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2 Introduction Chap. 1
1.1 Structure of Dynamic Programming Problems

Dynamic programming (DP for short) is the principal method for analysis
of a large and diverse class of sequential decision problems. Examples are
deterministic and stochastic optimal control problems with a continuous
state space, Markov and semi-Markov decision problems with a discrete
state space, minimax problems, and sequential zero-sum games. While the
nature of these problems may vary widely, their underlying structures turn
out to be very similar. In all cases there is an underlying mapping that de-
pends on an associated controlled dynamic system and corresponding cost
per stage. This mapping, the DP operator, provides a compact “mathemat-
ical signature” of the problem. It defines the cost function of policies and
the optimal cost function, and it provides a convenient shorthand notation
for algorithmic description and analysis.

More importantly, the structure of the DP operator defines the math-
ematical character of the associated problem. The purpose of this book is to
provide an analysis of this structure, centering on two fundamental prop-
erties: monotonicity and (weighted sup-norm) contraction. It turns out
that the nature of the analytical and algorithmic DP theory is determined
primarily by the presence or absence of one or both of these two properties,
and the rest of the problem’s structure is largely inconsequential.

A Deterministic Optimal Control Example

To illustrate our viewpoint, let us consider a discrete-time deterministic
optimal control problem described by a system equation

Tr41 = f(xkﬂu'ﬂ')s k= 05 1-. i (1'1)

Here ;. is the state of the system taking values in a set X (the state space),
and uy, is the control taking values in a set U (the control space). { At stage
k, there is a cost

akg(zg, ug)

incurred when uy, is applied at state zj, where « is a scalar in (0, 1] that has
the interpretation of a discount factor when v < 1. The controls are chosen
as a function of the current state, subject to a constraint that depends on
that state. In particular, at state x the control is constrained to take values
in a given set U(x) C U. Thus we are interested in optimization over the
set of (nonstationary) policies

Il = {{}“LU?}{L]-?...} |.|u'.ﬂ: EMk:UI}s

T Our discussion of this section is somewhat informal, without strict adher-
ence to mathematical notation and rigor. We will introduce a rigorous mathe-
matical framework later.
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where M is the set of functions pr: X — U defined by
M={p|puz)eU(x),¥YazeX}

The total cost of a policy 7 = {0, g1, -} over an infinite number of
stages (an infinite horizon) and starting at an initial state zg is the limit
superior of the N-step costs

N-1
Jx(20) = limsup Z akg(xk, pr(zr)) (1.2)

where the state sequence {z;} is generated by the deterministic system
(1.1) under the policy :

Tp41 = f(:rkﬂ'-‘:k(mk)): k :0311"'

(We use limit superior rather than limit to cover the case where the limit
does not exist.) The optimal cost function is

J(x) = ;2{1 Jx(x), zeX

For any policy m = {po, pu1, - - -}, consider the policy m1 = {p1, p2, - -}
and write by using Eq. (1.2),

Jx(@) = g(, po(x)) + adm, (f(@, po(2)))

We have for all z € X

T (z) = {9(@, m0(@)) + adn, (f(. o)) }

inf
m={pqg,m pEII

= inf {g(a:, po(z)) + a rilrtlefl'[ Jry (f (2, ,u,g(a:)))}

fpEM

=inf{ x. polx aJ* (flz, polz }
Jnf 19(@p0(@) + e (f(z, po(x)))
The minimization over pg € M can be written as minimization over all
u € U(z), so we can write the preceding equation as

J(@)= inf }{g(.r.u) +aJ*(f(a, u))}. VeeX  (L3)
we e
This equation is an example of Bellman’s equation, which plays a
central role in DP analysis and algorithms. If it can be solved for J*,
an optimal stationary policy {u*,p*,---} may typically be obtained by
minimization of the right-hand side for each z, i.e.,

p*(z) € arg “gilg) {g(& u) + aJ*(f(z, u))}, VeeX (1.4)
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We now note that both Eqgs. (1.3) and (1.4) can be stated in terms of
the expression

H(z,u,J) = g(z,u) + aJ (f(z,u)), reX, ueU(x)
Defining
(T J)(z) = H(z, p(x), J), zeX

and

(TJ)(z) = “El}}f(““) H(x,u,J) = “glJfM(’ILJ)(LC). reX

we see that Bellman’s equation (1.3) can be written compactly as
T

i.e., J" is the fixed point of T, viewed as a mapping from the set of functions
on X into itself. Moreover, it can be similarly seen that .J,,, the cost function
of the stationary policy {u, p.---}, is a fixed point of T),. In addition, the
optimality condition (1.4) can be stated compactly as

TyoJ* =TJ*

We will see later that additional properties, as well as a variety of algorithms
for finding J* can be stated and analyzed using the mappings T and T),.

The mappings T}, can also be used in the context of DP problems
with a finite number of stages (a finite horizon). In particular, for a given
policy ™ = {po, pt1,---} and a terminal cost aN.J(xy) for the state zy at
the end of N stages, consider the N-stage cost function

N-1

Jun(20) = aN J(zN) + Z akg(zr, pr(2x)) (1.5)
k=0

Then it can be verified by induction that for all initial states x¢, we have
Jxn(@0) = (T Ty - ’-I}t.w..uj)(-"f‘ﬁ) (1.6)

Here T}, Ty, -+ Ty, 1s the composition of the mappings T}, Ty s Ty ;-
i.e., for all J,

(TpnTm ‘I) (:L‘) = (T}-*()(T.if-l J))(x) reX
and more generally
(Tuo T+ Ty 1 I)(@) = (Do (T (- -+ (T, 1)) (), reX

(our notational conventions are summarized in Appendix A). Thus the
finite horizon cost functions .J: x of 7 can be defined in terms of the map-
pings 7}, [e¢f. Eq. (1.6)], and so can the infinite horizon cost function .J:

Jr(z) = limsup(TpuoTpuy - Tun_, J) (), reX (1.7)

N—oo

where J is the zero function, J(z) =0 for all 2 € X.
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Connection with Fixed Point Methodology

The Bellman equation (1.3) and the optimality condition (1.4), stated in
terms of the mappings 7, and 7', highlight a central theme of this book,
which is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points. Analogs of the Bellman equation, J* =
T.J%, optimality conditions, and other results and computational methods
hold for a great variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings 7j, and T. The
gain from this abstraction is greater generality and mathematical insight,
as well as a more unified, economical, and streamlined analysis.

Abstract Dynamic Programming Models

In this section we formally introduce and illustrate with examples an ab-
stract DP model, which embodies the ideas just discussed.

1.2.1 Problem Formulation

Let X and U be two sets, which we loosely refer to as a set of “states”
and a set of “controls,” respectively. For each x € X, let U(x) C U be a
nonempty subset of controls that are feasible at state . We denote by M
the set of all functions p : X — U with p(x) € U(x), for all z € X.

In analogy with DP, we refer to sequences @ = {yo, 21, -}, with
i € M for all k, as “nonstationary policies,” and we refer to a sequence
{p, gty -+ -}, with p € M, as a “stationary policy.” In our development,
stationary policies will play a dominant role, and with slight abuse of ter-
minology, we will also refer to any pu € M as a “policy” when confusion
cannot arise,

Let R(X) be the set of real-valued functions J : X — R, and let
H: X xUxR(X)— R be a given mapping. T For each policy i € M, we
consider the mapping T, : R(X) — R(X) defined by

(TyJ)(z) = H(z, p(z), J), VeeX,JeR(X)
and we also consider the mapping 7" defined by

(TJ)(z) = .ueiuf H(z,u.,.J), VeeX, JeR(X)

Ulx)

T Our notation and mathematical conventions are outlined in Appendix A.
In particular, we denote by R the set of real numbers, and by R" the space of
n-dimensional vectors with real components.

I We assume that H, T),J, and T'J are real-valued for J € R(X) in the
present chapter and in Chapter 2. In Chapters 3 and 4 we will allow H(z,u, J),
and hence also (T,.J)(x) and (T'J)(x), to take the values oo and —oc.
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We will generally refer to T and T}, as the (abstract) DP mappings or DP
operators or Bellman operators (the latter name is common in the artificial
intelligence and reinforcement learning literature).

Similar to the deterministic optimal control problem of the preceding
section, the mappings 7}, and 7" serve to define a multistage optimization
problem and a DP-like methodology for its solution. In particular, for some
function J € R(X), and nonstationary policy © = {0, g1, - -}, we define
for each integer N = 1 the functions

Jxn(z) = (T;IUTM T 'T.!hv_:j)(x)s zeX

where T}, Ty,, - -- Ty, _, denotes the composition of the mappings Ty, T}, ,
oy Tgppo i 1484,

TJII}T}H e T}-'-N_L J= (T}-'()(’I}ll ( n (Tﬂ-;\r_g(ru,-v_lj))) e )) Je R(X)

We view J. v as the “N-stage cost function” of 7 [cf. Eq. (1.5)]. Consider
also the function

Jx(z) = limsup Jx n(2) = limsup(Tyo Ty, -+ T, J) (), reX
N—oo N—oo

which we view as the “infinite horizon cost function” of 7 [c¢f. Eq. (1.7); we
use limsup for generality, since we are not assured that the limit exists].
We want to minimize .J, over m, i.e., to find

J*(z) = inf J (), reX

and a policy 7* that attains the infimum, if one exists.

The key connection with fixed point methodology is that J* “typi-
cally” (under mild assumptions) can be shown to satisfy

J(z) = inf H(z,u,J"), VezeX
uell(x)

i.e., it is a fixed point of 7. We refer to this as Bellman’s equation [cf. Eq.
(1.3)]. Another fact is that if an optimal policy 7* exists, it “typically” can
be selected to be stationary, m* = {u*, p*. - -}, with p* € M satisfying an
optimality condition, such as for example

(T d)(@) = (TT°)@),  zeX

[cf. Eq. (1.4)]. Several other results of an analytical or algorithmic nature
also hold under appropriate conditions, which will be discussed in detail
later.

However, Bellman'’s equation and other related results may not hold
without 7}, and T having some special structural properties. Prominent
among these are a monotonicity assumption that typically holds in DP
problems, and a contraction assumption that holds for some important
classes of problems. We describe these assumptions next.
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1.2.2 Monotonicity and Contraction Properties

Let us now formalize the monotonicity and contraction assumptions. We
will require that both of these assumptions hold for most of the next chap-
ter, and we will gradually relax the contraction assumption in Chapters 3
and 4. Recall also our assumption that 7}, and 7" map R(X) (the space
of real-valued functions over X) into R(X). In Chapters 3 and 4 we will
relax this assumption as well.

Assumption 1.2.1: (Monotonicity) If J,.J' € R(X) and J < .J',
then
H(z,u,J)< H(z,u,J'), Vee X, ueU(x)

Note that by taking infimum over u € U(x), we have

J)< J'(z), YzeX = i?_f )H(;z:;u, J) = il{]{ }H(;c,u, J), Vze X
uel(x uell(x
or equivalently, |
J=<J = TJ=TJ

Another way to arrive at this relation, is to note that the monotonicity
assumption is equivalent to

J=J' = T, J<T,J, VpeM
and to use the simple but important fact

ueii}fx}H(x,u,J):“iEnL(T,,J)(m), Vee X, JeR(X)
ie., for a fixed x € X, infimum over u is equivalent to infimum over p,
which holds because of the definition M = {u | u(z) € U(z), ¥V z € X},
so that M can be viewed as the Cartesian product Il.c xU(z). We will be
writing this relation as T'.J = inf,.c pmq T}, J.

For the contraction assumption, we introduce a function v : X — R
with

v(xz) > 0, VeeX
Let us denote by B(X) the space of real-valued functions J on X such
that J(z)/v(x) is bounded as x ranges over X, and consider the weighted
Sup-norm
(@)

= sup —'.

J
sex v(T)

T Unless otherwise stated, in this book, inequalities involving functions, min-
ima and infima of a collection of functions, and limits of function sequences are
meant to be pointwise; see Appendix A for our notational conventions.
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Figure 1.2.1. [llustration of the monotonicity and the contraction assumptions in
one dimension. The mapping T}, on the left is monotone but is not a contraction.
The mapping T;, on the right is both monotone and a contraction. It has a unique
fixed point at J,,.

on B(X). The properties of B(X) and some of the associated fixed point
theory are discussed in Appendix B. In particular, as shown there, B(X)
is a complete normed space, so any mapping from B(X) to B(X) that is a
contraction or an m-stage contraction for some integer m > 1, with respect
to || - ||, has a unique fixed point (cf. Props. B.1 and B.2).

Assumption 1.2.2: (Contraction) For all J € B(X) and pu € M,
the functions T,J and T7'J belong to B(X). Furthermore, for some
a € (0,1), we have

ITud ~ Tl < o

J—J|, VJJeEBX), peM (18)

Figure 1.2.1 illustrates the monotonicity and the contraction assump-
tions. It can be shown that the contraction condition (1.8) implies that

\TJ =TI <al|J-J, V¥J,J €BX) (1.9)

so that 7" is also a contraction with modulus . To see this we use Eq.
(1.8) to write

(Tpd)(z) < (T J')(z) + a||J — )| v(z), VeeX
from which, by taking infimum of both sides over p € M, we have

(1) (@) = (TT)(x)
v(x)

<a|J-J, VzeX
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Reversing the roles of J and J’, we also have

(TJ")(x) = (TJT)(x) <allJ -0 YVzeX
v(x) . k

and combining the preceding two relations, and taking the supremum of
the left side over z € X, we obtain Eq. (1.9).

Nearly all mappings related to DP satisfy the monotonicity assump-
tion, and many important ones satisfy the weighted sup-norm contraction
assumption as well. When both assumptions hold, the most powerful an-
alytical and computational results can be obtained, as we will show in
Chapter 2. These are:

(a) Bellman’s equation has a unique solution, i.e., T and 7}, have unique
fixed points, which are the optimal cost function .J* and the cost
functions .J,, of the stationary policies {, i, - - -}, respectively [cf. Eq.

(L3)]
(b) A stationary policy {p*, u*,---} is optimal if and only if

Ty J* =TJ*
[cf. Eq. (1.4)].

(¢) J* and .J,, can be computed by the value iteration method,
J*= lim T%J, J,= lim T}J
k—oo k—r00

starting with any J € B(X).

(d) J* can be computed by the policy iteration method, whereby we gen-
erate a sequence of stationary policies via

L1y =TJ e

starting from some initial policy u® [here J x is obtained as the fixed
point of T by several possible methods, including value iteration as
in (c) above].

These are the most favorable types of results one can hope for in
the DP context, and they are supplemented by a host of other results,
involving approximate and/or asynchronous implementations of the value
and policy iteration methods, and other related methods that combine
features of both. As the contraction property is relaxed and is replaced
by various weaker assumptions, some of the preceding results may hold
in weaker form. For example J* turns out to be a solution of Bellman’s
equation in most of the models to be discussed, but it may not be the
unique solution. The interplay between the monotonicity and contraction-
like properties, and the associated results of the form (a)-(d) described
above is a recurring analytical theme in this book.
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1.2.3 Some Examples

In what follows in this section, we describe a few special cases, which indi-
cate the connections of appropriate forms of the mapping H with the most
popular total cost DP models. In all these models the monotonicity As-
sumption 1.2.1 (or some closely related version) holds, but the contraction
Assumption 1.2.2 may not hold, as we will indicate later. Our descriptions
are by necessity brief, and the reader is referred to the relevant textbook
literature for more detailed discussion.

Example 1.2.1 (Stochastic Optimal Control - Markovian
Decision Problems)

Consider the stationary discrete-time dynamic system
Trii = f(x;c,uk,w;-_), k=0,1,7-» (1.10)

where for all k, the state x; is an element of a space X, the control uy is
an element of a space U, and wy. is a random “disturbance,” an element of a
space W. We consider problems with infinite state and control spaces, as well
as problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set.

The control uy, is constrained to take values in a given nonempty subset
U(xi) of U, which depends on the current state zx [ur € Ulay), for all
zr € X|. The random disturbances wy, & = 0,1,---, are characterized by
probability distributions P(- | zy, ux) that are identical for all k, where P(w;. |
. ug) is the probability of occurrence of wy, when the current state and
control are x; and wuy, respectively. Thus the probability of wy may depend
explicitly on x;. and ug, but not on values of prior disturbances wy_1, -, wo.

Given an initial state xo, we want to find a policy © = {po, p1,- -},
where pr : X — U, pp(zr) € Ulxg), for all 2, € X, k = 0,1,---, that
minimizes the cost function

N=1
Jz(zo) = limsup  F Z o g(ak, p(zi), w) (1.11)
N—oc k=;r.*‘i.‘“ =0

subject to the system equation constraint
w1 = [z, pr(ze), wie), k=0,1,---

This is a classical problem, which is discussed extensively in various sources,

including the author’s text [Berl2al]. It is usually referred to as the stochastic

optimal control problem or the Markovian Decision Problem (MDP for short).
Note that the expected value of the N-stage cost of .

N—1

E Zu"'g(m.m(wk)wwk}

LN

k=01, \ k=0
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is defined as a (possibly countably infinite) sum, since the disturbances wy,
k= 0,1,..., take values in a countable set. Indeed, the reader may verify
that all the subsequent mathematical expressions that involve an expected
value can be written as summations over a finite or a countable set, so they
make sense without resort to measure-theoretic integration concepts. {

In what follows we will often impose appropriate assumptions on the
cost per stage g and the scalar «, which guarantee that the infinite horizon
cost J=(xo) is defined as a limit (rather than as a limsup):

N-1
Jz(xo) = lim E {Zakg(:nk,yk(a:k),wk)}

N—=oc wp
k=01, \ k=0

In particular, it can be shown that the limit exists if &« < 1 and the expected
value of |g| is uniformly bounded, i.e., for some B > 0,

E{|g($.u,w)|}$3. Vee X, uelU(z) (1.12)

In this case, we obtain the classical discounted infinite horizon DP prob-
lem, which generally has the most favorable structure of all infinite horizon
stochastic DP models (see [Berl2a], Chapters 1 and 2).

To make the connection with abstract DP, let us define

H(x,u,J) = E{g(a:._ u, w) + o-J(f(a:,u, w)) }
so that

(T 0)(@) = E{g(z, (), w) + o (£, u(a),w)) }

and

TJ)(z)= inf E{g(z,u,w)+al(f(z,u,

(TJ)(z) 8 {9(z,u,w) + aJ (f(z,u,w)) }
Similar to the deterministic optimal control problem of Section 1.1, the N-
stage cost of 7, can be expressed in terms of T);:

W
ke=0,1, k=0

N—1
(Tuo *+ Tuy_yJ)(@o) = E {Zﬂkg(-'-'?k,m-(m),im-)}

T As noted in Appendix A, the formula for the expected value of a random
variable w defined over a space  is

E{w}=E{w '} + E{w™}
where w™ and w™ are the positive and negative parts of w,
w’ (w) = max {U, w(w)}, w (w) = min {[], w(w)}, Ywel

In this way, taking also into account the rule co—oo = oo (see Appendix A), E{w}
is well-defined as an extended real number if € is finite or countably infinite.



12

Introduction Chap. 1

where J is the zero function, j('r} =0 for all + € X. The same is true for
the infinite-stage cost [cf. Eq. (1.11)]:

Jr(xo) = limsup (Tyg - Tpp_, J)(x0)
N—oo

It can be seen that the mappings T, and T' are monotone, and it is
well-known that if @ < 1 and the boundedness condition (1.12) holds, they
are contractive as well (under the unweighted sup-norm); see e.g., [Berl2a],
Chapter 1. In this case, the model has the powerful analytical and algorith-
mic properties (a)-(d) mentioned at the end of the preceding subsection. In
particular, the optimal cost function J* [i.e., J*(z) = infr Jx(z) for all z € X]
can be shown to be the unique solution of the fixed point equation J* = TJ",

also known as Bellman’s equation, which has the form

J(x) = “é}}f:c) E{g(r,n, w) + aJ (f(:.r:, 1, w))}. ze X

and parallels the one given for deterministic optimal control problems [cf. Eq.
(1.3)].

These properties can be expressed and analyzed in an abstract setting
by using just the mappings T), and T, both when T}, and T are contractive
(see Chapter 2), and when they are only monotone and not contractive while
either g = 0 or g < 0 (see Chapter 4). Moreover, under some conditions, it is
possible to analyze these properties in cases where T}, is contractive for some
but not all p (see Chapter 3, and Section 4.4).

Example 1.2.2 (Finite-State Discounted Markovian Decision
Problems)

In the special case of the preceding example where the number of states is
finite, the system equation (1.10) may be defined in terms of the transition
probabilities

Payl(u) = Prob(y = flz,u,w) | .'L'), x,y € X, ueU(x)
so H takes the form
H(z,u,J) =Y pay(w) (9(z,uy) + ad(y))
veX

When a < 1 and the boundedness condition
|g(;r,u,-y)|‘£3‘ Vez,ye X, ueU(x)

[cf. Eq. (1.12)] holds (or more simply, when U is a finite set), the mappings T},
and T are contraction mappings with respect to the standard (unweighted)
sup-norm. This is a classical model, referred to as discounted finite-state
MDP, which has a favorable theory and has found extensive applications (cf.
[Ber12al], Chapters 1 and 2). The model is additionally important, because it
is often used for computational solution of continuous state space problems
via discretization.
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Example 1.2.3 (Discounted Semi-Markov Problems)

With z, y, and u as in Example 1.2.2, consider a mapping of the form

H(x,u,J) = G(x,u) + Z My (1) J (y)

HEX

where G is some function representing expected cost per stage, and m., (u)
are nonnegative scalars with

Z May(u) < 1, Vee X, uelU(x)

yeX

The equation J* = T.J* is Bellman’s equation for a finite-state continuous-
time semi-Markov decision problem, after it is converted into an equivalent
discrete-time problem (cf. [Ber12a], Section 1.4). Again, the mappings T}, and
T are monotone and can be shown to be contraction mappings with respect
to the unweighted sup-norm.

Example 1.2.4 (Discounted Zero-Sum Dynamic Games)

Let us consider a zero-sum game analog of the finite-state MDP Example
1.2.2. Here there are two players that choose actions at each stage: the
first (called the minimizer) may choose a move i out of n moves and the
second (called the mazimizer) may choose a move j out of m moves. Then
the minimizer gives a specified amount a;; to the maximizer, called a payoff.
The minimizer wishes to minimize a;;, and the maximizer wishes to maximize
(Lij.

The players use mixed strategies, whereby the minimizer selects a prob-
ability distribution v = (uy,--+,u,) over his n possible moves and the max-
imizer selects a probability distribution v = (v, -+, vm) over his m possible
moves. Thus the probability of selecting i and j is wiv;, and the expected
payoff for this stage is Z(._j aijuiv; or u' Av, where A is the n x m matrix
with components a;;.

In a single-stage version of the game, the minimizer must minimize
maxyev ¢ Av and the maximizer must maximize minyer v’ Av, where U and
V' are the sets of probability distributions over {1,-.-,n} and {1, --.m},
respectively. A fundamental result (which will not be proved here) is that
these two values are equal:

min max u’' Av = max min u’ Av (1.13)
uell veV veV uell

Let us consider the situation where a separate game of the type just
described is played at each stage. The game played at a given stage is repre-
sented by a “state” x that takes values in a finite set X. The state evolves
according to transition probabilities g.,(i,j) where i and j are the moves
selected by the minimizer and the maximizer, respectively (here y represents
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the next game to be played after moves ¢ and j are chosen at the game rep-
resented by z). When the state is z, under v € U and v € V, the one-stage
expected payoff is u'A(x)v, where A(x) is the n x m payoff matrix, and the
state transition probabilities are

n m

Pay(u,v) = Z Z UiV qay (i, ) = U’Qxyv

i=1 j=1

where ).y is the n x m matrix that has components g.,(7,j). Payoffs are
discounted by « € (0, 1), and the objectives of the minimizer and maximizer,
roughly speaking, are to minimize and to maximize the total discounted ex-
pected payoff. This requires selections of w and v to strike a balance between
obtaining favorable current stage payoffs and playing favorable games in fu-
ture stages.

We now introduce an abstract DP framework related to the sequential
move selection process just described. We consider the mapping G given by

Gz, u,v,J) =u'A@)v+a Y pay(u,v)J(y)

veX
(1.14)
=u' [A@@) +a) QWJ(y}) v
yEX
where a € (0,1) is discount factor, and the mapping H given by

H(z,u,J) = max G(z, u,v,.J)
veEV

The corresponding mappings T}, and T" are

(Tad)(2) = Tea&{ G(a:, w(z), v, J). reX

and

(TJ)(z) = min max G(x,u,v, J)

It can be shown that 7}, and T are monotone and (unweighted) sup-norm
contractions. Moreover, the unique fixed point J* of T satisfies

J(z) = min max G(xz,u, v, J7), VezeX
uell veV

(see [Berl2a], Section 1.6.2).
We now note that since

A@)+ay  QuyJ(y)

yeEX

[cf. Eq. (1.14)] is a matrix that is independent of u and v, we may view J*(x)
as the value of a static game (which depends on the state x). In particular,
from the fundamental minimax equality (1.13), we have

min max G(z,u, v, J") = max min G(z,u,v,J"), YzeX
uel veV veV uel
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This implies that J* is also the unique fixed point of the mapping

(TJ)(x) = max H(z,v,.J)

velV

where

H(z,v,J) = minG(z,u,v,J)
uell
i.e., J* is the fixed point regardless of the order in which minimizer and
maximizer select mixed strategies at each stage.

In the preceding development, we have introduced J* as the unique
fixed point of the mappings T and 7. However, J* also has an interpretation
in game theoretic terms. In particular, it can be shown that J*(z) is the value
of a dynamic game, whereby at state = the two opponents choose multistage
(possibly nonstationary) policies that consist of functions of the current state,
and continue to select moves using these policies over an infinite horizon. For
further discussion of this interpretation, we refer to [Berl2a] and to books on
dynamic games such as [FiV96]; see also [PaB99] and [Yull] for an analysis
of the undiscounted case (o = 1) where there is a termination state, as in the
stochastic shortest path problems of the subsequent Example 1.2.6.

Example 1.2.5 (Minimax Problems)

Consider a minimax version of Example 1.2.1, where w is not random but is
rather chosen by an antagonistic player from a set W(x,u). Let

H(z,u,J)= sup [g(:n, u, w) + (x.f(f(.’:; u, ?_n))}

weW(x,u)

Then the equation J* = TJ" is Bellman's equation for an infinite horizon
minimax DP problem. A special case of this mapping arises in zero-sum
dynamic games (cf. Example 1.2.4).

Example 1.2.6 (Stochastic Shortest Path Problems)

The stochastic shortest path (SSP for short) problem is the special case of
the stochastic optimal control Example 1.2.1 where:

(a) There is no discounting (o = 1).
(b) The state space is X = {¢,1,--+,n} and we are given transition proba-

bilities, denoted by

Pay(tt) = P(Tp41 =y | Tk = @, up = u), T,y € X, u€ U(x)

(¢) The control constraint set U(z) is finite for all z € X.

(d) A cost g(w,u) is incurred when control u € U(x) is selected at state x.
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(e) State t is a special termination state, which is cost-free and absorbing,
ie., for all u € U(t),

g(t,u) =0, pulu) =1

To simplify the notation, we have assumed that the cost per stage does not
depend on the successor state, which amounts to using expected cost per
stage in all calculations.

Since the termination state { is cost-free, the cost starting from ¢ is zero
for every policy. Accordingly, for all cost functions, we ignore the component
that corresponds to ¢, and define

H(z,u,J) = g(x,u) + Zp;.,g(u).](y}, z=1,+,n, ueU(z), JeR"

y=1

The mappings T}, and T" are defined by

(Tud)(@) = g(2. 1(2)) + Y pay (@) (),  z=1,",n

TJ)(x) = min z,u) + Paylw)J(y) | . g = e, 1
(TI)(x) = min |g(zu) le W) ()| _
=
Note that the matrix that has components p.,(u), x,y = 1,---,n, is sub-

stochastic (some of its row sums may be less than 1) because there may be
a positive transition probability from a state x to the termination state f.
Consequently T}, may be a contraction for some i, but not necessarily for all
pE M.

The SSP problem has been discussed in many sources, including the
books [Pal67], [Der70], [Whi82], [Ber87], [BeT89], [HeL99], [Berl2a], and
[Berl7a], where it is sometimes referred to by earlier names such as “first
passage problem” and “transient programming problem.” In the framework
that is most relevant to our purposes, there is a classification of stationary
policies for SSP into proper and improper. We say that p € M is proper if,
when using p, there is positive probability that termination will be reached
after at most n stages, regardless of the initial state; i.e., if

Pp= mmaX Plzn #0|zo=m,p} <1

Otherwise, we say that u is improper. It can be seen that p is proper if and
only if in the Markov chain corresponding to p, each state x is connected ta
the termination state with a path of positive probability transitions.

For a proper policy p. it can be shown that 7, is a weighted sup-norm
contraction, as well as an n-stage contraction with respect to the unweighted
sup-norm. For an improper policy p, T}, is not a contraction with respect ta
any norm. Moreover, T' also need not be a contraction with respect to any
norm (think of the case where there is only one policy, which is improper).



Sec. 1.2 Abstract Dynamic Programming Models 17

However, T is a weighted sup-norm contraction in the important special case
where all policies are proper (see [BeT96]. Prop. 2.2, or [Berl12a], Chapter 3).

Nonetheless, even in the case where there are improper policies and T
is not a contraction, results comparable to the case of discounted finite-state
MDP are available for SSP problems assuming that:

(a) There exists at least one proper policy.

(b) For every improper policy there is an initial state that has infinite cost
under this policy.

Under the preceding two assumptions, referred to as the strong SSP conditions
in Section 3.5.1, it was shown in [BeT91] that T has a unique fixed point J*,
the optimal cost function of the SSP problem. Moreover, a policy {u*, p*. -}
is optimal if and only if

Td® =TT

In addition, J* and J, can be computed by value iteration,

J¥= 1m T, Ju=lim TtJ
k—roc k—roc

starting with any J € R" (see [Berl12a|, Chapter 3, for a textbook account).
These properties are in analogy with the desirable properties (a)-(c). given at
the end of the preceding subsection in connection with contractive models.

Regarding policy iteration, it works in its strongest form when there are
no improper policies, in which case the mappings 7}, and T are weighted sup-
norm contractions. When there are improper policies, modifications to the
policy iteration method are needed; see [Berl2al, [YuB13a], and also Section
3.6.2, where these modifications will be discussed in an abstract setting.

In Section 3.5.1 we will also consider SSP problems where the strong
SSP conditions (a) and (b) above are not satisfied. Then we will see that
unusual phenomena can occur, including that J* may not be a solution of
Bellman’s equation. Still our line of analysis of Chapter 3 will apply to such
problems.

Example 1.2.7 (Deterministic Shortest Path Problems)

The special case of the SSP problem where the state transitions are determin-
istic is the classical shortest path problem. Here, we have a graph of n nodes
x =1, --,n, plus a destination ¢, and an arc length a., for each directed arc
(z,y). At state/node z, a policy p chooses an outgoing arc from z. Thus the
controls available at = can be identified with the outgoing neighbors of z [the
nodes u such that (z,u) is an arc]. The corresponding mapping H is

o + J(u) ifu#t,
it if u=t,

H(z, i, J) = {

=100

A stationary policy p defines a graph whose arcs are (J. ,u(.'.-:))._ T =
1,....n. The policy p is proper if and only if this graph is acyclic (it consists of
a tree of directed paths leading from each node to the destination). Thus there
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exists a proper policy if and only if each node is connected to the destination
with a directed path. Furthermore, an improper policy has finite cost starting
from every initial state if and only if all the cycles of the corresponding graph
have nonnegative cycle cost. It follows that the favorable analytical and
algorithmic results described for SSP in the preceding example hold if the
given graph is connected and the costs of all its cycles are positive. We will
see later that significant complications result if the cycle costs are allowed ta
be zero, even though the shortest path problem is still well posed in the sense
that shortest paths exist if the given graph is connected (see Section 3.1).

Example 1.2.8 (Multiplicative and Risk-Sensitive Models)

With z, y, u, and transition probabilities p.,(u), as in the finite-state MDP
of Example 1.2.2, consider the mapping

H(w,u,J) =Y pay(w)g(@,w,9)J(y) = E{g(w,u, ) (v) | 2,u} (1.15)
yeX

where g is a scalar function satisfying g(z,u,y) = 0 for all z, y, u (this is
necessary for H to be monotone). This mapping corresponds to the multi-
plicative model of minimizing over all = = {yo, pt1,---} the cost

Jx(x0) = lim sup E{g(a:g._po(xg).;Irl)g(;rl,m(;rl),a”-g) e
¥=kas (1.16)

g(zn-1,un-1(zN-1),2N) | ..'cu}

where the state sequence {xo,x1,---} is generated using the transition prob-
abilities Pyt (;_;k(:::;.-_)).

To see that the mapping H of Eq. (1.15) corresponds to the cost function
(1.16), let us consider the unit function

J@)=1, =zeX

and verify that for all o € X, we have

(T Ty 5 Thing_y T Wi0) = E{g(o:o. po(xo), 1) g (1, pa (1), w2) - -
(1.17)

g(zn-1, pn-1(@zn-_1),2N) | :L‘a}
so that

Jr(x) = limsup (Tpg Ty -+ Ty J) (), reX

N—=oo
Indeed, taking into account that J(z) = 1, we have

(Tuy_y D@n-1) = E{g(zn-1,un-1(zn-1),2zn)J(@N) | TN-1}
= E{Q(J?N—l|ﬂN—1(mN—l)¢$N) | zZn-1 }
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(Tun—oTun—y I)(@n—2) = ((T]‘I\'—z(T]‘J\'—lj))(mn’_z)
= E{g(zn-2,un-2(TN-2),ZN-1)
-E{g(zn-1,un-1(&N-1),2N) | TN-1} | TN-2}
and continuing similarly,

(T{(“Tpl uy 'T;xN_] J](-’E()] = E{g(&?n,#t}(xu],LTTI)E{Q(EI,JH{.T:I),:W) Ul

E{g(zn-1,pnv-1(xn-1),2N) | N1} |@N—2} -} | :Bn}

which by using the iterated expectations formula (see e.g., [BeT08]) proves
the expression (1.17).
An important special case of a multiplicative model is when g has the
form
9(,u,y) = M=
for some one-stage cost function h. We then obtain a finite-state MDP with
an exponential cost function,

Jx(mp) = limsup E

{P(h{:l?n.;{n(.'fn).:l‘[ )+"'+"[-""N—1-1*,.\.'_1(-'"'}\!_1_,1‘13,\')) }
N—=oo

which is often used to introduce risk aversion in the choice of policy through
the convexity of the exponential.

There is also a multiplicative version of the infinite state space stochas-
tic optimal control problem of Example 1.2.1. The mapping H takes the
form

H(z,u,J) = E{g(m, u, w)J(f(:r:. u, w)) },

where @41 = f(@k, up, wy) is the underlying discrete-time dynamic system;
cf. Eq. (1.10).

Multiplicative models and related risk-sensitive models are discussed
extensively in the literature, mostly for the exponential cost case and under
different assumptions than ours; see e.g., [HoM72], [Jac73], [Rot84], [ChS87].
[Whi90], [JBE94], [FIM95], [HeM96], [FeM97], [BoM99], [CoM99], [BoM02],
[BBBO8], [Berl6al. The works of references [DeR79], [Pat0l], and [Pat07]
relate to the stochastic shortest path problems of Example 1.2.6, and are the
closest to the semicontractive models discussed in Chapters 3 and 4, based
on the author’s paper [Berl6al; see the next example and Section 3.5.2.

Example 1.2.9 (Affine Monotonic Models)

Consider a finite state space X = {1,---,n} and a (possibly infinite) control
constraint set U(z) for each state x. For each policy p. let the mapping T},
be given by

Tud =by+ Aud (1.18)
where b, is a vector of R" with components b(.-r.._ ,u.(;r}), x=1,---,n, and A,
is an n X n matrix with components A, (p(;r)), xz,y=1,---,n. We assume
that b(x,u) and A.,(u) are nonnegative,

bz, u)= 0, Auzy(u) =0, Vay=1Lln uwel(z)



20

Introduction Chap. 1

Thus T, and T' map nonnegative functions to nonnegative functions J : X —
[0, oc].

This model was introduced in the first edition of this book, and was elab-
orated on in the author’s paper [Berl6a]. Special cases of the model include
the finite-state Markov and semi-Markov problems of Examples 1.2.1-1.2.3,
and the stochastic shortest path problem of Example 1.2.6, with A, being the
transition probability matrix of u (perhaps appropriately discounted), and b,
being the cost per stage vector of p, which is assumed nonnegative. An in-
teresting affine monotonic model of a different type is the multiplicative cost
model of the preceding example, where the initial function is J(z) = 1 and
the cost accumulates multiplicatively up to reaching a termination state £. In
the exponential case of this model, the cost of a generated path starting from
some initial state accumulates additively as in the SSP case, up to reaching
t. However, the cost of the model is the expected value of the ezponentiated
cost of the path up to reaching ¢. It can be shown then that the mapping T},
has the form

(Tud) (@) = pa (ﬂ(m})c)‘p(g(xs w(x), t))

+ ) pe(u(@)exp(g(e, u(2),9) I (y)  zEX,

y=1

where p,, (u) is the probability of transition from x to y under u, and g(z, u, y)
is the cost of the transition; see Section 3.5.2 for a detailed derivation. Clearly
T, has the affine monotonic form (1.18).

Example 1.2.10 (Aggregation)

Aggregation is an approximation approach that replaces a large DP problem
with a simpler problem obtained by “combining” many of its states together
into aggregate states. This results in an “aggregate” problem with fewer
states, which may be solvable by exact DP methods. The optimal cost-to-go
function of this problem is then used to approximate the optimal cost function
of the original problem.

Consider an n-state Markovian decision problem with transition prob-
abilities p;;(u). To construct an aggregation framework, we introduce a finite
set A of aggregate states. We generically denote the aggregate states by let-
ters such as @ and y, and the original system states by letters such as 7 and j.
The approximation framework is specified by combining in various ways the
aggregate states and the original system states to form a larger system (see
Fig. 1.2.2). To specify the probabilistic structure of this system, we introduce
two (somewhat arbitrary) choices of probability distributions, which relate
the original system states with the aggregate states:

(1) For each aggregate state z and original system state 7, we specify the
disaggregation probability d.;. We assume that d.; =0 and

id;m‘:l, Vzed
i=1



