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126 Parametric Approximation Chap. 3

Clearly, for the success of approximation in value space, it is important to
select a class of lookahead functions J̃k that is suitable for the problem at
hand. In the preceding chapter we discussed several methods for choosing
J̃k based mostly on problem approximation and rollout. In this chapter
we discuss an alternative approach, whereby J̃k is chosen to be a member
of a parametric class of functions, including neural networks, with the pa-
rameters “optimized” or “trained” by using some algorithm. The training
methods used for parametric approximation in value space can also be used
for approximation in policy space, as we will discuss in Section 3.5.

3.1 APPROXIMATION ARCHITECTURES

The starting point for the schemes of this chapter is a class of functions
J̃k(xk, rk) that for each k, depend on the current state xk and a vector rk =
(r1,k, . . . , rmk,k

) ofmk “tunable” scalar parameters, also called weights. By

adjusting the weights, one can change the “shape” of J̃k so that it is a
reasonably good approximation to the true optimal cost-to-go function J*

k .

The class of functions J̃k(xk, rk) is called an approximation architecture,
and the process of choosing the parameter vectors rk is commonly called
training or tuning the architecture.

The simplest training approach is to do some form of semi-exhaustive
or semi-random search in the space of parameter vectors and adopt the pa-
rameters that result in best performance of the associated one-step looka-
head controller (according to some criterion). More systematic approaches
are based on numerical optimization, such as for example a least squares fit
that aims to match the cost approximation produced by the architecture
to a “training set,” i.e., a large number of pairs of state and cost values
that are obtained through some form of sampling process. Throughout this
chapter we will focus on this latter approach.

3.1.1 Linear and Nonlinear Feature-Based Architectures

There is a large variety of approximation architectures, based for example
on polynomials, wavelets, radial basis functions, discretization/interpolation
schemes, neural networks, and others. A particularly interesting type of
cost approximation involves feature extraction, a process that maps the
state xk into some vector φk(xk), called the feature vector associated with
xk at time k. The vector φk(xk) consists of scalar components

φ1,k(xk), . . . , φmk,k
(xk),

called features . A feature-based cost approximation has the form

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

,
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Figure 3.1.1 The structure of a linear feature-based architecture. We use a
feature extraction mapping to generate an input φk(xk) to a linear mapping
defined by a weight vector rk.

where rk is a parameter vector and Ĵk is some function. Thus, the cost
approximation depends on the state xk through its feature vector φk(xk).

Note that we are allowing for different features φk(xk) and different
parameter vectors rk for each stage k. This is necessary for nonstationary
problems (e.g., if the state space changes over time), and also to capture
the effect of proximity to the end of the horizon. On the other hand,
for stationary problems with a long or infinite horizon, where the state
space does not change with k, it is common to use the same features and
parameters for all stages. The subsequent discussion can easily be adapted
to infinite horizon methods, as we will discuss later.

Features are often handcrafted, based on whatever human intelli-
gence, insight, or experience is available, and are meant to capture the
most important characteristics of the current state. There are also sys-
tematic ways to construct features, including the use of data and neural
networks, which we will discuss shortly. In this section, we provide a brief
and selective discussion of architectures, and we refer to the specialized
literature (e.g., Bertsekas and Tsitsiklis [BeT96], Bishop [Bis95], Haykin
[Hay08], Sutton and Barto [SuB18]), and the author’s [Ber12], Section
6.1.1, for more detailed presentations.

One idea behind using features is that the optimal cost-to-go functions
J*
k may be complicated nonlinear mappings, so it is sensible to try to break

their complexity into smaller, less complex pieces. In particular, if the
features encode much of the nonlinearity of J*

k , we may be able to use a

relatively simple architecture Ĵk to approximate J*
k . For example, with a

well-chosen feature vector φk(xk), a good approximation to the cost-to-go
is often provided by linearly weighting the features, i.e.,

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

=

mk
∑

ℓ=1

rℓ,kφℓ,k(xk) = r′kφk(xk), (3.1)

where rℓ,k and φℓ,k(xk) are the ℓth components of rk and φk(xk), respec-
tively, and r′kφk(xk) denotes the inner product of rk and φk(xk), viewed
as column vectors of ℜmk (a prime denotes transposition, so r′k is a row
vector); see Fig. 3.1.1.

This is called a linear feature-based architecture, and the scalar param-
eters rℓ,k are also called weights . Among other advantages, these architec-
tures admit simpler training algorithms than their nonlinear counterparts.
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J̃(x, r) =
∑

m

ℓ=1
rℓφℓ(x)

x S1 Sℓ ℓ Sm

. . . . . . ) x S

. . . r1

rℓ rm

1 rℓ

Figure 3.1.2 Illustration of a piecewise constant architecture. The state space
is partitioned into subsets S1, . . . , Sm, with each subset Sℓ defining the feature

φℓ(x) =

{

1 if x ∈ Sℓ,
0 if x /∈ Sℓ,

with its own weight rℓ.

Mathematically, the approximating function J̃k(xk, rk) can be viewed as a
member of the subspace spanned by the features φℓ,k(xk), ℓ = 1, . . . ,mk,
which for this reason are also referred to basis functions . We provide a few
examples, where for simplicity we drop the index k.

Example 3.1.1 (Piecewise Constant Approximation)

Suppose that the state space is partitioned into subsets S1, . . . , Sm, so that
every state belongs to one and only one subset. Let the ℓth feature be defined
by membership to the set Sℓ, i.e.,

φℓ(x) =
{

1 if x ∈ Sℓ,
0 if x /∈ Sℓ.

Consider the architecture

J̃(x, r) =

m
∑

ℓ=1

rℓφℓ(x),

where r is the vector consists of the m scalar parameters r1, . . . , rm. It can
be seen that J̃(x, r) is the piecewise constant function that has value rℓ for
all states within the set Sℓ; see Fig. 3.1.2.
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The piecewise constant approximation is an example of a linear fea-
ture-based architecture that involves exclusively local features . These are
features that take a nonzero value only for a relatively small subset of
states. Thus a change of a single weight causes a change of the value of
J̃(x, r) for relatively few states x. At the opposite end we have linear
feature-based architectures that involve global features . These are features
that take nonzero values for a large number of states. The following is an
example.

Example 3.1.2 (Polynomial Approximation)

An important case of linear architecture is one that uses polynomial basis
functions. Suppose that the state consists of n components x1, . . . , xn, each
taking values within some range of integers. For example, in a queueing
system, xi may represent the number of customers in the ith queue, where
i = 1, . . . , n. Suppose that we want to use an approximating function that
is quadratic in the components xi. Then we can define a total of 1 + n+ n2

basis functions that depend on the state x = (x1, . . . , xn) via

φ0(x) = 1, φi(x) = xi, φij(x) = xixj , i, j = 1, . . . , n.

A linear approximation architecture that uses these functions is given by

J̃(x, r) = r0 +

n
∑

i=1

rix
i +

n
∑

i=1

n
∑

j=1

rijx
ixj ,

where the parameter vector r has components r0, ri, and rij , with i, j =
1, . . . , n. Indeed, any kind of approximating function that is polynomial in
the components x1, . . . , xn can be constructed similarly.

A more general polynomial approximation may be based on some other
known features of the state. For example, we may start with a feature vector

φ(x) =
(

φ1(x), . . . , φm(x)
)′
,

and transform it with a quadratic polynomial mapping. In this way we obtain
approximating functions of the form

J̃(x, r) = r0 +

m
∑

i=1

riφi(x) +

m
∑

i=1

m
∑

j=1

rijφi(x)φj(x),

where the parameter r has components r0, ri, and rij , with i, j = 1, . . . ,m.
This can also be viewed as a linear architecture that uses the basis functions

w0(x) = 1, wi(x) = φi(x), wij(x) = φi(x)φj(x), i, j = 1, . . . , m.

The preceding example architectures are generic in the sense that they
can be applied to many different types of problems. Other architectures
rely on problem-specific insight to construct features, which are then com-
bined into a relatively simple architecture. The following are two examples
involving games.
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Example 3.1.3 (Tetris)

Let us revisit the game of tetris, which we discussed in Example 1.3.4. We can
model the problem of finding an optimal playing strategy as a finite horizon
problem with a very large horizon.

In Example 1.3.4 we viewed as state the pair of the board position
x and the shape of the current falling block y. We viewed as control, the
horizontal positioning and rotation applied to the falling block. However,
the DP algorithm can be executed over the space of x only, since y is an
uncontrollable state component; cf. Section 1.3.5. The optimal cost-to-go
function is a vector of huge dimension (there are 2200 board positions in
a “standard” tetris board of width 10 and height 20). However, it has been
successfully approximated in practice by low-dimensional linear architectures.

In particular, the following features have been proposed in [BeI96]: the
heights of the columns, the height differentials of adjacent columns, the wall
height (the maximum column height), the number of holes of the board, and
the constant 1 (the unit is often included as a feature in cost approximation
architectures, as it allows for a constant shift in the approximating function).
These features are readily recognized by tetris players as capturing impor-
tant aspects of the board position.† There are a total of 22 features for a
“standard” board with 10 columns. Of course the 2200 × 22 matrix of fea-
ture values cannot be stored in a computer, but for any board position, the
corresponding row of features can be easily generated, and this is sufficient
for implementation of the associated approximate DP algorithms. For recent
works involving approximate DP methods and the preceding 22 features, see
[Sch13], [GGS13], and [SGG15], which reference several other related papers.

Example 3.1.4 (Computer Chess)

Computer chess programs that involve feature-based architectures have been
available for many years, and are still used widely (they have been upstaged
in the mid-2010s by alternative types of chess programs, which use neural
network techniques that will be discussed later). These programs are based
on approximate DP for minimax problems,‡ a feature-based parametric archi-
tecture, and multistep lookahead. For the most part, however, the computer
chess training methodology has been qualitatively different from the para-
metric approximation methods that we consider in this book.

In particular, with few exceptions, the training of chess architectures
has been done with ad hoc hand-tuning techniques (as opposed to some form
of optimization). Moreover, the features have traditionally been hand-crafted

† The use of feature-based approximate DP methods for the game of tetris
was first suggested in the paper [TsV96], which introduced just two features (in
addition to the constant 1): the wall height and the number of holes of the board.
Most studies have used the set of features of [BeI96] described here, but other
sets of features have also been used; see [ThS09] and the discussion in [GGS13].

‡ We have not discussed DP for minimax problems and two-player games,
but the ideas of approximation in value space apply to these contexts as well; see
[Ber17] for a discussion that is focused on computer chess.
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Figure 3.1.3 A feature-based architecture for computer chess.

based on chess-specific knowledge (as opposed to automatically generated
through a neural network or some other method). Indeed, it has been argued
for a long time that the success of chess programs in outperforming the best
humans can be more properly attributed to their use of long lookahead and
the brute-force calculating power of modern computers, than to algorithmic
approaches that can learn powerful playing strategies, which humans have
difficulty conceiving or executing. Thus computer chess was viewed as an
approximate DP context where a lot of computational power is available,
but innovative and sophisticated algorithms are hard to apply. However,
this assessment has changed radically following the impressive success of the
AlphaZero chess program (Silver et al. [SHS17]).

The fundamental principles on which all computer chess programs are
based were laid out by Shannon [Sha50]. He proposed limited lookahead
and evaluation of the end positions by means of a “scoring function” (in
our terminology this plays the role of a cost function approximation). This
function may involve, for example, the calculation of a numerical value for
each of a set of major features of a position that chess players easily recognize
(such as material balance, mobility, pawn structure, and other positional
factors), together with a method to combine these numerical values into a
single score. Shannon then went on to describe various strategies of exhaustive
and selective search over a multistep lookahead tree of moves.

We may view the scoring function as a feature-based architecture for
evaluating a chess position/state (cf. Fig. 3.1.3). In most computer chess pro-
grams, the features are weighted linearly, i.e., the architecture J̃(x, r) that is
used for limited lookahead is linear [cf. Eq. (3.1)]. In many cases, the weights
are determined manually, by trial and error based on experience. However,
in some programs, the weights are determined with supervised learning tech-
niques that use examples of grandmaster play, i.e., by adjustment to bring
the play of the program as close as possible to the play of chess grandmas-
ters. This is a technique that applies more broadly in artificial intelligence;
see Tesauro [Tes89b], [Tes01].

In a recent computer chess breakthrough, the entire idea of extracting
features of a position through human expertise was abandoned in favor of
feature discovery through self-play and the use of neural networks. The first
program of this type to attain supremacy over humans, as well as over the best
computer programs that use human expertise-based features, was AlphaZero
(Silver et al. [SHS17]). This program is based on DP principles of policy
iteration and Monte Carlo tree search. It will be discussed further later.
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Our next example relates to a methodology for feature construction,
where the number of features may increase as more data is collected. For a
simple example, consider the piecewise constant approximation of Example
3.1.1, where more pieces are progressively added based on new data.

Example 3.1.5 (Feature Extraction from Data)

We have viewed so far feature vectors φ(x) as functions of x, obtained through
some unspecified process that is based on prior knowledge about the cost func-
tion being approximated. On the other hand, features may also be extracted
from data. For example suppose that with some preliminary calculation using
data, we have identified some suitable states x(ℓ), ℓ = 1, . . . ,m, that can serve
as “anchors” for the construction of Gaussian basis functions of the form

φℓ(x) = e
−

‖x−x(ℓ)‖2

2σ2 , ℓ = 1, . . . ,m, (3.2)

where σ is a scalar “variance” parameter. This type of function is known
as a radial basis function. It is concentrated around the state x(ℓ), and it
is weighed with a scalar weight rℓ to form a parametric linear feature-based
architecture, which can be trained using additional data. Several other types
of data-dependent basis functions, such as support vector machines, are used
in machine learning, where they are often referred to as kernels.

While it is possible to use a preliminary calculation to obtain the an-
chors x(ℓ) in Eq. (3.2), and then use additional data for training, one may also
consider enrichment of the set of basis functions simultaneously with training.
In this case the number of the basis functions increases as the training data
is collected. A motivation here is that the quality of the approximation may
increase with additional basis functions. This idea underlies a field of machine
learning, known as kernel methods or sometimes nonparametric methods.

A further discussion is outside our scope. We refer to the literature; see
e.g., books such as Cristianini and Shawe-Tylor [ChS00], [ShC04], Scholkopf
and Smola [ScS02], Bishop [Bis06], Kung [Kun14], surveys such as Hofmann,
Scholkopf, and Smola [HSS08], Pillonetto et al. [PDC14], and RL-related
discussions such as Dietterich and Wang [DiW02], Ormoneit and Sen [OrS02],
Engel, Mannor, and Meir [EMM05], Jung and Polani [JuP07], Reisinger,
Stone, and Miikkulainen [RSM08], Busoniu et al. [BBS10], Bethke [Bet10].
In what follows, we will focus on parametric architectures with a fixed and
given feature vector.

The next example considers a feature extraction strategy that is par-
ticularly relevant to problems of partial state information.

Example 3.1.6 (Feature Extraction from Sufficient Statistics)

The concept of a sufficient statistic, which originated in inference methodolo-
gies, plays an important role in DP. As discussed in Section 1.3, it refers to
quantities that summarize all the essential content of the state xk for optimal
control selection at time k.
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In particular, consider a partial information context where at time k we
have accumulated an information record (also called the past history)

Ik = (z0, . . . , zk, u0, . . . , uk−1),

which consists of the past controls u0, . . . , uk−1 and the state-related mea-
surements z0, . . . , zk obtained at the times 0, . . . , k. The control uk is al-
lowed to depend only on Ik, and the optimal policy is a sequence of the
form

{

µ∗
0(I0), . . . , µ

∗
N−1(IN−1)

}

. We say that a function Sk(Ik) is a suffi-
cient statistic at time k if the control function µ∗

k depends on Ik only through
Sk(Ik), i.e., for some function µ̂k, we have

µ∗
k(Ik) = µ̂k

(

Sk(Ik)
)

,

where µ∗
k is optimal.

There are several examples of sufficient statistics, and they are typically
problem-dependent. A trivial possibility is to view Ik itself as a sufficient
statistic, and a more sophisticated possibility is to view the belief state bk
as a sufficient statistic (this is the conditional probability distribution of xk

given Ik; cf. Section 1.3.6). For a proof that bk is indeed a sufficient statistic
and for a more detailed discussion of other possible sufficient statistics, see
[Ber17], Chapter 4. For a mathematically more advanced discussion, see
[BeS78], Chapter 10.

Since a sufficient statistic contains all the relevant information for opti-
mal control purposes, an idea that suggests itself is to introduce features of a
given sufficient statistic and to train a corresponding approximation architec-
ture accordingly. As examples of potentially good features, one may consider
some special characteristic of Ik (such as whether some alarm-like “special”
event has been observed), or a partial history (such as the last m measure-
ments and controls in Ik, or more sophisticated versions based on the concept
of a finite-state controller proposed by White [Whi91], and White and Scherer
[WhS94], and further discussed by Hansen [Han98], Kaelbling, Littman, and
Cassandra [KLC98], Meuleau et al. [MPK99], Poupart and Boutilier [PoB04],
Yu and Bertsekas [YuB06], Saldi, Yuksel, and Linder [SYL17]). In the case
where the belief state bk is used as a sufficient statistic, examples of good
features may be a point estimate based on bk, the variance of this estimate,
and other quantities that can be simply extracted from bk.

Of course it is possible to supplement a sufficient statistic with fea-
tures of other sufficient statistics, and thus obtain an enlarged/richer sufficient
statistic. In problem-specific contexts, and in the presence of approximations,
this may yield improved results.

Unfortunately, in many situations an adequate set of features is not
known, so it is important to have methods that construct features automat-
ically, to supplement whatever features may already be available. Indeed,
there are architectures that do not rely on the knowledge of good features.
We have noted the kernel methods of Example 3.1.5 in this connection.
Another very popular possibility is neural networks , which we will describe
in Section 3.2. Some of these architectures involve training that constructs
simultaneously both the feature vectors φk(xk) and the parameter vectors
rk that weigh them.
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3.1.2 Training of Linear and Nonlinear Architectures

In what follows in this section we discuss the process of choosing the pa-
rameter vector r of a parametric architecture J̃(x, r). This is generally
referred to as training. The most common type of training is based on a
least squares optimization, also known as least squares regression. Here a
set of state-cost training pairs (xs, βs), s = 1, . . . , q, called the training set ,
is collected and r is determined by solving the problem

min
r

q
∑

s=1

(

J̃(xs, r)− βs
)2
. (3.3)

Thus r is chosen to minimize the sum of squared errors between the sample
costs βs and the architecture-predicted costs J̃(xs, r). Here there is some
“target” cost function J that we aim to approximate with J̃(·, r), and the
sample cost βs is the value J(xs) plus perhaps some error or “noise.”

The cost function of the training problem (3.3) is generally nonconvex,
which may pose challenges, since there may exist multiple local minima.
However, for a linear architecture the cost function is convex quadratic,
and the training problem admits a closed-form solution. In particular, for
the linear architecture J̃(x, r) = r′φ(x), the problem becomes

min
r

q
∑

s=1

(

r′φ(xs)− βs
)2
.

By setting the gradient of the quadratic objective to 0, we obtain

q
∑

s=1

φ(xs)
(

r′φ(xs)− βs
)

= 0,

or
q
∑

s=1

φ(xs)φ(xs)′r =

q
∑

s=1

φ(xs)βs.

Thus by matrix inversion we obtain the minimizing parameter vector

r̂ =

(

q
∑

s=1

φ(xs)φ(xs)′

)

−1 q
∑

s=1

φ(xs)βs. (3.4)

If the inverse above does not exist, an additional quadratic in r, called a
regularization function, is added to the least squares objective to deal with
this, and also to help with other issues to be discussed later. A singular
value decomposition approach may also be used to deal with the matrix
inversion issue; see [BeT96], Section 3.2.2.
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Thus a linear architecture has the important advantage that the train-
ing problem can be solved exactly and conveniently with the formula (3.4)
(of course it may be solved by any other algorithm that is suitable for
linear least squares problems). By contrast, if we use a nonlinear archi-
tecture, such as a neural network, the associated least squares problem is
nonquadratic and also nonconvex. Despite this fact, through a combination
of sophisticated implementation of special gradient algorithms, called in-

cremental , and powerful computational resources, neural network methods
have been successful in practice as we will discuss in Section 3.2.

3.1.3 Incremental Gradient and Newton Methods

We will now digress to discuss special methods for solution of the least
squares training problem (3.3), assuming a parametric architecture that is
differentiable in the parameter vector. This methodology can be properly
viewed as a subject in nonlinear programming and iterative algorithms, and
as such it can be studied independently of the approximate DP methods of
this book. Thus the reader who has already some exposure to the subject
may skip to the next section, and return later as needed.

Incremental methods have a rich theory, and our presentation in this
section is brief, focusing primarily on implementation and intuition. Some
surveys and book references are provided at the end of the chapter, which
include a more detailed treatment. In particular, the neuro-dynamic pro-
gramming book [BeT96] contains convergence analysis for both determin-
istic and stochastic training problems, while the author’s nonlinear pro-
gramming book [Ber16a] contains an extensive discussion of incremental
methods. Since, we want to cover problems that are more general than
the specific least squares training problem (3.3), we will adopt a broader
formulation and notation that are standard in nonlinear programming.

Incremental Gradient Methods

We view the training problem (3.3) as a special case of the minimization
of a sum of component functions

f(y) =

m
∑

i=1

fi(y), (3.5)

where each fi is a differentiable scalar function of the n-dimensional column
vector y (this is the parameter vector). Thus we use the more common
symbols y and m in place of r and q, respectively, and we replace the

squared error terms
(

J̃(xs, r)−βs
)2

in the training problem (3.3) with the
generic terms fi(y).

The (ordinary) gradient method for problem (3.5) generates a se-
quence {yk} of iterates, starting from some initial guess y0 for the minimum
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of the cost function f . It has the form†

yk+1 = yk − γk∇f(yk) = yk − γk
m
∑

i=1

∇fi(yk), (3.6)

where γk is a positive stepsize parameter. The incremental gradient method
is similar to the ordinary gradient method, but uses the gradient of a single
component of f at each iteration. It has the general form

yk+1 = yk − γk∇fik (y
k), (3.7)

where ik is some index from the set {1, . . . ,m}, chosen by some determin-
istic or randomized rule. Thus a single component function fik is used
at iteration k, with great economies in gradient calculation cost over the
ordinary gradient method (3.6), particularly when m is large.

The method for selecting the index ik of the component to be iterated
on at iteration k is important for the performance of the method. Three
common rules are:

(1) A cyclic order , the simplest rule, whereby the indexes are taken up in
the fixed deterministic order 1, . . . ,m, so that ik is equal to (k modulo
m) plus 1. A contiguous block of iterations involving the components

f1, . . . , fm

in this order and exactly once is called a cycle.

(2) A uniform random order , whereby the index ik chosen randomly by
sampling over all indexes with a uniform distribution, independently
of the past history of the algorithm. This rule may perform better
than the cyclic rule in some circumstances.

(3) A cyclic order with random reshuffling, whereby the indexes are taken
up one by one within each cycle, but their order after each cycle is
reshuffled randomly (and independently of the past). This rule is used
widely in practice, particularly when the number of components m is
modest, for reasons to be discussed later.

Note that in the cyclic cases, it is essential to include all components in
a cycle, for otherwise some components will be sampled more often than
others, leading to a bias in the convergence process. Similarly, it is neces-
sary to sample according to the uniform distribution in the random order
case.

† We use standard calculus notation for gradients; see, e.g., [Ber16a], Ap-

pendix A. In particular, ∇f(y) denotes the n-dimensional column vector whose

components are the first partial derivatives ∂f(y)/∂yi of f with respect to the

components y1, . . . , yn of the column vector y.
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Focusing for the moment on the cyclic rule (with or without reshuf-
fling), we note that the motivation for the incremental gradient method is
faster convergence: we hope that far from the solution, a single cycle of
the method will be as effective as several (as many as m) iterations of the
ordinary gradient method (think of the case where the components fi are
similar in structure). Near a solution, however, the incremental method
may not be as effective.

To be more specific, we note that there are two complementary per-
formance issues to consider in comparing incremental and nonincremental
methods:

(a) Progress when far from convergence. Here the incremental method
can be much faster. For an extreme case take m large and all com-
ponents fi identical to each other. Then an incremental iteration
requires m times less computation than a classical gradient iteration,
but gives exactly the same result, when the stepsize is scaled to be m
times larger. While this is an extreme example, it reflects the essential
mechanism by which incremental methods can be much superior: far
from the minimum a single component gradient will point to “more
or less” the right direction, at least most of the time; see the following
example.

(b) Progress when close to convergence. Here the incremental method can
be inferior. In particular, the ordinary gradient method (3.6) can be
shown to converge with a constant stepsize under reasonable assump-
tions, see e.g., [Ber16a], Chapter 1. However, the incremental method
requires a diminishing stepsize, and its ultimate rate of convergence
can be much slower.

This type of behavior is illustrated in the following example.

Example 3.1.7

Assume that y is a scalar, and that the problem is

minimize f(y) = 1
2

m
∑

i=1

(ciy − bi)
2

subject to y ∈ ℜ,

where ci and bi are given scalars with ci 6= 0 for all i. The minimum of each
of the components fi(y) = 1

2
(ciy − bi)

2 is

y∗i =
bi
ci
,

while the minimum of the least squares cost function f is

y∗ =

∑m

i=1
cibi

∑m

i=1
c2i

.
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Figure 3.1.4. Illustrating the advantage of incrementalism when far from the
optimal solution. The region of component minima

R =

[

min
i

y∗i , max
i

y∗i

]

,

is labeled as the “region of confusion.” It is the region where the method
does not have a clear direction towards the optimum. The ith step in an

incremental gradient cycle is a gradient step for minimizing (ciy − bi)
2, so

if y lies outside the region of component minima R =
[

mini y
∗
i
, maxi y

∗
i

]

,

(labeled as the “farout region”) and the stepsize is small enough, progress
towards the solution y∗ is made.

It can be seen that y∗ lies within the range of the component minima

R =
[

min
i
y∗i , max

i
y∗i

]

,

and that for all y outside the range R, the gradient

∇fi(y) = ci(ciy − bi)

has the same sign as ∇f(y) (see Fig. 3.1.4). As a result, when outside the
region R, the incremental gradient method

yk+1 = yk − γkcik (ciky
k − bik )

approaches y∗ at each step, provided the stepsize γk is small enough. In fact
it can be verified that it is sufficient that

γk ≤ min
i

1

c2i
.
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However, for y inside the region R, the ith step of a cycle of the in-
cremental gradient method need not make progress. It will approach y∗ (for
small enough stepsize γk) only if the current point yk does not lie in the in-
terval connecting y∗i and y∗. This induces an oscillatory behavior within the
region R, and as a result, the incremental gradient method will typically not
converge to y∗ unless γk → 0. By contrast, the ordinary gradient method,
which takes the form

yk+1 = yk − γ

m
∑

i=1

ci(ciy
k − bi),

can be verified to converge to y∗ for any constant stepsize γ with

0 < γ ≤
1

∑m

i=1
c2i
.

However, for y outside the region R, a full iteration of the ordinary gradient
method need not make more progress towards the solution than a single step of
the incremental gradient method. In other words, with comparably intelligent
stepsize choices, far from the solution (outside R), a single pass through the
entire set of cost components by incremental gradient is roughly as effective
as m passes by ordinary gradient .

The preceding example assumes that each component function fi has
a minimum, so that the range of component minima is defined. In cases
where the components fi have no minima, a similar phenomenon may oc-
cur, as illustrated by the following example (the idea here is that we may
combine several components into a single component that has a minimum).

Example 3.1.8:

Consider the case where f is the sum of increasing and decreasing convex
exponentials, i.e.,

fi(y) = aie
biy , y ∈ ℜ,

where ai and bi are scalars with ai > 0 and bi 6= 0. Let

I+ = {i | bi > 0}, I− = {i | bi < 0},

and assume that I+ and I− have roughly equal numbers of components. Let
also y∗ be the minimum of

∑m

i=1
fi.

Consider the incremental gradient method that given the current point,
call it yk, chooses some component fik and iterates according to the incre-
mental gradient iteration

yk+1 = yk − αk∇fik (y
k).

Then it can be seen that if yk >> y∗, yk+1 will be substantially closer to y∗ if
i ∈ I+, and negligibly further away than y∗ if i ∈ I−. The net effect, averaged
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over many incremental iterations, is that if yk >> y∗, an incremental gradient
iteration makes roughly one half the progress of a full gradient iteration, with
m times less overhead for calculating gradients. The same is true if yk << y∗.
On the other hand as yk gets closer to y∗ the advantage of incrementalism is
reduced, similar to the preceding example. In fact in order for the incremental
method to converge, a diminishing stepsize is necessary, which will ultimately
make the convergence slower than the one of the nonincremental gradient
method with a constant stepsize.

The discussion of the preceding examples relies on y being one-dimen-
sional, but in many multidimensional problems the same qualitative behav-
ior can be observed. In particular, a pass through the ith component fi by
the incremental gradient method can make progress towards the solution
in the region where the component gradient ∇fik (y

k) makes an angle less
than 90 degrees with the cost function gradient ∇f(yk). If the components
fi are not “too dissimilar”, this is likely to happen in a region of points that
are not too close to the optimal solution set. This behavior has been ver-
ified in many practical contexts, including the training of neural networks
(cf. the next section), where incremental gradient methods have been used
extensively, frequently under the name backpropagation methods .

Stepsize Choice and Diagonal Scaling

The choice of the stepsize γk plays an important role in the performance
of incremental gradient methods. On close examination, it turns out that
the direction used by the method differs from the gradient direction by an
error that is proportional to the stepsize, and for this reason a diminishing
stepsize is essential for convergence to a local minimum of f (this is the
best we can hope for since f may not be convex).

However, it turns out that for the cyclic rule without reshuffling a
peculiar form of convergence also typically occurs for a constant but suffi-
ciently small stepsize. In this case, the iterates converge to a “limit cycle”,
whereby the ith iterates within the cycles converge to a different limit than
the jth iterates for i 6= j. The sequence {yk} of the iterates obtained at
the end of cycles converges, except that the limit obtained need not be
a minimum of f , even when f is convex. The limit tends to be close to
the minimum point when the constant stepsize is small (see Section 2.4 of
[Ber16a] for analysis and examples). In practice, it is common to use a
constant stepsize for a (possibly prespecified) number of iterations, then
decrease the stepsize by a certain factor, and repeat, up to the point where
the stepsize reaches a prespecified floor value.

An alternative possibility is to use a diminishing stepsize rule of the
form

γk = min

{

γ,
β1

k + β2

}

,
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where γ, β1, and β2 are some positive scalars. There are also variants
of the method that use a constant stepsize throughout, and generically
converge to a stationary point of f under reasonable assumptions. In one
type of such method the degree of incrementalism gradually diminishes as
the method progresses (see [Ber97a]). Another incremental approach with
similar aims, is the aggregated incremental gradient method, which will be
discussed later in this section.

Regardless of whether a constant or a diminishing stepsize is ulti-
mately used, to maintain the advantage of faster convergence when far
from the solution, the incremental method must use a much larger stepsize
than the corresponding nonincremental gradient method (as much as m
times larger so that the size of the incremental gradient step is comparable
to the size of the nonincremental gradient step).

One possibility is to use an adaptive stepsize rule, whereby, roughly
speaking, the stepsize is reduced (or increased) when the progress of the
method indicates that the algorithm is (or is not) oscillating. There are
formal ways to implement such stepsize rules with sound convergence prop-
erties (see [Tse98], [MYF03]).

The difficulty with stepsize selection may also be addressed with di-

agonal scaling, i.e., using a stepsize γkj that is different for each of the
components yj of y. Second derivatives can be very useful for this purpose.
In generic nonlinear programming problems of unconstrained minimization
of a function f , it is common to use diagonal scaling with stepsizes

γkj = γ

(

∂2f(yk)

∂2yj

)

−1

, j = 1, . . . , n,

where γ is a constant that is nearly equal 1 (the second derivatives may also
be approximated by gradient difference approximations). However, in least
squares training problems, this type of scaling is inconvenient because of
the additive form of f as a sum of a large number of component functions:

f(y) =

m
∑

i=1

fi(y),

cf. Eq. (3.5). The neural network literature includes a number of prac-
tical scaling schemes, some of which have been incorporated in publicly
and commercially available software. Also, later in this section, when we
discuss incremental Newton methods, we will provide another type of diag-
onal scaling that uses second derivatives and is well suited to the additive
character of the cost function f .

Stochastic Gradient Descent

Incremental gradient methods are related to methods that aim to minimize
an expected value

f(y) = E
{

F (y, w)
}

,
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where w is a random variable, and F (·, w) : ℜn 7→ ℜ is a differentiable
function for each possible value of w. The stochastic gradient method for
minimizing f is given by

yk+1 = yk − γk∇yF (yk, wk), (3.8)

where wk is a sample of w and ∇yF denotes gradient of F with respect
to y. This method has a rich theory and a long history, and it is strongly
related to the classical algorithmic field of stochastic approximation; see the
books [BeT96], [KuY03], [Spa03], [Mey07], [Bor08], [BPP13]. The method
is also often referred to as stochastic gradient descent , particularly in the
context of machine learning applications.

If we view the expected value cost E
{

F (y, w)
}

as a weighted sum of
cost function components, we see that the stochastic gradient method (3.8)
is related to the incremental gradient method

yk+1 = yk − γk∇fik(y
k) (3.9)

for minimizing a finite sum
∑m

i=1 fi, when randomization is used for compo-
nent selection. An important difference is that the former method involves
stochastic sampling of cost components F (y, w) from a possibly infinite
population, under some probabilistic assumptions, while in the latter the
set of cost components fi is predetermined and finite. However, it is possi-
ble to view the incremental gradient method (3.9), with uniform random-
ized selection of the component function fi (i.e., with ik chosen to be any
one of the indexes 1, . . . ,m, with equal probability 1/m, and independently
of preceding choices), as a stochastic gradient method.

Despite the apparent similarity of the incremental and the stochastic
gradient methods, the view that the problem

minimize f(y) =

m
∑

i=1

fi(y)

subject to y ∈ ℜn,

(3.10)

can simply be treated as a special case of the problem

minimize f(y) = E
{

F (y, w)
}

subject to y ∈ ℜn,

is questionable.
One reason is that once we convert the finite sum problem to a

stochastic problem, we preclude the use of methods that exploit the fi-
nite sum structure, such as the incremental aggregated gradient methods
to be discussed in the next subsection. Another reason is that the finite-
component problem (3.10) is often genuinely deterministic, and to view
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it as a stochastic problem at the outset may mask some of its important
characteristics, such as the number m of cost components, or the sequence
in which the components are ordered and processed. These characteristics
may potentially be algorithmically exploited. For example, with insight
into the problem’s structure, one may be able to discover a special deter-
ministic or partially randomized order of processing the component func-
tions that is superior to a uniform randomized order. On the other hand
analysis indicates that in the absence of problem-specific knowledge that
can be exploited to select a favorable deterministic order, a uniform ran-
domized order (each component fi chosen with equal probability 1/m at
each iteration, independently of preceding choices) sometimes has superior
worst-case complexity; see [NeB00], [NeB01], [BNO03], [Ber15a], [WaB16].

Finally, let us note the popular hybrid technique, which reshuffles
randomly the order of the cost components after each cycle. Practical ex-
perience indicates that it has somewhat better performance to the uniform
randomized order when m is large. One possible reason is that random
reshuffling allocates exactly one computation slot to each component in an
m-slot cycle, while uniform random sampling allocates one computation
slot to each component on the average. A nonzero variance in the number
of slots that any fixed component gets within a cycle, may be detrimental
to performance. While it seems difficult to establish this fact analytically, a
justification is suggested by the view of the incremental gradient method as
a gradient method with error in the computation of the gradient. The error
has apparently greater variance in the uniform random sampling method
than in the random reshuffling method, and heuristically, if the variance of
the error is larger, the direction of descent deteriorates, suggesting slower
convergence.

Incremental Aggregated Gradient Methods

Another algorithm that is well suited for least squares training problems is
the incremental aggregated gradient method , which has the form

yk+1 = yk − γk
m−1
∑

ℓ=0

∇fik−ℓ
(yk−ℓ), (3.11)

where fik is the new component function selected for iteration k.† In the
most common version of the method the component indexes ik are selected
in a cyclic order [ik = (k modulo m) + 1]. Random selection of the index
ik has also been suggested.

From Eq. (3.11) it can be seen that the method computes the gradient
incrementally, one component per iteration. However, in place of the single

† In the case where k < m, the summation in Eq. (3.11) should go up to

ℓ = k, and the stepsize should be replaced by a corresponding larger value.
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component gradient ∇fik (y
k), used in the incremental gradient method

(3.7), it uses the sum of the component gradients computed in the past m
iterations, which is an approximation to the total cost gradient ∇f(yk).

The idea of the method is that by aggregating the component gradi-
ents one may be able to reduce the error between the true gradient ∇f(yk)
and the incrementally computed approximation used in Eq. (3.11), and
thus attain a faster asymptotic convergence rate. Indeed, it turns out that
under certain conditions the method exhibits a linear convergence rate, just
like in the nonincremental gradient method, without incurring the cost of
a full gradient evaluation at each iteration (a strongly convex cost func-
tion and with a sufficiently small constant stepsize are required for this;
see [Ber16a], Section 2.4.2, and the references quoted there). This is in
contrast with the incremental gradient method (3.7), for which a linear
convergence rate can be achieved only at the expense of asymptotic error,
as discussed earlier.

A disadvantage of the aggregated gradient method (3.11) is that it
requires that the most recent component gradients be kept in memory,
so that when a component gradient is reevaluated at a new point, the
preceding gradient of the same component is discarded from the sum of
gradients of Eq. (3.11). There have been alternative implementations that
ameliorate this memory issue, by recalculating the full gradient periodically
and replacing an old component gradient by a new one; we refer to the
specialized literature on the subject. Another potential drawback of the
aggregated gradient method is that for a large number of terms m, one
hopes to converge within the first cycle through the components fi, thereby
reducing the effect of aggregating the gradients of the components.

Incremental Newton Methods

We will now consider an incremental version of Newton’s method for un-
constrained minimization of an additive cost function of the form

f(y) =

m
∑

i=1

fi(y),

where the functions fi are convex and twice continuously differentiable.†
The ordinary Newton’s method, at the current iterate yk, obtains the

next iterate yk+1 by minimizing over y the quadratic approximation/second

† We will denote by ∇2f(y) the n × n Hessian matrix of f at y, i.e., the

matrix whose (i, j)th component is the second partial derivative ∂2f(y)/∂yi∂yj .

A beneficial consequence of assuming convexity of fi is that the Hessian matrices

∇2fi(y) are positive semidefinite, which facilitates the implementation of the

algorithms to be described. On the other hand, the algorithmic ideas of this

section may also be adapted for the case where the functions fi are nonconvex.
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order expansion

f̃(y; yk) = ∇f(yk)′(y − yk) + 1
2 (y − yk)′∇2f(yk)(y − yk),

of f at yk. Similarly, the incremental form of Newton’s method minimizes
a sum of quadratic approximations of components of the general form

f̃ i(y;ψ) = ∇fi(ψ)′(y − ψ) + 1
2(y − ψ)′∇2fi(ψ)(y − ψ), (3.12)

as we will now explain.
As in the case of the incremental gradient method, we view an it-

eration as a cycle of m subiterations, each involving a single additional
component fi, and its gradient and Hessian at the current point within the
cycle. In particular, if yk is the vector obtained after k cycles, the vector
yk+1 obtained after one more cycle is

yk+1 = ψm,k,

where starting with ψ0,k = yk, we obtain ψm,k after the m steps

ψi,k ∈ arg min
y∈ℜ

n

i
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k), i = 1, . . . ,m, (3.13)

where f̃ℓ is defined as the quadratic approximation (3.12). If all the func-
tions fi are quadratic, it can be seen that the method finds the solution
in a single cycle.† The reason is that when fi is quadratic, each fi(y) dif-
fers from f̃ i(y;ψ) by a constant, which does not depend on y. Thus the
difference

m
∑

i=1

fi(y)−

m
∑

i=1

f̃ i(y;ψi−1,k)

is a constant that is independent of y, and minimization of either sum in
the above expression gives the same result.

It is important to note that the computations of Eq. (3.13) can be
carried out efficiently. For simplicity, let as assume that f̃1(y;ψ) is a pos-
itive definite quadratic, so that for all i, ψi,k is well defined as the unique

† Here we assume that them quadratic minimizations (3.13) to generate ψm,k

have a solution. For this it is sufficient that the first Hessian matrix ∇2f1(y
0) be

positive definite, in which case there is a unique solution at every iteration. A

simple possibility to deal with this requirement is to add to f1 a small positive

regularization term, such as ǫ‖y − y0‖2. A more sound possibility is to lump

together several of the component functions (enough to ensure that the sum of

their quadratic approximations at y0 is positive definite), and to use them in

place of f1. This is generally a good idea and leads to smoother initialization, as

it ensures a relatively stable behavior of the algorithm for the initial iterations.
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solution of the minimization problem in Eq. (3.13). We will show that the
incremental Newton method (3.13) can be implemented with the incremen-
tal update formula

ψi,k = ψi−1,k −Di,k∇fi(ψi−1,k), (3.14)

where Di,k is given by

Di,k =

(

i
∑

ℓ=1

∇2fℓ(ψℓ−1,k)

)−1

, (3.15)

and (assuming existence of the required inverses) is generated iteratively
as

Di,k =
(

D−1
i−1,k +∇2fi(ψi−1,k)

)

−1

. (3.16)

Indeed, from the definition of the method (3.13), the quadratic function
∑i−1

ℓ=1 f̃ ℓ(y;ψℓ−1,k) is minimized by ψi−1,k and its Hessian matrix is D−1
i−1,k,

so we have

i−1
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k) = 1
2(y − ψi−1,k)′D

−1
i−1,k(y − ψi−1,k) + constant.

Thus, by adding f̃ i(y;ψi−1,k) to both sides of this expression, we obtain

i
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k) = 1
2 (y − ψi−1,k)′D

−1
i−1,k(y − ψi−1,k) + constant

+ 1
2(y − ψi−1,k)′∇2fi(ψi−1,k)(y − ψi−1,k) +∇fi(ψi−1,k)′(y − ψi−1,k).

Since by definition ψi,k minimizes this function, we obtain Eqs. (3.14)-
(3.16).

The recursion (3.16) for the matrix Di,k can often be efficiently im-
plemented by using convenient formulas for the inverse of the sum of two
matrices. In particular, if fi is given by

fi(y) = hi(a′iy − bi),

for some twice differentiable convex function hi : ℜ 7→ ℜ, vector ai, and
scalar bi, we have

∇2fi(ψi−1,k) = ∇2hi(a′iψi−1,k − bi) aia′i,

and the recursion (3.16) can be written as

Di,k = Di−1,k −
Di−1,kaia′iDi−1,k

∇2hi(a′iψi−1,k − bi)−1 + a′iDi−1,kai
.
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This is the well-known Sherman-Morrison formula for the inverse of the
sum of an invertible matrix and a rank-one matrix.

We have considered so far a single cycle of the incremental Newton
method. Similar to the case of the incremental gradient method, we may
cycle through the component functions multiple times. In particular, we
may apply the incremental Newton method to the extended set of compo-
nents

f1, f2, . . . , fm, f1, f2, . . . , fm, f1, f2, . . . . (3.17)

The resulting method asymptotically resembles an incremental gradient
method with diminishing stepsize of the type described earlier. Indeed,
from Eq. (3.15), the matrix Di,k diminishes roughly in proportion to 1/k.
From this it follows that the asymptotic convergence properties of the in-
cremental Newton method are similar to those of an incremental gradient
method with diminishing stepsize of order O(1/k). Thus its convergence
rate is slower than linear.

To accelerate the convergence of the method one may employ a form
of restart, so that Di,k does not converge to 0. For example Di,k may
be reinitialized and increased in size at the beginning of each cycle. For
problems where f has a unique nonsingular minimum y∗ [one for which
∇2f(y∗) is nonsingular], one may design incremental Newton schemes with
restart that converge linearly to within a neighborhood of y∗ (and even
superlinearly if y∗ is also a minimum of all the functions fi, so there is no
region of confusion); see [Ber96a]. Alternatively, the update formula (3.16)
may be modified to

Di,k =
(

βkD
−1
i−1,k +∇2fℓ(ψi,k)

)

−1

, (3.18)

by introducing a parameter βk ∈ (0, 1), which can be used to accelerate
the practical convergence rate of the method.

Incremental Newton Method with Diagonal Approximation

Generally, with proper implementation, the incremental Newton method is
often substantially faster than the incremental gradient method, in terms
of numbers of iterations (there are theoretical results suggesting this prop-
erty for stochastic versions of the two methods; see the end-of-chapter ref-
erences). However, in addition to computation of second derivatives, the
incremental Newton method involves greater overhead per iteration due to
the matrix-vector calculations in Eqs. (3.14), (3.16), and (3.18), so it is
suitable only for problems where n, the dimension of y, is relatively small.

A way to remedy in part this difficulty is to approximate ∇2fi(ψi,k)
by a diagonal matrix, and recursively update a diagonal approximation
of Di,k using Eqs. (3.16) or (3.18). In particular, one may set to 0 the
off-diagonal components of ∇2fi(ψi,k). In this case, the iteration (3.14)
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becomes a diagonally scaled version of the incremental gradient method,
and involves comparable overhead per iteration (assuming the required
diagonal second derivatives are easily computed or approximated). As an
additional scaling option, one may multiply the diagonal components with
a stepsize parameter that is close to 1 and add a small positive constant (to
bound them away from 0). Ordinarily this method is easily implementable,
and requires little experimentation with stepsize selection.

Example 3.1.9: (Diagonalized Newton Method for Linear
Least Squares)

Consider the problem of minimizing the sum of squares of linear scalar func-
tions:

minimize f(y) = 1
2

m
∑

i=1

(c′iy − bi)
2

subject to y ∈ ℜn,

where for all i, ci is a given nonzero vector in ℜn and bi is a given scalar. In
this example, we will assume that we apply the incremental Newton method
to the extended set of components

f1, f2, . . . , fm, f1, f2, . . . , fm, f1, f2, . . . ,

c.f. Eq. (3.17).
The inverse Hessian matrix for the kth cycle is given by

Di,k =

(

(k − 1)

m
∑

ℓ=1

cℓc
′
ℓ +

i
∑

ℓ=1

cℓc
′
ℓ

)−1

, i = 1, . . . ,m,

and its jth diagonal term (the one to multiply the partial derivative ∂fi/∂x
j

within cycle k + 1) is

γk
i,j =

1

(k − 1)
∑m

ℓ=1
(cjℓ)

2 +
∑i

ℓ=1
(cjℓ)

2
. (3.19)

The diagonalized version of the incremental Newton method is given for each
of the n components of ψi,k by

ψj
i,k = ψj

i−1,k − γk
i,jc

j
i (c

′
iψi−1,k − bi), j = 1, . . . , n,

where ψj

i,k and cji are the jth components of the vectors ψi,k and ci, respec-
tively. Contrary to the incremental Newton iteration, it does not involve
matrix inversion. Note that the diagonal scaling term (3.19) tends to 0 as k
increases, for each component j. As noted earlier, this diagonal term may be
multiplied by a constant that is less or equal to 1 for a better guarantee of
asymptotic convergence.



Sec. 3.2 Neural Networks 149

In an alternative implementation of the diagonal Hessian approximation
idea, we reinitialize the inverse Hessian matrix to 0 (or to small multiple of
the identity) at the beginning of each cycle. Then instead of the scalar γk

i,j

of Eq. (3.19), the jth diagonal term of the inverse Hessian will be

1
∑i

ℓ=1
(cjℓ)

2
,

and will not converge to 0. It may be modified by multiplication with a
suitable diminishing scalar for practical purposes.

3.2 NEURAL NETWORKS

There are several different types of neural networks that can be used for
a variety of tasks, such as pattern recognition, classification, image and
speech recognition, and others. In this section, we focus on our finite
horizon DP context, and the role that neural networks can play in approxi-
mating the optimal cost-to-go functions J*

k . As an example within this
context, we may first use a neural network to construct an approximation
to J*

N−1. Then we may use this approximation to approximate J*
N−2, and

continue this process backwards in time, to obtain approximations to all
the optimal cost-to-go functions J*

k , k = 1, . . . , N − 1, as we will discuss in
more detail in Section 3.3.

To describe the use of neural networks in finite horizon DP, let us
consider the typical stage k, and for convenience drop the index k; the
subsequent discussion applies to each value of k separately. We consider
parametric architectures J̃(x, v, r) of the form

J̃(x, v, r) = r′φ(x, v) (3.20)

that depend on two parameter vectors v and r. Our objective is to select
v and r so that J̃(x, v, r) approximates some cost function that can be
sampled (possibly with some error). The process is to collect a training set
that consists of a large number of state-cost pairs (xs, βs), s = 1, . . . , q, and
to find a function J̃(x, v, r) of the form (3.20) that matches the training
set in a least squares sense, i.e., (v, r) minimizes

q
∑

s=1

(

J̃(xs, v, r)− βs
)2
.

We postpone for later the question of how the training pairs (xs, βs) are
generated, and how the training problem is solved.† Notice the different

† The least squares training problem used here is based on nonlinear re-

gression. This is a classical method for approximating the expected value of a

function with a parametric architecture, and involves a least squares fit of the

architecture to simulation-generated samples of the expected value. We refer to

machine learning and statistics textbooks for more discussion.
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Figure 3.2.1 A perceptron consisting of a linear layer and a nonlinear layer.
It provides a way to compute features of the state, which can be used for cost
function approximation. The state x is encoded as a vector of numerical values
y(x), which is then transformed linearly as Ay(x) + b in the linear layer. The
m scalar output components of the linear layer, become the inputs to nonlinear

functions that produce the m scalars φℓ(x, v) = σ
(

(Ay(x) + b)ℓ
)

, which can be
viewed as features that are in turn linearly weighted with parameters rℓ.

roles of the two parameter vectors here: v parametrizes φ(x, v), which in
some interpretation may be viewed as a feature vector, and r is a vector of

linear weighting parameters for the components of φ(x, v).
A neural network architecture provides a parametric class of functions

J̃(x, v, r) of the form (3.20) that can be used in the optimization framework
just described. The simplest type of neural network is the single layer per-

ceptron; see Fig. 3.2.1. Here the state x is encoded as a vector of numerical
values y(x) with components y1(x), . . . , yn(x), which is then transformed
linearly as

Ay(x) + b,

where A is an m×n matrix and b is a vector in ℜm.† This transformation
is called the linear layer of the neural network. We view the components
of A and b as parameters to be determined, and we group them together
into the parameter vector v = (A, b).

Each of the m scalar output components of the linear layer,

(

Ay(x) + b
)

ℓ
, ℓ = 1, . . . ,m,

becomes the input to a nonlinear differentiable function σ that maps scalars
to scalars. Typically σ is differentiable and monotonically increasing. A
simple and popular possibility is the rectified linear unit (ReLU for short),

† The method of encoding x into the numerical vector y(x) is problem-

dependent, but it is important to note that some of the components of y(x)

could be some known interesting features of x that can be designed based on

problem-specific knowledge.
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Figure 3.2.2 The rectified linear unit σ(ξ) = ln(1 + eξ). It is the function
max{0, ξ} with its corner “smoothed out.” Its derivative is σ′(ξ) = eξ/(1 + eξ),
and approaches 0 and 1 as ξ → −∞ and ξ → ∞, respectively.

Selective Depth Lookahead Tree σ(ξ) Selective Depth Lookahead Tree σ(ξ)
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Figure 3.2.3 Some examples of sigmoid functions. The hyperbolic tangent func-
tion is on the left, while the logistic function is on the right.

which is simply the function max{0, ξ}, approximated by a differentiable
function σ by some form of smoothing operation; for example σ(ξ) = ln(1+
eξ), which illustrated in Fig. 3.2.2. Other functions, used since the early
days of neural networks, have the property

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) <∞;

see Fig. 3.2.3. Such functions are called sigmoids , and some common
choices are the hyperbolic tangent function

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

and the logistic function

σ(ξ) =
1

1 + e−ξ
.

In what follows, we will ignore the character of the function σ (except for
differentiability), and simply refer to it as a “nonlinear unit” and to the
corresponding layer as a “nonlinear layer.”
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Figure 3.2.4 Nonlinear architecture with a view of the state encoding process
as a feature extraction mapping preceding the neural network.

At the outputs of the nonlinear units, we obtain the scalars

φℓ(x, v) = σ
(

(Ay(x) + b)ℓ
)

, ℓ = 1, . . . ,m.

One possible interpretation is to view φℓ(x, v) as features of x, which are
linearly combined using weights rℓ, ℓ = 1, . . . ,m, to produce the final
output

J̃(x, v, r) =
m
∑

ℓ=1

rℓφℓ(x, v) =
m
∑

ℓ=1

rℓσ
(

(Ay(x) + b)ℓ
)

.

Note that each value φℓ(x, v) depends on just the ℓth row of A and the ℓth
component of b, not on the entire vector v. In some cases this motivates
placing some constraints on individual components of A and b to achieve
special problem-dependent “handcrafted” effects.

State Encoding and Direct Feature Extraction

The state encoding operation that transforms x into the neural network in-
put y(x) can be instrumental in the success of the approximation scheme.
Examples of possible state encodings are components of the state x, numer-
ical representations of qualitative characteristics of x, and more generally
features of x, i.e., functions of x that aim to capture “important nonlin-
earities” of the optimal cost-to-go function. With the latter view of state
encoding, we may consider the approximation process as consisting of a
feature extraction mapping, followed by a neural network with input the
extracted features of x, and output the cost-to-go approximation; see Fig.
3.2.4.

The idea here is that with a good feature extraction mapping, the
neural network need not be very complicated (may involve few nonlinear
units and corresponding parameters), and may be trained more easily. This
intuition is borne out by simple examples and practical experience. How-
ever, as is often the case with neural networks, it is hard to support it with
a quantitative analysis.
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Figure 3.2.5 Illustration of the graph of the cost function of a two-dimensional
neural network training problem. The cost function is nonconvex, and it becomes
flat for large values of the weights. In particular, the cost tends asymptotically to
a constant as the vector of weights is changed towards ∞ along rays emanating
from the origin. The graph in the figure corresponds to an extremely simple
training problem: a single input, a single nonlinear unit, two weights, and five
input-output data pairs (corresponding to the five “petals” of the graph).

3.2.1 Training of Neural Networks

Given a set of state-cost training pairs (xs, βs), s = 1, . . . , q, the parameters
of the neural network A, b, and r are obtained by solving the training
problem

min
A,b,r

q
∑

s=1

(

m
∑

ℓ=1

rℓσ
((

Ay(xs) + b
)

ℓ

)

− βs

)2

. (3.21)

Note that the cost function of this problem is generally nonconvex, so
there may exist multiple local minima. In fact the graph of cost function of
the above training problem can be very complicated; see Fig. 3.2.5, which
illustrates a very simple special case.

In practice it is common to augment the cost function of this problem
with a regularization function, such as a quadratic in the parameters A,
b, and r. This is customary in least squares problems in order to make
the problem easier to solve algorithmically. However, in the context of
neural network training, regularization is primarily important for a different
reason: it helps to avoid overfitting, which occurs when the number of
parameters of the neural network is relatively large (comparable to the
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size of the training set). In this case a neural network model matches the
training data very well but may not do as well on new data. This is a well
known difficulty in machine learning, which is the subject of much current
research, particularly in the context of deep neural networks.

We refer to machine learning and neural network textbooks for a dis-
cussion of algorithmic questions regarding regularization and other issues
that relate to the practical implementation of the training process. In any
case, the training problem (3.21) is an unconstrained nonconvex differen-
tiable optimization problem that can in principle be addressed with any
of the standard gradient-type methods. Significantly, it is well-suited for
the incremental methods discussed in Section 3.1.3 (a sense of this can be
obtained by comparing the cost structure illustrated in Fig. 3.2.5 with the
one of Fig. 3.1.4, which explains the advantage of incrementalism).

Let us now consider a few issues regarding the neural network formu-
lation and training process just described:

(a) The first issue is to select a method to solve the training problem
(3.21). While we can use any unconstrained optimization method that
is based on gradients, in practice it is important to take into account
the cost function structure of problem (3.21). The salient character-
istic of this cost function is that it is the sum of a potentially very
large number q of component functions. This makes the computation
of the cost function value of the training problem and/or its gradient
very costly. For this reason the incremental methods of Section 3.1.3
are universally used for training.† Experience has shown that these
methods can be vastly superior to their nonincremental counterparts
in the context of neural network training.

The implementation of the training process has benefited from expe-
rience that has been accumulated over time, and has provided guide-
lines for scaling, regularization, initial parameter selection, and other
practical issues; we refer to books on neural networks such as Bishop
[Bis95], Goodfellow, Bengio, and Courville [GBC16], and Haykin
[Hay08] for related accounts. Still, incremental methods can be quite
slow, and training may be a time-consuming process. Fortunately, the
training is ordinarily done off-line, in which case computation time
may not be a serious issue. Moreover, in practice the neural network
training problem typically need not be solved with great accuracy.

† The incremental methods are valid for an arbitrary order of component

selection within the cycle, but it is common to randomize the order at the begin-

ning of each cycle. Also, in a variation of the basic method, we may operate on

a batch of several components at each iteration, called a minibatch, rather than

a single component. This has an averaging effect, which reduces the tendency

of the method to oscillate and allows for the use of a larger stepsize; see the

end-of-chapter references.
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(b) Another important question is how well we can approximate the op-
timal cost-to-go functions J*

k with a neural network architecture, as-
suming we can choose the number of the nonlinear units m to be as
large as we want. The answer to this question is quite favorable and is
provided by the so-called universal approximation theorem. Roughly,
the theorem says that assuming that x is an element of a Euclidean
space X and y(x) ≡ x, a neural network of the form described can ap-
proximate arbitrarily closely (in an appropriate mathematical sense),
over a closed and bounded subset S ⊂ X , any piecewise continu-
ous function J : S 7→ ℜ, provided the number m of nonlinear units
is sufficiently large. For proofs of the theorem at different levels of
generality, we refer to Cybenko [Cyb89], Funahashi [Fun89], Hornik,
Stinchcombe, and White [HSW89], and Leshno et al. [LLP93]. For
intuitive explanations we refer to Bishop ([Bis95], pp. 129-130) and
Jones [Jon90].

(c) While the universal approximation theorem provides some assurance
about the adequacy of the neural network structure, it does not pre-
dict how many nonlinear units we may need for “good” performance
in a given problem. Unfortunately, this is a difficult question to even
pose precisely, let alone to answer adequately. In practice, one is re-
duced to trying increasingly larger values of m until one is convinced
that satisfactory performance has been obtained for the task at hand.
Experience has shown that in many cases the number of required
nonlinear units and corresponding dimension of A can be very large,
adding significantly to the difficulty of solving the training problem.
This has given rise to many suggestions for modifications of the neural
network structure. One possibility is to concatenate multiple single
layer perceptrons so that the output of the nonlinear layer of one per-
ceptron becomes the input to the linear layer of the next, giving rise
to deep neural networks, which we will discuss in Section 3.2.2.

What are the Features that can be Produced by Neural Networks?

The short answer is that just about any feature that can be of practical
interest can be produced or be closely approximated by a neural network.
What is needed is a single layer that consists of a sufficiently large num-
ber of nonlinear units, preceded and followed by a linear layer. This is a
consequence of the universal approximation theorem. In particular it is
not necessary to have more than one nonlinear layer (although it is possi-
ble that fewer nonlinear units may be needed with a neural network that
involves multiple nonlinear layers).

As an illustration, we will consider features of a scalar state variable
x, and a neural network that uses the rectifier function

σ(ξ) = max{0, ξ}
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Figure 3.2.6 The feature

φβ,γ(x) = max
{

0, γ(x − β)
}

,

produced by a rectifier preceded by the linear function L(x) = γ(x− β).

as the basic nonlinear unit. Thus a single rectifier preceded by a linear
function

L(x) = γ(x− β),

where β and γ are scalars, produces the feature

φβ,γ(x) = max
{

0, γ(x− β)
}

, (3.22)

illustrated in Fig. 3.2.6.
We can now construct more complex features by adding or subtracting

single rectifier features of the form (3.22). In particular, subtracting two
rectifier functions with the same slope but two different horizontal shifts
β1 and β2, we obtain the feature

φβ1,β2,γ(x) = φβ1,γ(x)− φβ2,γ(x)

shown in Fig. 3.2.7(a). By subtracting again two features of the preceding
form, we obtain the “pulse” feature

φβ1,β2,β3,β4,γ(x) = φβ1,β2,γ(x) − φβ3,β4,γ(x),

shown in Fig. 3.2.7(b). The “pulse” feature can be used in turn as a funda-
mental block to approximate any desired feature by a linear combination
of “pulses.” This explains why neural networks are capable of producing
features of any shape by using linear layers to precede and follow nonlinear
layers, at least in the case of a scalar state x. The mechanism for feature
formation just described can be extended to the case of a multidimensional
x, and lies at the heart of the universal approximation theorem and its
proof (see Cybenko [Cyb89]).
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Figure 3.2.7 (a) Illustration of how the feature

φβ1,β2,γ(x) = φβ1,γ(x)− φβ2,γ(x)

is formed by a neural network of a two-rectifier nonlinear layer, preceded by a
linear layer.

(b) Illustration of how the “pulse” feature

φβ1,β2,β3,β4,γ(x) = φβ1,β2,γ(x)− φβ3,β4,γ(x)

is formed by a neural network of a four-rectifier nonlinear layer, preceded by a
linear layer.

3.2.2 Multilayer and Deep Neural Networks

An important generalization of the single layer perceptron architecture in-
volves a concatenation of multiple layers of linear and nonlinear functions;
see Fig. 3.2.8. In particular the outputs of each nonlinear layer become the
inputs of the next linear layer. In some cases it may make sense to add
as additional inputs some of the components of the state x or the state
encoding y(x).
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Figure 3.2.8 A deep neural network, with multiple layers. Each nonlinear layer
constructs the inputs of the next linear layer.

There are a few questions to consider here. The first has to do with the
reason for having multiple nonlinear layers, when a single one is sufficient to
guarantee the universal approximation property. Here are some qualitative
(and somewhat speculative) explanations:

(a) If we view the outputs of each nonlinear layer as features, we see that
the multilayer network produces a hierarchy of features, where each
set of features is a function of the preceding set of features [except for
the first set of features, which is a function of the encoding y(x) of
the state x]. In the context of specific applications, this hierarchical
structure can be exploited to specialize the role of some of the layers
and to enhance some characteristics of the state.

(b) Given the presence of multiple linear layers, one may consider the
possibility of using matrices A with a particular sparsity pattern,
or other structure that embodies special linear operations such as
convolution. When such structures are used, the training problem
often becomes easier, because the number of parameters in the linear
layers is drastically decreased.

(c) Overparametrization (more weights than data, as in a multilayer neu-
ral network) may help to mitigate the detrimental effects of overfit-
ting, and the attendant need for regularization. The explanation for
this fascinating phenomenon (observed as early as the late 90s) is the
subject of much current research; see [ZBH16], [BMM18], [BRT18],
[SJL18], [BLL19], [HMR19], [MVS19] for some representative works.

Note that while in the early days of neural networks practitioners
tended to use few nonlinear layers (say one to three), more recently a lot of
success in certain problem domains (including image and speech processing,
as well as approximate DP) has been achieved with so called deep neural

networks , which involve a considerably larger number of layers. In partic-
ular, the use of deep neural networks has been an important factor for the
success of the AlphaGo and AlphaZero programs that play Go and chess,
respectively; see [SHM16], [SHS17]. By contrast, Tesauro’s backgammon
program and its descendants (cf. Section 2.4.2) have performed well with
one or two nonlinear layers [PaR12].
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Training and Backpropagation

Let us now consider the training problem for multilayer networks. It has
the form

min
v,r

q
∑

s=1

(

m
∑

ℓ=1

rℓφℓ(xs, v)− βs

)2

,

where v represents the collection of all the parameters of the linear layers,
and φℓ(x, v) is the ℓth feature produced at the output of the final nonlinear
layer. Various types of incremental gradient methods, which modify the
weight vector in the direction opposite to the gradient of a single sample
term

(

m
∑

ℓ=1

rℓφℓ(xs, v)− βs

)2

,

can also be applied here. They are the methods most commonly used in
practice. An important fact is that the gradient with respect to v of each
feature φℓ(x, v) can be efficiently calculated, as we will describe shortly.

Multilayer perceptrons can be represented compactly by introducing
certain mappings to describe the linear and the nonlinear layers. In partic-
ular, let L1, . . . , Lm+1 denote the matrices representing the linear layers;
that is, at the output of the 1st linear layer we obtain the vector L1x and
at the output of the kth linear layer (k > 1) we obtain Lkξ, where ξ is the
output of the preceding nonlinear layer. Similarly, let Σ1, . . . ,Σm denote
the mappings representing the nonlinear layers; that is, when the input of
the kth nonlinear layer (k > 1) is the vector y with components y(j), we
obtain at the output the vector Σky with components σ

(

y(j)
)

. The output
of the multilayer perceptron is

F (L1, . . . , Lm+1, x) = Lm+1ΣmLm · · ·Σ1L1x.

The special nature of this formula has an important computational con-
sequence: the gradient (with respect to the weights) of the squared error
between the output and a desired output y,

E(L1, . . . , Lm+1) =
1

2

(

y − F (L1, . . . , Lm+1, x)
)2
,

can be efficiently calculated using a special procedure known as backprop-
agation, which is just an intelligent way of using the chain rule.† In par-
ticular, the partial derivative of the cost function E(L1, . . . , Lm+1) with

† The name backpropagation is used in several different ways in the neural

networks literature. For example feedforward neural networks of the type shown

in Fig. 3.2.8 are sometimes referred to as backpropagation networks. The some-

what abstract derivation of the backpropagation formulas given here comes from

Section 3.1.1 of the book [BeT96].
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respect to Lk(i, j), the ijth component of the matrix Lk, is given by

∂E(L1, . . . , Lm+1)

∂Lk(i, j)
= −e′Lm+1ΣmLm · · ·Lk+1ΣkIijΣk−1Lk−1 · · ·Σ1L1x,

(3.23)
where e is the error vector

e = y − F (L1, . . . , Lm+1, x),

Σn, n = 1, . . . ,m, is the diagonal matrix with diagonal terms equal to the
derivatives of the nonlinear functions σ of the nth hidden layer evaluated at
the appropriate points, and Iij is the matrix obtained from Lk by setting
all of its components to 0 except for the ijth component which is set to 1.
This formula can be used to obtain efficiently all of the terms needed in
the partial derivatives (3.23) of E using a two-step calculation:

(a) Use a forward pass through the network to calculate sequentially the
outputs of the linear layers

L1x, L2Σ1L1x, . . . , Lm+1ΣmLm · · ·Σ1L1x.

This is needed in order to obtain the points at which the derivatives
in the matrices Σn are evaluated, and also in order to obtain the error
vector e = y − F (L1, . . . , Lm+1, x).

(b) Use a backward pass through the network to calculate sequentially
the terms

e′Lm+1ΣmLm · · ·Lk+1Σk

in the derivative formulas (3.23), starting with e′Lm+1Σm, proceeding
to e′Lm+1ΣmLmΣm−1, and continuing to e′Lm+1Σm · · ·L2Σ1.

As a final remark, we mention that the ability to simultaneously ex-
tract features and optimize their linear combination is not unique to neural
networks. Other approaches that use a multilayer architecture have been
proposed (see the survey by Schmidhuber [Sch15]), and they admit similar
training procedures based on appropriately modified forms of backpropaga-
tion. An example of an alternative multilayer architecture approach is the
Group Method for Data Handling (GMDH), which is principally based on
the use of polynomial (rather than sigmoidal) nonlinearities. The GMDH
approach was investigated extensively in the Soviet Union starting with the
work of Ivakhnenko in the late 60s; see e.g., [Iva68]. It has been used in
a large variety of applications, and its similarities with the neural network
methodology have been noted (see the survey by Ivakhnenko [Iva71], and
the large literature summary at the web site http://www.gmdh.net). Most
of the GMDH research relates to inference-type problems, and apparently
there have not been any applications to approximate DP to date. However,
this may be a fruitful area of investigation, since in some applications it may
turn out that polynomial nonlinearities are more suitable than sigmoidal
or rectified linear unit nonlinearities.
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3.3 SEQUENTIAL DYNAMIC PROGRAMMING
APPROXIMATION

Let us describe a popular approach for training an approximation archi-
tecture J̃k(xk, rk) for a finite horizon DP problem. The parameter vectors
rk are determined sequentially, with an algorithm known as fitted value

iteration, starting from the end of the horizon, and proceeding backwards
as in the DP algorithm: first rN−1 then rN−2, and so on. The algorithm
samples the state space for each stage k, and generates a large number
of states xsk, s = 1, . . . , q. It then determines sequentially the parameter
vectors rk to obtain a good “least squares fit” to the DP algorithm.

In particular, each rk is determined by generating a large number of
sample states and solving a least squares problem that aims to minimize
the error in satisfying the DP equation for these states at time k. At
the typical stage k, having obtained rk+1, we determine rk from the least
squares problem

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xsk, r)

− min
u∈Uk(x

s
k
)
E
{

g(xsk, u, wk) + J̃k+1

(

fk(xsk, u, wk), rk+1

)

}

)2

where xsk, i = 1, . . . , q, are the sample states that have been generated for
the kth stage. Since rk+1 is assumed to be already known, the complicated
minimization term in the right side of this equation is the known scalar

βs
k = min

u∈Uk(x
s
k
)
E
{

g(xsk, u, wk) + J̃k+1

(

fk(xsk, u, wk), rk+1

)

}

, (3.24)

so that rk is obtained as

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xsk, r)− βs
k

)2
. (3.25)

The algorithm starts at stage N − 1 with the minimization

rN−1 ∈ argmin
r

q
∑

s=1

(

J̃N−1(xsN−1, r)

− min
u∈UN−1(x

s
N−1

)
E
{

gN−1(xsN−1, u, wN−1) + gN
(

fN−1(xsN−1, u, wN−1)
)

}

)2

and ends with the calculation of r0 at k = 0.
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In the case of a linear architecture, where the approximate cost-to-go
functions are

J̃k(xk, rk) = r′kφk(xk), k = 0, . . . , N − 1,

the least squares problem (3.25) greatly simplifies, and admits the closed
form solution

rk =

(

q
∑

s=1

φk(xsk)φk(x
s
k)

′

)

−1 q
∑

s=1

βs
kφk(x

s
k);

cf. Eq. (3.4). For a nonlinear architecture such as a neural network, incre-
mental gradient algorithms may be used.

An important implementation issue is how to select the sample states
xsk, s = 1, . . . , q, k = 0, . . . , N − 1. In practice, they are typically obtained
by some form of Monte Carlo simulation, but the distribution by which
they are generated is important for the success of the method. In particu-
lar, it is important that the sample states are “representative” in the sense
that they are visited often under a nearly optimal policy. More precisely,
the frequencies with which various states appear in the sample should be
roughly proportional to the probabilities of their occurrence under an op-
timal policy. This point will be discussed later, in the context of infinite
horizon problems, and the notion of “representative” state will be better
quantified in probabilistic terms.

Aside from the issue of selection of the sampling distribution that
we have just described, a difficulty with fitted value iteration arises when
the horizon is very long, since then the number of parameters may become
excessive. In this case, however, the problem is often stationary, in the sense
that the system and cost per stage do not change as time progresses. Then
it may be possible to treat the problem as one with an infinite horizon and
bring to bear additional methods for training approximation architectures;
see the relevant discussions in Chapters 5 and 6.

3.4 Q-FACTOR PARAMETRIC APPROXIMATION

We will now consider an alternative form of approximation in value space
and fitted value iteration. It involves approximation of the optimal Q-
factors of state-control pairs (xk, uk) at time k, with no intermediate ap-
proximation of cost-to-go functions. The optimal Q-factors are defined by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

, k = 0, . . . , N−1,

(3.26)
where J*

k+1 is the optimal cost-to-go function for stage k+1. ThusQ*
k(xk, uk)

is the cost attained by using uk at state xk, and subsequently using an op-
timal policy.
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As noted in Section 1.2, the DP algorithm can be written as

J*
k (xk) = min

u∈Uk(xk)
Q*

k(xk, uk),

and by using this equation, we can write Eq. (3.26) in the following equiv-
alent form that relates Q*

k with Q*
k+1:

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)

+ min
u∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), u
)

}

.
(3.27)

This suggests that in place of the Q-factorsQ*
k(xk, uk), we may use Q-factor

approximations and Eq. (3.27) as the basis for suboptimal control.
We can obtain such approximations by using methods that are similar

to the ones we have considered so far (parametric approximation, enforced
decomposition, certainty equivalent control, etc). Parametric Q-factor ap-
proximations Q̃k(xk, uk, rk) may involve a neural network, or a feature-
based linear architecture. The feature vector may depend on just the state,
or on both the state and the control. In the former case, the architecture
has the form

Q̃k(xk, uk, rk) = rk(uk)′φk(xk), (3.28)

where rk(uk) is a separate weight vector for each control uk. In the latter
case, the architecture has the form

Q̃k(xk, uk, rk) = r′kφk(xk, uk), (3.29)

where rk is a weight vector that is independent of uk. The architecture
(3.28) is suitable for problems with a relatively small number of control
options at each stage. In what follows, we will focus on the architecture
(3.29), but the discussion with few modifications, also applies to the archi-
tecture (3.28) and to nonlinear architectures as well.

We may adapt the fitted value iteration approach of the preceding
section to compute sequentially the parameter vectors rk in Q-factor para-
metric approximations, starting from k = N − 1. This algorithm is based
on Eq. (3.27), with rk obtained by solving least squares problems similar
to the ones of the cost function approximation case [cf. Eq. (3.25)]. As
an example, the parameters rk of the architecture (3.29) are computed se-
quentially by collecting sample state-control pairs (xsk, u

s
k), s = 1, . . . , q,

and solving the linear least squares problems

rk ∈ argmin
r

q
∑

s=1

(

r′φk(xsk, u
s
k)− βs

k

)2
, (3.30)
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where

βs
k = E

{

gk(xsk, u
s
k, wk)+ min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk+1

(

fk(xsk, u
s
k, wk), u

)

}

.

(3.31)
Thus, having obtained rk+1, we obtain rk through a least squares fit that
aims to minimize the sum of the squared errors in satisfying Eq. (3.27).
Note that the solution of the least squares problem (3.30) can be obtained
in closed form as

rk =

(

q
∑

s=1

φk(xsk, u
s
k)φk(x

s
k, u

s
k)

′

)

−1 q
∑

s=1

βs
kφk(x

s
k, u

s
k);

[cf. Eq. (3.4)]. Once rk has been computed, the one-step lookahead control
µ̃k(xk) is obtained on-line as

µ̃k(xk) ∈ arg min
u∈Uk(xk)

Q̃k(xk, u, rk), (3.32)

without the need to calculate any expected value. This latter property is a
primary incentive for using Q-factors in approximate DP, particularly when
there are tight constraints on the amount of on-line computation that is
possible in the given practical setting.

The samples βs
k of Eq. (3.31) involve the computation of an expected

value. In an alternative implementation, we may replace βs
k with an average

of just a few samples (even a single sample) of the random variable

gk(xsk, u
s
k, wk) + min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk+1

(

fk(xsk, u
s
k, wk), u

)

, (3.33)

collected according to the probability distribution of wk. This distribu-
tion may either be known explicitly, or in a model-free situation, through
a computer simulator; cf. the discussion of Section 2.1.4. In particular,
to implement this scheme, we only need a simulator that for any pair
(xk, uk) generates a sample of the stage cost gk(xk, uk, wk) and the next
state fk(xk, uk, wk) according to the distribution of wk.

Note that the samples of the random variable (3.33) do not require
the computation of an expected value like the samples (3.24) in the cost
approximation method of the preceding chapter. Moreover the samples of
(3.33) involve a simpler minimization than the samples (3.24). This is an
important advantage of working with Q-factors rather than state costs.

Having obtained the weight vectors r0, . . . , rN−1, and hence the one-
step lookahead policy π̃ = {µ̃0, . . . , µ̃N−1} through Eq. (3.32), a further
possibility is to approximate this policy with a parametric architecture.
This is approximation in policy space built on top of approximation in value

space; see the discussion of Section 2.1.5. The idea here is to simplify even
further the on-line computation of the suboptimal controls by avoiding the
minimization of Eq. (3.32).
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Advantage Updating

Let us finally note an alternative to computing Q-factor approximations. It
is motivated by the potential benefit of approximating Q-factor differences
rather than Q-factors. In this method, called advantage updating, instead
of computing and comparing Q*

k(xk, uk) for all uk ∈ Uk(xk), we compute

Ak(xk, uk) = Q*
k(xk, uk)− min

uk∈Uk(xk)
Q*

k(xk, uk).

The function Ak(xk, uk) can serve just as well as Q*
k(xk, uk) for the purpose

of comparing controls, but may have a much smaller range of values than
Q*

k(xk, uk).
In the absence of approximations, selecting controls by advantage

updating is clearly equivalent to selecting controls by comparing their Q-
factors. However, when approximation is involved, using Ak can be impor-
tant, because Q*

k may embody sizable quantities that are independent of u,
and which may interfere with algorithms such as the fitted value iteration
(3.30)-(3.31). In particular, when training an architecture to approximate
Q*

k, the training algorithm may naturally try to capture the large scale
behavior of Q*

k, which may be irrelevant because it may not be reflected in
the Q-factor differences Ak. However, with advantage updating, we may
instead focus the training process on finer scale variations of Q*

k, which
may be all that matters. This question is discussed further and is illus-
trated with an example in the neuro-dynamic programming book [BeT96],
Section 6.6.2.

The technique of subtracting a suitable constant (often called a base-

line) from a quantity that is estimated by simulation is a useful idea; see
Fig. 3.4.1 (in the case of advantage updating, the constants depend on xk,
but the same general idea applies). It can also be used in the context
of the sequential DP approximation method of Section 3.3, as well as in
conjunction with other simulation-based methods in RL.

3.5 PARAMETRIC APPROXIMATION IN POLICY SPACE BY
CLASSIFICATION

We have focused so far on approximation in value space using parametric
architectures. In this section we will discuss briefly how the cost function
approximation methods of this chapter can be suitably adapted for the
purpose of approximation in policy space, whereby we select the policy by
using optimization over a parametric family of some form.

In particular, suppose that for a given stage k, we have access to
dataset of “good” sample state-control pairs (xsk, u

s
k), s = 1, . . . , q, obtained

through some unspecified process, such as rollout or problem approxima-
tion. We may then wish to “learn” this process by training the parameter
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Figure 3.4.1. Illustration of the idea of subtracting a baseline constant from a
cost or Q-factor approximation. Here we have samples h(u1), . . . , h(uq) of a scalar
function h(u) at sample points u1, . . . , uq , and we want to approximate h(u) with
a linear function h̃(u, r) = ru, where r is a scalar tunable weight. We subtract a
baseline constant b from the samples, and we solve the problem

r̄ ∈ argmin
r

q
∑

s=1

(

(

h(us)− b
)

− rus

)2

.

By properly adjusting b, we can improve the quality of the approximation, which

after subtracting b from all the sample values, takes the form h̃(u, b, r) = b+ ru.
Conceptually, b serves as an additional weight (multiplying the basis function 1),
which enriches the approximation architecture.

vector rk of a parametric family of policies µ̃k(xk, rk), using least squares
minimization/regression:

rk ∈ argmin
rk

q
∑

s=1

∥

∥usk − µ̃k(xsk, rk)
∥

∥

2
; (3.34)

cf. our discussion of approximation in policy space in Section 2.1.5.
It is useful to make the connection of this regression approach with

classification, an important problem in machine learning. This is the prob-
lem of constructing an algorithm, called a classifier , which assigns a given
“object” to one of a finite number of “categories” based on its “charac-
teristics.” Here we use the term “object” generically. In some cases, the
classification may relate to persons or situations. In other cases, an ob-
ject may represent a hypothesis, and the problem is to decide which of the
hypotheses is true, based on some data. In the context of approximation
in policy space, objects correspond to states, and categories correspond to
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controls to be applied at the different states. Thus in this case, we view
each sample

(

xsk, u
s
k

)

as an object-category pair.
Generally, in (multiclass) classification we assume that we have a

population of objects, each belonging to one of m categories c = 1, . . . ,m.
We want to be able to assign a category to any object that is presented to
us. Mathematically, we represent an object with a vector x (e.g., some raw
description or a vector of features of the object), and we aim to construct
a rule that assigns to every possible object x a unique category c.

To illustrate a popular classification method, let us assume that if we
draw an object x at random from this population, the conditional probabil-
ity of the object being of category c is p(c |x). If we know the probabilities
p(c |x), we can use a classical statistical approach, whereby we assign x to
the category c∗(x) that has maximal posterior probability, i.e.,

c∗(x) ∈ arg max
c=1,...,m

p(c |x). (3.35)

This is called the Maximum a Posteriori rule (or MAP rule for short; see
for example the book [BeT08], Section 8.2, for a discussion).

When the probabilities p(c |x) are unknown, we may try to estimate
them using a least squares optimization, based on the following property.

Proposition 3.5.1: (Least Squares Property of Conditional
Probabilities) Let ξ(x) be any prior distribution of x, so that the
joint distribution of (c, x) is

ζ(c, x) =
∑

x

ξ(x)

m
∑

c=1

p(c |x).

Let z(c, x) be the function of (c, x) defined by

z(c, x) =
{

1 if x is of category c,
0 otherwise.

For any function h(c, x) of (c, x), consider

E
{

(

z(c, x)− h(c, x)
)2
}

,

the expected value with respect to the distribution ζ(c, x) of the ran-

dom variable
(

z(c, x)−h(c, x)
)2
. Then p(c |x) minimizes this expected

value over all functions h(c, x), i.e., for all functions h, we have

E
{

(

z(c, x)− p(c |x)
)2
}

≤ E
{

(

z(c, x)− h(c, x)
)2
}

. (3.36)
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The proof of the proposition may be found in textbooks that deal
with Bayesian least squares estimation (see, e.g., [BeT08], Section 8.3).†

The proposition states that p(c |x) is the function of (c, x) that min-
imizes

E
{

(

z(c, x)− h(c, x)
)2
}

(3.37)

over all functions h of (c, x), independently of the prior distribution of

x. This suggests that we can obtain approximations to the probabilities
p(c |x), c = 1, . . . ,m, by minimizing an empirical/simulation based approx-
imation of the expected value (3.37).

More specifically, let us assume that we have a training set consisting
of q object-category pairs (xs, cs), s = 1, . . . , q, and corresponding vectors

zs(c) =

{

1 if cs = c,
0 otherwise,

c = 1, . . . ,m,

and adopt a parametric approach. In particular, for each category c =
1, . . . ,m, we approximate the probability p(c |x) with a function h̃(c, x, r)

† For a quick argument, consider for any pair (c, x) the conditional expected

value E
{

(

z(c, x) − y
)2 ∣
∣ c, x

}

, where y is any scalar. Given (c, x), the random

variable z(c, x) takes the value z(c, x) = 1 with probability p(c |x) and the value
z(c, x) = 0 with probability 1− p(c | x), so we have

E
{

(

z(c, x)− y
)2 ∣
∣ c, x

}

= p(c |x)(y − 1)2 +
(

1− p(c |x)
)

y2.

We minimize this expression with respect to y, by setting to 0 its derivative, i.e.,

0 = 2p(c |x)(y − 1) + 2
(

1− p(c |x)
)

y = 2
(

− p(c | x) + y
)

.

We thus obtain the minimizing value of y, namely p(c |x), so that

E
{

(

z(c, x)− p(c |x)
)2

| c, x
}

≤ E
{

(

z(c, x)− y
)2

| c, x
}

, for all scalars y.

For any function h of (c, x) we set y = h(c, x) in the above expression and obtain

E
{

(

z(c, x)− p(c |x)
)2

| c, x
}

≤ E
{

(

z(c, x)− h(c, x)
)2

| c, x
}

.

Since this is true for all (c, x), we also have

∑

(c,x)

ζ(c, x)E
{

(

z(c, x)−p(c |x)
)2 ∣
∣ c, x

}

≤
∑

(c,x)

ζ(c, x)E
{

(

z(c, x)−h(c, x)
)2 ∣
∣ c, x

}

,

for all functions h, i.e., Eq. (3.36) holds.
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Figure 3.5.1. Illustration of the MAP classifier c∗(x) for the case where the
probabilities p(c |x) are known [cf. Eq. (3.35)], and its data-trained version c̃(x, r̄)
[cf. Eq. (3.39)]. The classifier may be obtained by using the data set (xs

k
, us

k
), s =

1, . . . , q, and an approximation architecture such as a feature-based architecture
or a neural network.

that is parametrized by a vector r, and optimize over r the empirical ap-
proximation to the expected squared error of Eq. (3.37). In particular, we
obtain r by the least squares regression:

r̄ ∈ argmin
r

q
∑

s=1

m
∑

c=1

(

zs(c)− h̃(c, xs, r)
)2
. (3.38)

The functions h̃(c, x, r) may be provided for example by a feature-based
architecture or a neural network.

Note that each training pair (xs, cs) is used to generate m examples
for use in the regression problem (3.38): m − 1 “negative” examples of
the form (xs, 0), corresponding to the m − 1 categories c 6= cs, and one
“positive” example of the form (xs, 1), corresponding to c = cs. Note also
that the incremental training methods described in Sections 3.1.3 and 3.2.1
can be applied to the solution of this problem.

The regression problem (3.38) approximates the minimization of the
expected value (3.37), so we conclude that its solution h̃(c, x, r̄), c =
1, . . . ,m, approximates the probabilities p(c |x). Once this solution is ob-
tained, we may use it to classify a new object x according to the rule

Estimated Object Category = c̃(x, r̄) ∈ arg max
c=1,...,m

h̃(c, x, r̄), (3.39)

which approximates the MAP rule (3.35); cf. Fig. 3.5.1.
Returning to approximation in policy space, for a given training set

(xsk, u
s
k), s = 1, . . . , q, the classifier just described provides (approximations
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Figure 3.5.2 Illustration of classification-based approximation in policy space.
The classifier, defined by the parameter rk, is constructed by using the train-
ing set (xs

k
, us

k
), s = 1, . . . , q. It yields a randomized policy that consists of the

probability h̃(u, xk, rk) of using control u ∈ Uk(xk) at state xk. This policy is ap-
proximated by the deterministic policy µ̃k(xk, rk) that uses at state xk the control
that maximizes over u ∈ Uk(xk) the probability h̃(u, xk, rk) [cf. Eq. (3.39)].

to) the “probabilities” of using the controls uk ∈ Uk(xk) at the states xk,
so it yields a “randomized” policy h̃(u, xk, rk) for stage k [once the values
h̃(u, xk, rk) are normalized so that, for any given xk, they add to 1]; cf. Fig.
3.5.2. In practice, this policy is usually approximated by the deterministic
policy µ̃k(xk, rk) that uses at state xk the control of maximal probability
at that state; cf. Eq. (3.39).

For the simpler case of a classification problem with just two cate-
gories, say A and B, a similar formulation is to hypothesize a relation of
the following form between object x and its category:

Object Category =

{

A if h̃(x, r) = 1,
B if h̃(x, r) = −1,

where h̃ is a given function and r is the unknown parameter vector. Given
a set of q object-category pairs (x1, z1), . . . , (xq, zq) where

zs =

{

1 if x is of category A,
−1 if x is of category B,

we obtain r by the least squares regression:

r̄ ∈ argmin
r

q
∑

s=1

(

zs − h̃(xs, r)
)2
.

The optimal parameter vector r̄ is used to classify a new object with data
vector x according to the rule

Estimated Object Category =

{

A if h̃(x, r̄) > 0,
B if h̃(x, r̄) < 0.

In the context of DP, this classifier may be used, among others, in stopping
problems where there are just two controls available at each state: stopping
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(i.e., moving to a termination state) and continuing (i.e., moving to some
nontermination state).

There are several variations of the preceding classification schemes,
for which we refer to the specialized literature. Moreover, there are sev-
eral commercially and publicly available software packages for solving the
associated regression problems and their variants. They can be brought
to bear on the problem of parametric approximation in policy space using
any training set of state-control pairs, regardless of how it was obtained.

3.6 NOTES AND SOURCES

Section 3.1: Our discussion of approximation architectures, neural net-
works, and training has been limited, and aimed just to provide the con-
nection with approximate DP and a starting point for further exploration.
The literature on the subject is vast, and the textbooks mentioned in the
references to Chapter 1 provide detailed accounts and many sources, in
addition to the ones given in Sections 3.1.3 and 3.2.1.

There are two broad directions of inquiry in parametric architectures:

(1) The design of architectures, either in a general or a problem-specific
context. Research in this area has intensified following the increased
popularity of deep neural networks.

(2) The training of neural networks as well as linear architectures.

Research on both of these issues has been extensive and is continuing.
An important direction, not discussed here, is how to take advantage of
distributed computation, particularly in conjunction with partitioned ar-
chitectures (see [BeT96], Section 3.1.3, [BeY10], [BeY12], [Ber19c]).

Methods for selection of basis functions have received much attention,
particularly in the context of neural network research and deep reinforce-
ment learning (see e.g., the book by Goodfellow, Bengio, and Courville
[GBC16]). For discussions that are focused outside the neural network
area, see Bertsekas and Tsitsiklis [BeT96], Keller, Mannor, and Precup
[KMP06], Jung and Polani [JuP07], Bertsekas and Yu [BeY09], and Bhat-
nagar, Borkar, and Prashanth [BBP13]. Moreover, there has been consid-
erable research on the optimal feature selection within given parametric
classes (see Menache, Mannor, and Shimkin [MMS05], Yu and Bertsekas
[YuB09b], Busoniu et al. [BBD10], and Di Castro and Mannor [DiM10]).

Incremental algorithms are supported by substantial theoretical anal-
ysis, which addresses issues of convergence, rate of convergence, stepsize se-
lection, and component order selection. Moreover, incremental algorithms
have been extended to constrained optimization settings, where the con-
straints are also treated incrementally, first by Nedić [Ned11], and then by
several other authors: Bertsekas [Ber11c], Wang and Bertsekas [WaB14],
[WabB16], Bianchi [Bia16], Iusem, Jofre, and Thompson [IJT18]. It is be-
yond our scope to cover this analysis. The author’s surveys [Ber10] and
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[Ber15b], and convex optimization and nonlinear programming textbooks
[Ber15a], [Ber16a], collectively contain an extensive account of incremental
methods, including the Kaczmarz, and incremental gradient, subgradient,
aggregated gradient, Newton, Gauss-Newton, and extended Kalman filter-
ing methods, and give many references. We also refer to the book [BeT96]
and paper [BeT00] by Bertsekas and Tsitsiklis, and the survey by Bottou,
Curtis, and Nocedal [BCN18] for a theoretically oriented treatments.

Section 3.2: The publicly and commercially available neural network
training programs incorporate heuristics for scaling and preprocessing data,
stepsize selection, initialization, etc, which can be very effective in special-
ized problem domains. We refer to books on neural networks such as Bishop
[Bis95], Goodfellow, Bengio, and Courville [GBC16], and Haykin [Hay08].

Deep neural networks have created a lot of excitement in the machine
learning field, in view of some high profile successes in image and speech
recognition, and in RL with the AlphaGo and AlphaZero programs. One
question is whether and for what classes of target functions we can enhance
approximation power by increasing the number of layers while keeping the
number of weights constant. For analysis and speculation around this
question, see Bengio [Ben09], Liang and Srikant [LiS16], Yarotsky [Yar17],
Daubechies et al. [DDF19], and the references quoted there. Another re-
search question relates to the role of overparametrization in the success of
deep neural networks. With more weights than training data, the training
problem has infinitely many solutions. The question then is how to select
a solution that works well on test data (i.e., data outside the training set);
see [ZBH16], [BMM18], [BRT18], [SJL18], [BLL19], [HMR19], [MVS19].

Section 3.3: Fitted value iteration has a long history; it has been men-
tioned by Bellman among others. It has interesting properties, and at times
exhibits pathological/unstable behavior due to accumulation of errors over
a long horizon. We will discuss this behavior in Section 5.2.

Section 3.4: Advantage updating was proposed by Baird [Bai93], [Bai94],
and is discussed in Section 6.6 of the book [BeT96].

Section 3.5: Classification (sometimes called “pattern classification” or
“pattern recognition”) is a major subject in machine learning, for which
there are many approaches and an extensive literature; see e.g. the text-
books by Bishop [Bis95], [Bis06], and Duda, Hart, and Stork [DHS12].
Approximation in policy space was formulated as a classification problem
in the context of DP by Lagoudakis and Parr [LaP03], and was followed
up by several other authors; see our subsequent discussion of rollout-based
policy iteration for infinite horizon problems (cf. Section 5.7.3). While we
have focused on a classification approach that makes use of least squares
regression and a parametric architecture, other classification methods may
also be used. For example the paper [LaP03] discusses the use of nearest
neighbor schemes, support vector machines, as well as neural networks.




