第1部分

基础建模篇

项目1	创建波浪墙体
项目2	创建剪刀楼梯
项目3	绘制多种楼梯及扶手
项目4	创建异形楼梯
项目5	创建管道楼梯
项目6	创建悬吊楼梯
项目7	创建扎哈悬浮楼梯
项目8	创建灯光曲折楼梯
项目9	创建钢结构雨棚
项目10	创建场地
项目11	创建六角星屋顶
项目12	创建八角亭屋顶
项目13	创建遮阳棚

项目1

创建波浪墙体

本项目讲解用Revit创建波浪墙体,主要涉及的知识点是体量建模,学习创建体量过程 中实心形状和空心形状的创建方法。

主要使用的命令:

- 参照平面(RP)。
- 复制 (CO)。
- 移动(MO)。
- 墙(WA)、门(DR)、窗(WN)。
- 创建实心形状与空心形状。

提示:

- 在步骤3中绘制"波浪线框"时,线框必须是封闭的,而且线条是不能重叠的,这样后面才能成功创建出"实心形状"。
- 在步骤3第(7)步中,选择空心形状时如果选择不到所需对象,可按Tab键切换选择,以
 便选择到合适的对象。

步骤1:选择样板

新建项目,选择"建筑样板"。

步骤2: 绘制一面墙并添加门窗

(1)选择"建筑"→"墙"命令,绘制一面墙,长度为"12000",高度为"8000"(图1-1)。

(2)选择"门"和"窗"命令,在墙上添加门窗(图1-2)。

步骤3: 创建体量

请看图1-3,下面将绘制图中四个封闭轮廓,然后以此为截 面来放样创建实体。4个轮廓分别位于4个铅垂的平面内,为此需 要创建4个参照平面。这里绘制参照平面的目的就是限定轮廓曲 线的绘制平面。

(1)切换视图到"标高1",输入快捷命令RP,绘制4个参照平面,接着输入快捷命令DI,对这4个参照平面继续标注并取相同值(图1-4)。分别将参照平面命名为"1""2""3""4"(图1-5)。

提示:参照平面

"参照平面"是Revit中最常用的工具,是用来定位平面位置和空间方位的。图1-5 中绘制的参照平面,实际上是一个垂直于平面的平面。后续可以设置参照平面,就是设 置一个工作平面,如同一张画常常需要张贴在一个面之上,这个面可以是铅垂面, 也可以是任意方位的平面。

参照平面有一个属性"是参照",这是非常重要的一个属性,将参照平面选择为 "非参照"时,这个参照平面将无法捕捉,无法进行尺寸标注;当选择为"强参照" 时,该参照平面的优先级别最高,无论何时都能被捕捉到,就算很多图元重叠在一 起,也能被第一个选中;当选择为"弱参照"时,可能需要用Tab键才能捕捉到该参照 平面。

对参照平面进行独一无二的命名,是为了便于按名称选择。命名不是必须的,但常常是很有用的。

(2)切换视图到"南立面",单击"体量和场地"→"内建体量",弹出名称设置对话框,直接使用默认名称即可。单击"创建"→"模型线",弹出"工作平面"设置对话框,先选择"参照平面:1"作为工作平面(图1-6)。使用"直线"和"样条曲线"绘制出一个波浪形的封闭线框。绘制过程中要注意选择"在工作平面上绘制"(图1-7)。

图1-6

(3)单击选项栏中的"放置平面"切换为"参照平面:2",绘制幅度不同的波浪形封闭线框(图1-8),同样,在"参照平面:3""参照平面:4"上也绘制出波浪形封闭线框。

图1-8

(4) 切换视图到"三维视图",选择全部线框,单击"创建形状"→"实心形状"(图1-9、图1-10)。

完成 取消

体量 体量 在位编辑器

提示:

在模型的创建过程中,有很多 ✔ ¥,这表示当前处于某个层级的模型编辑过程中。

在本例中,这显示当前处于体量的编辑过程。某些模型创建过程,由多个步骤或层级完成,这时候需要知道当前操作处于哪一层级。建模过程中,如果需要临时退出当前过程,可以先单击 ≥。例如,如果需要临时绘制一个参照平面,就需要临时单击"完成体量"。需要再次编辑体量时,可以再次双击体量物体,进入在位编辑体量状态。

例如,模型放样有主层级"放样",还有"绘制路径"和"编辑轮廓"两个子层级,有三对 ✓ ×,如图1-11所示。

下面将对刚创建的曲面体进行栅条状切割,利用创建空心实体的方法,通过平行于墙 立面的矩形轮廓拉伸放样,并阵列复制完成。

(5) 切换视图到"南立面",沿着墙体边缘绘制一个参照平面,并命名为"a" (图1-12)。

图1-12

(6)切换视图到"西立面",将视觉样式设置为"线框",单击"创建"→"模型线",弹出工作平面设置窗口,选择"参照平面:a"作为工作平面,绘制一个与墙同高,宽度为"150",距离墙体边缘"100"的矩形(图1-13)。切换到"三维视图",选择矩形,单击"创建形状"→"空心形状"(图1-14),并将所创建的空心形状矩形拉伸出厚度(图1-15、图1-16)。

图1-13

图1-14

图1-15

图1-16

(7) 切换视图到"西立面",选择"空心形状"(即矩形),输入快捷命令CO,勾选"多个"复选框,进行复制(图1-17~图1-19)。

图1-18

步骤4:门窗开洞,添加材质

(1) 切换视图到"西立面",单击"创建"→"模型线",此时默认工作平面为"参 照平面: a",沿着门窗边缘绘制矩形。切换视图到"三维视图",选择绘制出来的矩形 (图1-20),单击"创建形状"→"空心形状"(图1-21),并对所创建的空心形状进行 拉伸(图1-22~图1-24)。

图1-22

图1-23

图1-24

(2)选择先前所创建的"实心形状"。单击"属性"面板中的"材质"栏,打开"材 质浏览器"(图1-25),搜索"樱桃木"(图1-26),选择后单击"确定"按钮,完成材 质的添加(图1-27)。完成模型(图1-28)。

注意:

直接选择体量模型, "属性"面板中没有"材质"栏。需要双击体量实体,进入其 组成的下一级,即"形式","属性"面板中方出现"材质"栏。选择"形式"时,可 通过Tab键切换选择完整的形体。

图1-26

图1-27

图1-28

项目2

创建剪刀楼梯

本项目讲解按照"构件"方式创建剪刀(交叉跑)楼梯,主要的步骤有4个:①创建标高;②创建参考线;③创建楼梯;④绘制平台。本项目可帮助读者在实际项目中灵活运用 基本建筑构件来创建新类型的构件。

主要使用的命令:

- 参考线(RP)。
- 镜像楼梯(MM)。
- 楼梯绘制。
- 平台绘制、边界绘制。

提示:

- 绘制梯段时,将"定位线"修改为"梯边梁外侧:右",以便更好地绘制梯段。
- 绘制平台时,平台的"相对高度"要修改正确。

步骤1: 创建标高

新建项目,选择"建筑样板"。切换至立面(图2-1),通过复制标高1来创建多个标高(图2-2)。(数值仅供参考,可依据实际情况而定。)

步骤2: 创建参考线

切换至场地平面,创建参考线(图2-3)。技巧:可以一条条地绘制参考线,也可以通过"复制"命令来创建,还可以通过调整偏移量来精确定位及使用快捷命令MM来镜像部分参考线(图2-4)。

步骤3: 创建楼梯

单击创建面板下的"楼梯"(图2-5),选择"整体浇筑楼梯",单击"编辑类型"更 改参数(图2-6~图2-8)。

图2-5

步骤4: 创建剪刀楼梯的一侧

注意,要在"定位线"下拉列表里选择"梯边梁外侧:右"(图2-9)。按顺序单击 1、2、3、4号点位置,定位创建楼梯(图2-10)。

步骤5: 镜像产生剪刀楼梯的另一侧

完成创建楼梯一侧后,删除平台。使用"镜像"命令或快捷命令MM镜像剩余部分(图2-11)。然后切换至三维视图,删除多余的梯段(图2-12)。

步骤6:绘制平台

选择"平台"(图2-13),绘制封闭边界,用"直线""三点圆弧"命令绘制(图2-14),可以通过"镜像"命令提高绘制速度。

注意:

需要修改默认的楼板高度,将"相对高度"改为1700(图2-15)。

注意:

楼梯平台由封闭边界构成,注意边界的封闭性,且边界不能重叠和交叉。

效果如图2-16所示。

图2-16

绘制多种楼梯及扶手

项目3

本项目讲解按照草图方式自由地创建楼梯。在新建项目中先创建标高1到标高4,在平 面图中绘制辅助线,然后再编辑楼梯类型和平台类型,最后绘制楼梯与平台。

主要使用的命令:

- 绘制标高。
- 绘制参考线。
- 创建楼梯。

提示:

- 楼梯平台由封闭边界构成,注意边界的封闭性,且边界不能重叠交叉。
- 创建楼梯有按构件绘制和按草图绘制两种方式,其参数有所区别。按草图绘制后, 对楼梯形状和平台形状的编辑有较大自由度。
- 调节视图范围时,记得把视觉范围里面的"顶"改为"无限制",否则有可能不能 看到绘制的楼梯全景。
- 当学习到一定程度后,不需要一步步地完全跟随本视频教程的操作,可以按照自己的理解更快地绘制出图形。

建议尺寸:梯段宽度1200mm,踏板宽度250mm,踢面高度150,栏杆高度900mm。 其他尺寸请绘图时酌情考虑。

步骤1:新建项目

开启Revit, 打开"新建项目"对话框,选择"建筑 样板",单击"确定"按钮,如图3-1所示。

步骤2:创建标高

单击"立面(建筑立面)",选择"南立面",然 后通过复制标高2来创建标高3和标高4,随后修改各层 的标高(或者可以直接绘制标高3和标高4)。绘制完标

高后,单击"视图"→"平面视图"→"楼层平面",然后选中标高3和标高4,单击"确 定"按钮,如图3-2所示。

步骤3:调节视图范围

返回到"楼层平面标高1",将属性中的"视图范围"→"编辑"→"顶"改为"无限制",剖切面"偏移量"改为4800或者更多。

提示:

之所以要改视图范围,是为了在标高1绘图时能看见在标高2、标高3、标高4上的图 形,如图3-3和图3-4所示。

楼	层平面	•	视图范围			×
	(77) (± 17)		主要范围			
楼层平面: 标高	1 ~ 間編額	类型				
日光路径		^	顶(T):	一无限制	~ 偏移量(0):	2300.0
范围		*				
裁剪视图			剖切面(C):	相关标高(标高1)	√ 偏移量(E):	4800.0
裁剪区域可见						
注释裁剪			底(B):	相关标高(标高1)	✓ 偏移量(F):	0.0
视图范围	编辑			THE CHARGE CHARGE AN		
相天际局	你尚 1		初图深度			
范围框	无		170 BB//K/AC			
截剪裁	不剪裁		标高(L):	相关标高(标高 1)	✓ 偏移量(S):	0.0
标识数据		*				
视图样板	<无>					
视图名称	标高1		确定	取消	应用(A)	帮助(H)
相关性	不相关	~				
	図33				1	
	回2-2			(1)1-4	•	

步骤4:编辑楼梯类型

(1)单击"建筑"→"楼梯"→"编辑类型",然后单击"类型属性"中的"复制"按钮,修改"名称"(可以修改成容易记住的名称,不做强制要求),单击"确定"按钮。

(2)把"最大踢面高度"改为"180","最小踏板深度"改为"280","最小梯段宽度"改为"1000",如图3-5所示。

(3)单击"梯段类型",把"族"改为"系统族:整体梯段","类型"改为 "150mm结构深度",单击"确定"按钮(注:"构造"里的"下侧表面"应为"平滑 式"),如图3-6所示。

 	剧(D) 名(R) へ
<u>重</u> 命	名(R)
	^ ^
参数 值 计算规则 最小路板深度 280.0 最小路板宽度 1000.0 计算规则 编辑 均透 梯段型 150mm 结构深度 平台类型 300mm 厚度 功能 内部	* *
计算規则 最大調面高度 最小路板深度 合小路板深度 計算規则 構造 構造 構造 構造 構造 構造 構造 150mm 结构深度 平台类型 300mm 厚度 功能 内部 内部 の部	*
最大調面高度 最小離粉深度 280.0 1000.0 11 11 11 1000.0 1 11 11 1000.0 1 1 1 1 1 1 1 1 1 1 1 1 1	
 最小階板深度 280.0 1000.0 计算规则 编辑 物透 样段类型 150mm 结构深度 平台类型 300mm 厚度 功能 内部 	
 最小條段宽度 1000.0 计算规则 编辑 構造 样段类型 150mm 结构深度 平合类型 300mm 厚度 功能 内部 	
计算规则 編編 构造 梯段类型 150mm 结构深度 平台类型 300mm 厚度 功能 内部	
构造 150mm 结构深度 梯序送型 150mm 结构深度 平台类型 300mm 厚度 功能 内部	
梯段类型 150mm 结构深度 平台类型 300mm 厚度 功能 内部	*
平台类型 300mm 厚度 功能 内部	
功能内部	2
支撑	*
右侧支撑 无	
右侧支撑类型 <无>	
右侧侧向偏移 0.0	
左侧支撑	
左侧支撑类型 <无>	
左侧侧向偏移 0.0	

(4)打开"类型属性"对话框,单击"平台类型"→"梯段类型",把"族"改为"系统族:现场浇筑楼梯",复制"类型",把
"名称"改为350(或者其他名字都可以),然后单击"构造"里的"整体厚度",改为350,
单击"确定"按钮,如图3-7和图3-8所示。

(5)返回到第一个"类型属性"页面,把"支撑"里的"右侧支撑"和"左侧支撑"改为"无",最后单击"确定"按钮。

族(F): 系统族: 整体相	弟段 1	\sim	载入(L)
类型(T): 150mm 结构深)	度 2	~	复制(D)
			重命名(R)
类型参数			
参数		值	
构造	_	_	*
下侧表面	平滑式		3
结构深度	150.0		
材质和装饰			*
整体式材质	<按类别>		
踏板材质	<按类别>		
踢面材质	<按类别>		
踏板			*
踏板			
踏板厚度	0.0		
踏板轮廓	默认		
楼梯前缘长度	0.0		
楼梯前缘轮廓	默认		
应用楼梯前缘轮廓	仅前侧		
踢面			*
明而			

图3-6

步骤5: 绘制直行楼梯

返回到"楼层平面标高1",把"属性"中的"底部标高"改为"标高2","顶部标高"改为"标高4",单击"应用"按钮,如图3-9所示。

开始绘制直行楼梯,如图3-10所示,画完直行楼梯后删掉矩形平台(图3-11)。

然后再单击"平台"→"创建草图"→"直线"命令,绘制长为500mm的直线,单击 "曲线"命令,接着绘制半径为1275mm的半圆平台,如图3-12和图3-13所示。注意,绘制 的平台必须为一个封闭轮廓。

提示:

要注意平台的"相对高度",如果绘制的平台高度不是想要的位置,可以修改"相 对高度",如图3-14和图3-15所示。

步骤6:绘制矩形平台

返回到"楼层平面标高1",绘制另一个矩形平台,宽为1200mm,长为5000mm,单 击"平台"→"创建草图"→"矩形框"(图3-16、图3-17)。

图3-17

完成矩形轮廓的绘制,如图3-18和图3-19所示。细心的读者可能已经发现了,栏杆在 顶部平台端部被封闭了,如何处理呢?

图3-19

步骤7:绘制楼梯扶手

(1) 处理外侧栏杆,删除部分楼梯的扶手。单击"栏杆"→"编辑路径",删掉图中 选中的线段,然后单击"√"按钮,如图3-20所示。

图3-20

(2) 创建内侧栏杆。单击"创建"→"栏杆扶手"→"放置在主体上",单击绘制的 楼梯栏杆,然后单击"栏杆"→"编辑路径"→"删除",删除几段路径(图3-21中选中 的5段路径),单击"√"按钮,如图3-22所示。

图3-22

步骤8:绘制螺旋楼梯

(1) 绘制螺旋楼梯,返回到"楼层平面标高1",先绘制参考线,找到螺旋楼梯的中 心点(图3-23)。

(2)单击"建筑"→"楼梯"→"编辑类型",单击"类型属性"中的"复制",修 改"名称"(可以修改成容易记住的名称),单击"确定"按钮,如图3-24所示。

类型属性

族(F): 系统族:整体梯段 类型(T): 170mm 结构深度 类型参数 参数 下侧表面 平滑式 吉构深度 踏板厚度 踏板轮廓 楼梯前级长度 0.0 **技梯前绿轮**那 默认 << 預览(P) 确定

(3) 把"最小踏板深度"改为"250","最小梯段宽度"改为"1200",如图3-25 所示。

(4) 单击"梯段类型",把"族"改为"系统族:整体梯段","类型"为"170mm 结构深度",单击"确定"按钮(注:"构造"里的"下侧表面"应为"平滑式")。

类型属性 系统族: 组合楼梯 族(F): 类型(T): 1200 2 类型参数 参数 最小踏板深度 250.0 最小梯段宽度 1200.0 计算规则 勾造 170mm 结构深度 梯段类型 平台类型 350 内部 功能 支撑 右侧支撑 无 右侧支撑举型 <无> 右侧侧向偏移 0.0

图3-25

提示:

螺旋楼梯的底部标高是"标高1",顶部标高是"标高4"(图3-27)。

(6) 螺旋楼梯的最后一个台阶要与长矩形平台的边"对齐",如图3-27和图3-28所示。

步骤9:绘制圆形栏杆

绘制螺旋楼梯的圆形栏杆,先删除螺旋楼梯圆心位置的栏杆,然后返回到"楼层平面标高1",单击"建筑"→"构件"→"内建模型",选择族类别"栏杆扶手"→"支座",单击"确定"按钮,如图3-29和图3-30所示。

图3-29

图3-30

单击"拉伸"→"圆",画出圆形后,把"拉伸 终点"改为"5700",单击"应用"按钮,如图3-31~ 图3-33所示。

图3-31

图3-33

步骤10: 绘制直行楼梯底部尖角

先选择底部楼梯段,把光标放在直行楼梯体段上,然后按Tab键,再单击楼梯体段,如 图3-34所示。

图3-34

然后把"属性"→"构造"→"延伸到踢面底部"改为"-250",单击"应用"按钮,如图3-35和图3-36所示。

图3-35

图3-36

步骤11:保存绘制的楼梯扶手

单击"应用"→"另保存",把"名称"改为"楼梯扶手",效果如图3-37所示。

图3-37