

is

an

intelligent

programming

assistant.

It

began

as

an

initiative

aimed

at

extracting

knowledge

from

online

source

code

repositories

like

GitHub.

Bayou

follows

a

method

called

neural

sketch

learning.

It

trains

an

artificial

neural

network

to

recognize

high-level

patterns

in

hundreds

of

thousands

of

Java

programs.

It

does

this

by

creating

a

“sketch”

for

each

program

it

reads

and

then

associates

this

sketch

with

the

“intent”

that

lies

behind

the

program.

This

DARPA

initiative

aims

at

making

programming

easier

and

less

error

prone.

6.

Summing

it

all

up

Software

engineering

has

seen

massive

transformation

over

the

past

few

years.

AI

and

software

intelligence

tools

aim

to

make

software

development

easier

and

more

reliable.

According

to

a

Forrester

Research

report

on

AI􀆳s

impact

on

software

development,

automated

testing

and

bug

detection

tools

use

AI

the

most

to

improve

software

development.
It

will

be

interesting

to

see

the

future

developments

in

software

engineering

empowered

with

AI.

It􀆳s

expected

to

have

faster,

more

efficient,

more

effective,

and

less

costly

software

development

cycles

while

engineers

and

other

development

personnel

focus

on

bettering

their

skills

to

make

advanced

use

of

AI

in

their

processes.

Words
􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋sphere[sfiə(r)]

n.

范围

precept[̍priːsept]

n.

规则

in-depth

深入详尽的,彻底的

vision[̍viʒn]

n.

愿景,视野,

想象

retract[ri̍trækt]

v.

撤回,收回(协议、承
诺等)

catch[kætʃ]

n.

隐藏的困难,

暗藏的不利

因素

associate[ə̍səusieit,

ə̍səusiət]

n.

同事,
伙伴

opportune[̍ɔpətjuːn]

adj.

恰 好 的,适

当的

proficient[prə̍fiʃnt]

adj.

娴熟的,精通

的,训练有素的

desire[di̍zaiə(r)]

n.&

v.

愿望,欲望,
渴望

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

 016

􀪋􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋 􀪋􀪋􀪋

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

leverage[̍liːvəridʒ]

v.

利用,施加影响

right[rait]

adv.

正确地,恰当地,彻底地

self-healing

自愈

fix[fiks]

n.

仓促的解决办法

avert[ə̍vɜːt]

v.

避免,防止

humongous[hjuː̍ mʌŋɡəs]

adj.

巨大无比

的,极大的

phew[fjuː]

int.

唉呀,唷(表示不快、惊讶

的声音)

empower[im̍pauə(r)]

v.

使能够,授权

stakeholder[̍steikhəuldə(r)]

n.

利益相

关者,干系者

namely[̍neimli]

adv.即,也就是

flip[flip]

v.

翻转,快速翻动

repository[ri̍pɔzətri]

n.

知识库,仓库,
存储库

better[̍betə(r)]

v.

改善,胜过,超过

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

Phrases

next

in

line (按顺序的)下一个

deployment

pipeline 部署流水线

from

scratch 从头做起

settle

on 选定,决定

free

from 免于,使摆脱

ad

hoc 特别的,专门的

go

through 经受,仔细检查

labor

intensive 劳动密集型,人工密集

sum

up 总结,概述

Abbreviations

API

Application

Programming

Interface 应用程序接口

SDK

Software

Development

Kit 软件开发工具包

DARPA

Defense

Advanced

Research

Projects

Agency 美国国防部高级研究计划署

Notes

[1] Sapienz是Facebook的Crash动态扫描工具。

Exercises

Ⅰ.

Read

the

following

statements

carefully,

and

decide

whether

they

are

true

(T)

or

false

(F)

according

to

the

text.
1.

“Bayou”

is

an

intelligent

requirement

assistant.
2.

Coding

a

huge

project

from

scratch

is

often

very

easy.

017

3.

The

test

designer

must

change

the

test

suite

and

perform

re-testing

if

the

GUI

is

modified

after

being

tested.
4.

Applitools

is

another

AI

Hybrid

tool

deployed

by

Facebook.
5.

AI

Canvas

is

a

well-known

tool

for

programming.

Ⅱ.

Choose

the

best

answer

to

each

of

the

following

questions

according

to

the

text.
1.

How

many

areas

of

software

engineering

will

AI

transform?
(A)

One

(B)

Three

(C)

Five

(D)

Seven

2.

Which

of

the

following

statements

is

an

intelligent

programming

assistant?

(A)

SapFix
(B)

Functionize
(C)

Applitools
(D)

Bayou

3.

Which

of

the

following

description

is

right?
(A)

The

test

designer

must

change

the

test

suite

and

perform

re-testing

if

the

GUI

is

modified

after

being

tested.
(B)

Bayou

follows

a

method

called

neural

sketch

learning.
(C)

Applitools

is

a

GUI

tester

tool

empowered

by

AI.
(D)

All

of

the

above.

Ⅲ.

Fill

in

the

numbered

spaces

with

the

words

or

phrases

chosen

from

the

box.

Change

the

forms

where

necessary.

aim leader core learn evolve
out go corner create level

Transformation

to

Modern

Software

Engineering
“Transformation”—a

thorough

or

dramatic

change

in

form

or

appearance—has

been

 1

on

as

long

as

society

itself.

AI,

blockchain

and

other

innovations

of

today

are,

at

a

basic

 2 ,

just

modern

iterations

of

the

stone,

copper

and

iron

tools

our

forebears

put

to

work

millennia

ago.In

software

engineering

we􀆳re

very

much

in

the

throes

of

our

own

transformation.

For

businesses

 3

to

grow

and

prosper

in

the

digital

economy,

the

stakes

are

similar:

get

it

right,

adapt

or

die.

 018

Accelerating

technology

advancements

over

the

past

two

decades

 4

an

environment

of

continuous

disruption.

Business

 5

at

big,

established

enterprises

can􀆳t

afford

complacency.

Nimble,

digital

upstarts

are

lurking

right

around

the

 6 ,

and

many

large

companies

struggle

to

keep

pace.
Robust

software

is

at

the

 7

of

the

agile,

digital

business,

which

means

we

have

an

existential

imperative

to

figure

this

 8

and

tackle

several

pressing

questions:

How

is

software

engineering

 9

toward

“modern”

software

engineering?

What

have

we

 10

from

others􀆳

attempts

at

transformation?

What

are

the

major

challenges

and

risks?

Ⅳ.

Translate

the

following

passage

into

Chinese.
AI-based

Approaches

for

the

Management

of

Complex

Software

Projects
Artificial

Intelligence

(AI)

has

a

fundamental

influence

on

all

areas

of

economy,

administration

and

society.

An

unexpected

application

of

AI

lies

in

software

engineering:

for

the

first

time,

AI

provides

robust

approaches

for

software

development

in

order

to

analyze

and

evaluate

complex

software

and

its

development

processes.

Repository

Mining,

Machine

Learning,

Big

Data

Analytics

and

Software

Visualization

enable

targeted

insights

and

powerful

predictions

for

software

quality,

software

development

and

software

project

management.

Part

3

Simulated

Writing:

Memo

This

guide

will

help

you

solve

your

memo-writing

problems

by

discussing

what

a

memo

is,

describing

the

parts

of

memos,

and

providing

examples

and

explanations

that

will

make

your

memos

more

effective.

Audience

and

Purpose
Memos

have

a

twofold

purpose:

they

bring

attention

to

problems

and

they

solve

problems.

They

accomplish

their

goals

by

informing

the

reader

about

new

information

like

policy

changes,

price

increases,

or

by

persuading

the

reader

to

take

an

action,

such

as

attend

a

meeting,

or

change

a

current

production

procedure.

Regardless

of

the

specific

goal,

memos

are

most

effective

when

they

connect

the

purpose

of

the

writer

with

the

interests

and

needs

of

the

reader.

Choose

the

audience

of

the

memo

wisely.

Ensure

that

all

of

the

people

that

the

memo

is

addressed

to

need

to

read

the

memo.

If

it

is

an

issue

involving

only

one

person,

do

not

send

the

memo

to

the

entire

office.

Also,

be

certain

that

material

is

not

too

019

sensitive

to

put

in

a

memo;

sometimes

the

best

forms

of

communication

are

face-to-face

interaction

or

a

phone

call.

Memos

are

most

effectively

used

when

sent

to

a

small

to

moderate

amount

of

people

to

communicate

company

or

job

objectives.

Parts

of

a

Memo
Standard

memos

are

divided

into

segments

to

organize

the

information

and

to

help

achieve

the

writer􀆳s

purpose.
•

Heading
The

heading

segment

follows

this

general

format:

TO:

(readers􀆳

names

and

job

titles)

FROM:

(your

name

and

job

title)

DATE:

(complete

and

current

date)

SUBJECT:

(what

the

memo

is

about,

highlighted

in

some

way)

Make

sure

you

address

the

reader

by

his

or

her

correct

name

and

job

title.

And

be

specific

and

concise

in

your

subject

line.
•

Opening
The

purpose

of

a

memo

is

usually

found

in

the

opening

paragraph

and

includes:

the

purpose

of

the

memo,

the

context

and

problem,

and

the

specific

assignment

or

task.

Before

indulging

the

reader

with

details

and

the

context,

give

the

reader

a

brief

overview

of

what

the

memo

will

be

about.

Choosing

how

specific

your

introduction

will

depend

on

your

memo

plan

style.

The

more

direct

the

memo

plan,

the

more

explicit

the

introduction

should

be.

Including

the

purpose

of

the

memo

will

help

clarify

the

reason

the

audience

should

read

this

document.

The

introduction

should

be

brief,

and

should

be

approximately

the

length

of

a

short

paragraph.
•

Content
The

context

is

the

event,

circumstance,

or

background

of

the

problem

you

are

solving.

You

may

use

a

paragraph

or

a

few

sentences

to

establish

the

background

and

state

the

problem.

Include

only

what

your

reader

needs,

and

be

sure

it

is

clear.

•

Task

One

essential

portion

of

a

memo

is

the

task

statement

where

you

should

describe

what

you

are

doing

to

help

to

solve

the

problem.

Include

only

as

much

information

as

is

needed

by

the

decision-makers

in

the

context,

but

be

convincing

that

a

real

problem

exists.

Do

no

ramble

on

with

insignificant

details.

If

you

are

having

trouble

putting

the

task

into

words,

consider

whether

you

have

clarified

the

situation.

You

may

need

to

do

more

planning

before

you􀆳re

ready

to

write

your

memo.

Make

sure

your

purpose-
statement

forecast

divides

your

subject

into

the

most

important

topics

that

the

decision-
maker

needs.

 020

 •

Summary
If

your

memo

is

longer

than

a

page,

you

may

want

to

include

a

separate

summary

segment.

However,

this

section

is

not

necessary

for

short

memos

and

should

not

take

up

a

significant

amount

of

space.

This

segment

provides

a

brief

statement

of

the

key

recommendations

you

have

reached.

These

will

help

your

reader

understand

the

key

points

of

the

memo

immediately.

This

segment

may

also

include

references

to

methods

and

sources

you

have

used

in

your

research.
•

Discussion
The

discussion

segments

are

the

longest

portions

of

the

memo,

and

are

the

parts

in

which

you

include

all

the

details

that

support

your

ideas.

Begin

with

the

information

that

is

most

important.

This

may

mean

that

you

will

start

with

key

findings

or

recommendations.

Start

with

your

most

general

information

and

move

to

your

specific

or

supporting

facts.

(Be

sure

to

use

the

same

format

when

including

details:

strongest

to

weakest.)

The

discussion

segments

include

the

supporting

ideas,

facts,

and

research

that

back

up

your

argument

in

the

memo.

Include

strong

points

and

evidence

to

persuade

the

reader

to

follow

your

recommended

actions.

If

this

section

is

inadequate,

the

memo

will

not

be

as

effective

as

it

could

be.
•

Closing
After

the

reader

has

absorbed

all

of

your

information,

you

want

to

close

with

a

courteous

ending

that

states

what

action

you

want

your

reader

to

take.

Make

sure

you

consider

how

the

reader

will

benefit

from

the

desired

actions

and

how

you

can

make

those

actions

easier.

•

Necessary

Attachments
Make

sure

you

document

your

findings

or

provide

detailed

information

whenever

necessary.

You

can

do

this

by

attaching

lists,

graphs,

tables,

etc.

at

the

end

of

your

memo.

Be

sure

to

refer

to

your

attachments

in

your

memo

and

add

a

notation

about

what

is

attached

below

your

closing.

Format
The

format

of

a

memo

follows

the

general

guidelines

of

business

writing:

A

memo

is

usually

a

page

or

two

long,

should

be

single

spaced

and

left

justified.

Instead

of

using

indentations

to

show

new

paragraphs,

skip

a

line

between

sentences.

Business

materials

should

be

concise

and

easy

to

read.

You

can

help

your

reader

understand

your

memo

better

by

using

headings

for

the

summary

and

the

discussion

segments

that

follow

it.

Write

headings

that

are

short

but

that

clarify

the

content

of

the

segment.

The

major

headings

you

choose

are

the

ones

that

should

be

incorporated

in

your

purpose-statement

in

the

opening

paragraph.
For

easy

reading,

put

important

points

or

details

into

lists

rather

than

paragraphs

when

possible.

This

will

draw

the

readers􀆳

attention

to

the

section

and

help

the

audience

