

# AI 作曲

本项目基于 TensorFlow 开发环境,使用 LSTM 模型,搜集 MIDI 文件,进行特征筛选 和提取,训练生成合适的机器学习模型,实现人工智能作曲。

# 1.1 总体设计

本部分包括整体框架和系统流程。

# 1.1.1 整体框架

整体框架如图 1-1 所示。



# 1.1.2 系统流程

系统流程如图 1-2 所示。

### 2 🚽 深度学习应用开发实践——文本音频图像处理30例



图 1-2 系统流程

# 1.2 运行环境

本部分包括 Python 环境、虚拟机环境、TensorFlow 环境及 Python 类库。

# 1.2.1 Python 环境

在 Windows 环境下下载 Anaconda,完成 Python 2.7 及以上版本的环境配置,如图 1-3 所示。



图 1-3 下载 Anaconda 界面

# 1.2.2 虚拟机环境

安装 VirtualBox,如图 1-4 所示。



图 1-4 安装 VirtualBox 界面

如图 1-5 所示,安装 Ubuntu 系统,如果版本号是 16.04,那么它属于长期支持版。下载 Ubuntu GNOME,如图 1-6 所示。打开 VirtualBox,如图 1-7 所示。



图 1-5 安装 Ubuntu 系统



图 1-6 下载 Ubuntu GNOME 界面

|      |                                                                                                                        | 从电脑工具(M) ▼ | 全局工具(G) |
|------|------------------------------------------------------------------------------------------------------------------------|------------|---------|
|      | 欢迎使用虚拟电脑控制台!                                                                                                           |            |         |
| Chat | 窗口的左边用来显示已生成的虚拟电脑及<br>编组。                                                                                              |            | S       |
|      | 窗口右边显示当前选中的虚拟电脑的可用<br>工具集。从窗口上边工具栏右边相应菜<br>单中查看更多工具。<br>你可以按 X? 键来查看帮助,或访问<br><u>www.virtualbox.org</u> 查看最新信息和新<br>闻. |            |         |
|      | 明细(D)<br>查看虚拟电脑明细。当前选中的虚拟电脑的属性。                                                                                        |            |         |
|      | <b>点心压在性部1/0</b>                                                                                                       |            |         |

图 1-7 打开 VirtualBox 界面

| 单击"新 | 建"按钮 | ,出现如图 | 1-8 | 所示的对 | f话框。 |
|------|------|-------|-----|------|------|
|      |      |       |     |      |      |

|                | ÷.                       | P III.            |
|----------------|--------------------------|-------------------|
| 新建(N) 设置(S) 清除 | 启动(T) <sup>*</sup>       | 虚拟电脑工具(M) 全局工具(G) |
|                | 虚拟电脑名称和系统类型              |                   |
|                | 名称:                      |                   |
|                | 类型: Microsoft Windows    |                   |
|                | 版本: Windows 7 (64-bit)   |                   |
|                | 内存大小                     |                   |
|                |                          |                   |
|                |                          |                   |
|                | 4 MB                     | 8192 MB           |
| 7              | 国王 书 (                   |                   |
|                | ○ 不添加虚拟硬盘                |                   |
|                | 使用已有的虚拟硬盘文件              |                   |
|                | IMOOC.vdi (普通, 25.00 GB) | ۵                 |
|                |                          |                   |
|                |                          |                   |

#### 图 1-8 虚拟机创建界面

名称可自行定义;类型选择 Linux;版本选择 Ubuntu(64-bit);内存大小可自行设置, 建议设置为 2048MB 以上;虚拟硬盘选择默认选项,即现在创建虚拟硬盘,之后单击创建按 钮,在文件位置和大小对话框中将虚拟硬盘更改为 20GB,虚拟机映像文件创建完成。对该 映像文件右击进行设置,单击存储按钮进行保存。

选择没有盘片→分配光驱→虚拟光盘文件,添加下载好的 Ubuntu GnomeISO 镜像文件, 然后单击 OK 按钮。选择 install Ubuntu GNOME→Continue→Install Now→Continue→ Continue,在 Keyboard layout 对话框中选择 Chinese,单击 Continue 按钮,等待安装完成后 单击 Restart Now 按钮即可。

(1) 进行 Ubuntu 的基本配置。

(2) 打开 Terminal, 安装谷歌输入法, 输入如下命令:

sudo apt install fcitx fcitx - googlepinyin im - config

(3) 安装 VIM,输入如下命令:

sudo apt install vim

(4) 创建与主机共享的文件夹,输入如下命令:

| mkdir sha | are_fold | er                 |         |
|-----------|----------|--------------------|---------|
| sudo apt  | install  | virtualbox - quest | - utils |

(5) 创建主机文件夹 AIMM\_Shared,建立主机与虚拟机的共享路径,输入如下命令:

sudo mount -t vboxsf AIMM\_Shared home/share\_folder

# 1.2.3 TensorFlow 环境

安装 TensorFlow,如图 1-9 所示,打开 Terminal,输入如下命令:

```
sudo apt - get install python - pip python - dev python - virtualenv
virtualenv -- system - site - packages tensorflow
source ~/tensorflow/bin/activate
easy_install - U pip
pip install -- upgrade tensorflow
deactivate
```



图 1-9 安装 TensorFlow 界面

# 1.2.4 Python 类库

安装 Python 的相关类库,输入如下命令:

```
pip install numpy
pip install pandas
pip install matplotlib
sudo pip install keras
```

sudo pip install music21
sudo pip install h5py
sudo apt install ffmpeg
sudo apt install timidity

# 1.3 模块实现

本部分包括数据准备、信息提取、模型构建、模型训练及保存、音乐模块,下面分别给出 各模块的功能介绍及相关代码。

# 1.3.1 数据准备

数据来自互联网下载的 70 首音乐文件,格式为 MIDI,相关数据见"数据集文件 1-1",如 图 1-10 所示。



### 1.3.2 信息提取

数据准备完成后,需要进行文件格式转换及音乐信息提取。

1. 文件格式转换

使用 Timidity 软件,实现 MIDI 转换为 MP3 等其他流媒体格式的操作。相关代码见 "代码文件 1-1"。

2. 音乐信息提取

将 MIDI 文件中的音符数据全部提取,包括 note 和 chord 的处理; note 指音符,而 chord 指和弦。使用的软件是 Music21,它可以对 MIDI 文件进行一些数据提取或者写入,相关代码如下。

```
import os
from music21 import converter, instrument
def print_notes():
    if not os.path.exists("1.mid"):
```

raise Exception("MIDI 文件 1.mid 不在此目录下,请添加")
# 读取 MIDI 文件,输出 Stream 流类型
stream = converter.parse("1.mid") # 解析 1.mid 的内容
# 获得所有乐器部分
parts = instrument.partitionByInstrument(stream)
if parts: # 如果有乐器部分,取第一个乐器部分,先采取一个音轨
 notes = parts.parts[0].recurse() # 递归获取
else:
 notes = stream.flat.notes
# 输出每个元素
for element in notes:
 print(str(element))
if \_\_name\_\_ == "\_\_main\_\_":
 print\_notes()

### 1.3.3 模型构建

数据加载后,需要进行定义结构并优化损失函数。

#### 1. 定义结构

图 1-11 为图形化的神经网络搭建模型,共9层,只用 LSTM 的 70%,舍弃 30%,这是为 了防止过拟合,最后全连接层的音调数就是初始定义 num\_pitch 的数目,用神经网络去预测 每次生成的新音调属于所有音调中的哪一个,利用交叉熵和 Softmax(激活层)计算出概率 最高那个作为输出(输出为预测音调对应的序列)。还需要在代码后面添加指定模型的损失 函数并进行优化器设置。



```
# RNN - LSTM 循环神经网络
import tensorflow as tf
# 神经网络模型
def network_model(inputs, num_pitch, weights_file = None):
    model = tf.keras.models.Sequential()
```

构建一个神经网络模型(其中 Sequential 是序列的意思),在 TensorFlow 官网中可以看 到基本用法,通过 add()函数添加需要的层。Sequential 相当于一个汉堡模型,根据自己的 需要按顺序填充不同层,相关代码如下。

```
#模型框架,第n层输出会成为第n+1层的输入,一共9层
model.add(tf.keras.layers.LSTM(
512, #LSTM 层神经元的数目是512,也是LSTM 层输出的维度
input_shape = (inputs.shape[1], inputs.shape[2]),
```

```
♯输入的形状,对第一个 LSTM 层必须设置
   #return sequences: 控制返回类型
   #True: 返回所有的输出序列
   #False: 返回输出序列的最后一个输出
   # 在堆叠 LSTM 层时必须设置, 最后一层 LSTM 可以不用设置
   return sequences = True
                                #返回所有的输出序列
))
#丢弃 30%神经元,防止过拟合
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.LSTM(512, return sequences = True))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.LSTM(512))
#return sequences 是默认的 False,只返回输出序列的最后一个
#256个神经元的全连接层
model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(num pitch))
#输出的数目等于所有不重复的音调数目: num_pitch
```

#### 2. 优化损失函数

确定神经网络模型架构之后,需要对模型进行编译,这是回归分析问题,因此先用 Softmax 计算百分比概率,再用 Cross entropy(交叉熵)计算概率和独热码之间的误差,使用 RMSProp 优化器优化模型参数,相关代码如下。

# 1.3.4 模型训练及保存

构建完整模型后,在训练模型之前需要准备输入序列。创建一个字典,用于映射音调和 整数,同时还需要通过字典将整数映射成音调。除此之外,将输入序列的形状转换成神经网 络模型可接收的形式,输入归一化。前面在构建神经网络模型时定义损失函数,用布尔的形 式计算交叉熵,所以要将期望输出转换成0和1组成的布尔矩阵。

#### 1. 模型训练

模型训练相关代码如下。

```
import numpy as np
import tensorflow as tf
from utils import *
from network import *
```

```
# 训练神经网络
def train():
    notes = get_notes()
    # 得到所有不重复的音调数目
    num_pitch = len(set(notes))
    network_input, network_output = prepare_sequences(notes, num_pitch)
    model = network_model(network_input, num_pitch)
    filepath = "weights - {epoch:02d} - {loss:.4f}.hdf5"
```

在训练模型之前,需要定义一个检查点,其目的是在每轮结束时保存模型参数 (weights),在训练过程中不会丢失模型参数,而且在对损失满意时随时停止训练。根据官 方文件提供的示例格式设置文件路径,不断更新保存模型参数 weights,格式为.hdf5。其中 checkpoint 中参数设置 save\_best\_only=True,是指监视器 monitor="loss"监视保存最好 的损失,如果这次损失比上次损失小,则上次参数就会被覆盖,相关代码如下。

```
checkpoint = tf.keras.callbacks.ModelCheckpoint(
      filepath,
                                                #保存的文件路径
      monitor = 'loss',
                                                #监控的对象是损失(loss)
      verbose = 0,
      save best only = True,
      mode = 'min'
                                                #取损失最小的
   )
   callbacks list = [checkpoint]
   #用 fit()函数训练模型
   model.fit(network input, network output, epochs = 100, batch size = 64, callbacks =
callbacks list)
#为神经网络准备好训练的序列
def prepare sequences(notes, num pitch):
   sequence_length = 100
                                                #序列长度
   #得到所有不重复音调的名字
   pitch names = sorted(set(item for item in notes)) #sorted 用于字母排序
   #创建一个字典,用于映射音调和整数
   pitch to int = dict((pitch, num) for num, pitch in enumerate(pitch names)
   ♯ enumerate 是枚举
   #创建神经网络的输入序列和输出序列
   network_input = []
   network output = []
   for i in range(0, len(notes) - sequence_length, 1):
   #每隔一个音符就取前面的一百个音符用来训练
      sequence in = notes[i: i + sequence length]
      sequence out = notes[i + sequence length]
      network input.append([pitch to int[char] for char in sequence in])
```

Batch size 是批次(样本)数目,它是一次迭代所用的样本数目。Iteration 是迭代,每次 迭代更新一次权重(网络参数),每次权重更新需要 Batch size 个数据前向运算后再进行反 向运算,一个 Epoch 指所有的训练样本完成一次迭代。

#### 2. 模型保存

训练神经网络后,将 weights 参数保存在 HDF5 文件中,相关代码如下。

# 1.3.5 音乐模块

本模块主要有序列准备、音符生成和音乐生成,主要作用如下:①为神经网络准备好供训练的序列;②基于序列音符,用神经网络生成新的音符;③用训练好的神经网络模型参数作曲。

在训练模型时用 fit()函数,模型预测数据时用 predict()函数得到最大的维度,也就是 概率最高的音符。将实际预测的整数转换成音调保存,输入序列向后移动,不断生成新的 音调。

1. 序列准备

序列准备相关代码如下。

```
def prepare sequences(notes, pitch names, num pitch):
   #为神经网络准备好供训练的序列
   sequence length = 100
   #创建一个字典,用于映射音调和整数
  pitch_to_int = dict((pitch,num) for num, pitch in enumerate(pitch names))
   #创建神经网络的输入序列和输出序列
   network input = []
   network output = []
   for i in range(0, len(notes) - sequence_length, 1):
      sequence in = notes[i: i + sequence length]
      sequence out = notes[i + sequence length]
      network_input.append([pitch_to_int[char] for char in sequence_in])
      network output.append(pitch to int[sequence out])
   n patterns = len(network input)
   #将输入的形状转换成神经网络模型可以接收的形式
normalized input = np.reshape(network input, (n patterns sequence length, 1))
   #输入标准化/归一化
   normalized_input = normalized_input / float(num_pitch)
   return network input, normalized input
```

#### 2. 音符生成

音符生成相关代码如下。

```
def generate notes(model, network_input, pitch_names, num_pitch):
   #基于序列音符,用神经网络生成新的音符
   #从输入中随机选择一个序列,作为预测/生成音乐的起始点
   start = np.random.randint(0, len(network input) - 1)
   #创建一个字典,用于映射整数和音调
   int_to_pitch = dict((num, pitch) for num, pitch in enumerate(pitch_names))
   pattern = network input[start]
   #神经网络实际生成的音调
   prediction_output = []
   #生成 700 个音符/音调
   for note index in range(700):
      prediction_input = np.reshape(pattern, (1, len(pattern), 1))
      #输入归一化
      prediction input = prediction input / float(num pitch)
      #用载入了训练所得最佳参数文件的神经网络预测/生成新的音调
      prediction = model.predict(prediction_input, verbose = 0)
      #argmax 取最大的维度
      index = np.argmax(prediction)
      #将整数转成音调
      result = int_to_pitch[index]
      prediction_output.append(result)
      #向后移动
      pattern.append(index)
      pattern = pattern[1:len(pattern)]
   return prediction output
if name == ' main ':
   generate()
```

#### 3. 音乐生成

音乐生成相关代码如下。

```
#使用之前训练所得的最佳参数生成音乐
def generate():
    # 加载用于训练神经网络的音乐数据
    with open('data/notes', 'rb') as filepath:
        notes = pickle.load(filepath)
    # 得到所有音调的名字
    pitch_names = sorted(set(item for item in notes))
    # 得到所有不重复的音调数目
    num_pitch = len(set(notes))
    network_input, normalized_input = prepare_sequences(notes, pitch_names, num_pitch)
    # 载人之前训练时最好的参数文件,生成神经网络模型
    model = network_model(normalized_input, num_pitch, "best-weights.hdf5")
    #用神经网络生成音乐数据
```

```
prediction = generate_notes(model, network_input, pitch_names, num_pitch)
# 用预测的音乐数据生成 MIDI 文件,再转换成 MP3 格式
create_music(prediction)
```

# 1.4 系统测试

本部分包括训练过程及测试效果。

### 1.4.1 训练过程

运行 python train. py 并开始训练,默认训练 100 个 epoch,可使用组合键 Ctrl+C 结束 训练,如图 1-12 所示。

| Epoch 27/400<br>42685/42685 | [=====]42685/42685 | []      | -   | 1858s | 44ms/step - | loss: | 4.5118 |
|-----------------------------|--------------------|---------|-----|-------|-------------|-------|--------|
| Epoch 28/400<br>42685/42685 | [=====]42685/42685 | [=====] | -   | 1855s | 43ms/step - | loss: | 4.4739 |
| Epoch 29/400<br>42685/42685 | [=====]42685/42685 | []      | - 1 | 1853s | 43ms/step - | loss: | 4.3547 |
| Epoch 30/400<br>42685/42685 | [=====]42685/42685 | []      | -   | 1853s | 43ms/step - | loss: | 4.2431 |
| Epoch 31/400<br>42685/42685 | [=====]42685/42685 | []      | -   | 1850s | 43ms/step - | loss: | 4.1182 |
| Epoch 32/400<br>42685/42685 | [=====]42685/42685 | [=====] | -   | 1849s | 43ms/step - | loss: | 3.9861 |
| Epoch 33/400<br>42685/42685 | [=====]42685/42685 | []      | - 1 | 1847s | 43ms/step - | loss: | 3.8438 |
| Epoch 34/400<br>42685/42685 | [=====]42685/42685 | []      | ~   | 1845s | 43ms/step - | loss: | 3.6849 |
| Epoch 35/400<br>42685/42685 | [=====]42685/42685 | []      |     | 1842s | 43ms/step - | loss: | 3.5315 |
| Epoch 36/400<br>42685/42685 | [=====]42685/42685 | []      | -   | 1844s | 43ms/step - | loss: | 3.3884 |
| Epoch 37/400<br>42685/42685 | [=====]42685/42685 | []      | -   | 1845s | 43ms/step - | loss: | 3.2341 |
| Epoch 38/400<br>42685/42685 | [=====]42685/42685 | []      | - ) | 1845s | 43ms/step - | loss: | 3.0969 |
| Epoch 39/400<br>42685/42685 | [====]42685/42685  | [=====] | -   | 1849s | 43ms/step - | loss: | 2.9628 |

图 1-12 训练过程

随着 epoch 增加,损失率越来越低,模型在训练数据、测试数据上的损失和准确率逐渐 收敛,最终趋于稳定。

生成 MP3 格式的音乐时,先从 output. mid 生成 MIDI 文件,再从 output. mid 生成 output. mp3 文件——确保其位于 generate. py 同级目录下,运行 python generate. py 即可 生成 MP3 格式的音乐。

### 1.4.2 测试效果

生成结果如图 1-13 所示,output.mid 是直接生成的 MIDI 文件,output.mp3 是转换后 的 MP3 流媒体格式文件。

# 14 🚽 深度学习应用开发实践——文本音频图像处理30例

|                                                                | ■ 生成的 MIDI 文件和 MP3 文件    |
|----------------------------------------------------------------|--------------------------|
| < >                                                            | Ⅲ ☰ Ⅲ ■ Ⅲ ▼ ◆ ▼ ①   Q 搜索 |
| 个人收藏 ● 下载 (例)隔空投送 △、应用程序 □、桌面 ■ 最近项目                           | output.mid output.mp3    |
| iCloud 云盘<br>iCloud 云盘<br>文稿<br>京 桌面<br>位置<br>M雨橙风<br>BOOTCAMP |                          |

图 1-13 生成的 MIDI 文件和 MP3 文件

通过 Garage Band 尝试播放生成的音乐,如图 1-14 所示。

|         | 未命名-轨道           |                      |      |
|---------|------------------|----------------------|------|
| • • × • | O 4.3 120        | 4/4<br>C大₩ ~ 2 124 ▲ | ΞΩ 🚓 |
|         | © <u>4.3</u> 120 |                      |      |
|         |                  |                      |      |
|         |                  |                      |      |

图 1-14 播放 output. mid



本项目基于卷积神经网络(Convolutional Neural Networks, CNN)对采样音频不同的 声谱图进行识别,实现辨别数字声音。

# 2.1 总体设计

本部分包括整体框架和系统流程。

# 2.1.1 整体框架

整体框架如图 2-1 所示。



图 2-1 整体框架

# 2.1.2 系统流程

系统流程如图 2-2 所示。



# 2.2 运行环境

本部分包括 Python 环境、PyCharm 环境、PyTorch 环境、CUDA 和 cuDNN 环境。

# 2.2.1 Python 环境

在 Windows 环境下下载 Anaconda,完成 Python 的环境配置,如图 1-3 所示。

# 2.2.2 PyCharm 环境

PyCharm 需要在 Python 下载安装成功后再进行安装,如图 2-3 所示。

单击安装程序后选择路径配置相关环境,勾选所有选项后完成下载。选择项目所在路 径→Previouslyconfiguredinterpreter→Createamain.py→Create进行项目搭建。右击 main.py,单击运行按钮,运行成功则代表环境配置成功。



图 2-3 下载 PyCharm 界面

### 2.2.3 PyTorch 环境

首先,打开 Anaconda 命令提示行;其次,打开 Anaconda Prompt,前面显示(base)说明 已经进入 Anaconda 的基础环境;最后,输入相关代码。

condacreate - npytorch1\_11python = 3.7

pytorch1\_11 是创建环境的名称。python=3.7 是 Python 的版本。

选择与自己版本对应的命令行输入即可。Package 表示安装方式,在 Windows 下使用 Conda 即可,也可以选择 pip 虚拟指令对所有的第三方软件进行统一安装。

### 2.2.4 CUDA 和 cuDNN 环境

检查计算机所支持的下载版本,如图 2-4 所示,在 CUDA Toolkit 12.1.1(April 2023) 中右击选择 nvidia→系统信息→组件。临时解压路径,建议默认即可,也可以自定义。安装 结束后,临时解压文件夹会自动删除;选择自定义安装,安装完成后配置 CUDA 的环境变 量;在命令行中,测试是否安装成功;双击.exe 文件,选择下载路径(推荐默认路径)。

cuDNN 作为 CUDA 的补丁环境,需要用到与 CUDA 相匹配的 11.3 版本,如图 2-5 所示。

# 18 🚽 深度学习应用开发实践——文本音频图像处理30例



图 2-5 安装 cuDNN 界面

### 2.2.5 网页端配置环境

通过配置静态服务器端代码,将后端的结果展示于前端。如果请求的资源是 HTML 文件,可以认为是动态资源请求,需要将请求封装成 WSGI 协议要求的格式,并传输到 Web 框架处理。WSGI协议要求服务器端将请求报文的各项信息组合成一个字典 environ,同样 传输到 Web 框架,相关代码如下。

```
importsocket
importthreading
classMyWebServer(object):
def init__(self,port):
#初始化:创建套接字
self.server socket = socket.socket(socket.AF INET, socket.SOCK STREAM)
self.server socket.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, True)
self.server socket.bind(("localhost", port))
self.server socket.listen(128)
defstart(self):
#启动:建立连接,并开启子线程
whileTrue:
new socket,address = self.server socket.accept()
print("已连接",address,sep = "from")
sub thread = threading.Thread(target = self.handle,args = (new socket,),daemon = True)
sub thread.start()
@ staticmethod
defhandle(handle socket):
#利用子线程收发 HTTP 格式数据
request_data = handle_socket.recv(4096)
iflen(request data) == 0:
print("浏览器已断开连接...")
handle_socket.close()
return
request_content = request_data.decode("utf - 8")
print(request content)
#以\r\n分割各项信息
request_list = request_content.split("\r\n")
#提取请求的资源路径
request line = request list[0]
request_line_list = request_line.split("")
request_method, request_path, request_version = request_line_list
#首页
ifrequest_path == "/":
request path = "/index.html"
#响应行与响应头信息置空
response line = response header = ""
#根据请求路径准备好响应行和响应体
try:
withopen("." + request path, "rb")asrequest file:
response body = request file.read()
except(FileExistsError,FileNotFoundError):
response line += f"{request version}404NotFound\r\n"
withopen("./error.html", "rb")asrequest_file:
response_body = request_file.read()
else:
response line += f"{request version}2000K\r\n"
finally:
```

```
#准备好响应头信息
response_header += "Server:MyWebServer2.0\r\n"
# 向浏览器发送响应报文
response_data = (response_line + response_header + "\r\n").encode("utf - 8") + response_body
handle_socket.send(response_data)
# 断开与浏览器的连接
handle_socket.close()
defmain():
port = 8888
my_web_server = MyWebServer(port)
my_web_server.start()
if__name__ == "__main__":
main()
```

# 2.3 模块实现

本部分包括数据准备、模型构建、模型训练及保存、模型应用,下面分别给出各模块的功能介绍及相关代码。

### 2.3.1 数据准备

数据集使用 speech\_commands, speech\_commands 的 1.1v 数据集包含 500ms 的录音/ 波形,其中有一些随机的数字音频或者空白的音频。数据集界面如图 2-6 所示。每个波形



图 2-6 数据集界面