µÚ3ÕÂMATLABÊýÖµ¼ÆËã¼°Ó¦Óà ÊýÖµ¼ÆËãÖ¸ÓÐЧʹÓÃÊý×Ö¼ÆËã»úÇó½âÊýѧÎÊÌâ½üËÆ½âµÄ·½·¨Óë¹ý³Ì¡£Ïà±ÈÓÚÀûÓÃÆäËû³ÌÐòÉè¼ÆÓïÑÔ½øÐÐÇó½â£¬MATLAB±à³Ì¾ßÓÐЧÂʸߡ¢¼ÆËã·½±ãµÈÌØµã¡£ ±¾Õ½éÉܶàÏîʽ¼ÆËã¡¢Êý¾Ýͳ¼ÆÓë·ÖÎö¡¢Êý¾Ý²åÖµ¡¢Êýֵ΢»ý·Ö¼°Ó¦ÓõÈÄÚÈÝ£¬ÒÔ´ïµ½ÊìÁ·ÔËÓÃMATLAB½â¾ö¼òµ¥¹¤³ÌÎÊÌâµÄÄ¿µÄ¡£ ±¾ÕÂÒªµã£º (1) ¶àÏîʽ¼ÆËã¡£ (2) Êý¾Ýͳ¼ÆÓë·ÖÎö¡£ (3) Êý¾Ý²åÖµ¡£ (4) Êýֵ΢»ý·Ö¼°Ó¦ÓᣠѧϰĿ±ê£º (1) ÕÆÎÕ¶àÏîʽµÄÔËËã¡£ (2) ÕÆÎÕ³£ÓõÄÊý¾Ýͳ¼ÆÓë·ÖÎöµÄ»ù±¾·½·¨¡£ (3) Á˽âÊý¾Ý²åÖµµÄ»ù±¾Ô­Àí¡£ (4) ÕÆÎÕÊý¾Ý²åÖµµÄ»ù±¾·½·¨¡£ (5) ÕÆÎÕÊýֵ΢»ý·ÖµÄÔ­Àí£¬ÊìÁ·ÔËÓÃMATLABÇó½â΢·Ö·½³ÌÄ£ÐÍ¡£ (6) ÕÆÎÕÔËÓÃMATLAB½â¾ö¼òµ¥¹¤³ÌÎÊÌâ¡£ 3.1¶àÏîʽ¼ÆËã ÔÚÊýѧÖУ¬ÓÉÈô¸É¸öµ¥ÏîʽÏà¼Ó×é³ÉµÄ´úÊýʽ³ÆÎª¶àÏîʽ£¬MATLABÖÐÌṩÁ˶àÏîʽµÄ´´½¨¼°¸÷ÖÖÔËËã·½·¨£¬Èç±í3ª²1Ëùʾ¡£ ±í3ª²1¶àÏîʽ¼ÆËã³£Óú¯Êý º¯Êý¹¦Äܺ¯Êý¹¦ÄÜ poly2str´´½¨Ò»¸ö×Ö·û´®ÐͶàÏîʽpolyval´úÊý¶àÏîʽÇóÖµ poly2sym´´½¨Ò»¸ö·ûºÅÐͶàÏîʽpolyvalm¾ØÕó¶àÏîʽÇóÖµ conv³Ë·¨ÔËËãrootsÇóÈ¡¶àÏîʽµÄÈ«²¿¸ù deconv³ý·¨ÔËËãpolyÓɶàÏîʽµÄ¸ùÇó¶àÏîʽϵÊý polyder¶àÏîʽÇóµ¼residue¶àÏîʽµÄ²¿·Ö·Öʽչ¿ª polyint¶àÏîʽ»ý·Ö 3.1.1¶àÏîʽµÄ´´½¨ ¶¨ÒåÒ»¸ön´Î¶àÏîʽΪ p(x)=anxn+an-1xn-1+¡­+a1x+a0 ÔÚMATLABÖжàÏîʽp(x)¸÷ÏîϵÊýÓÃÒ»¸öÏòÁ¿±íʾ£¬Ê¹Óó¤¶ÈΪn+1µÄÐÐÏòÁ¿°´½µÃÝÅÅÁУ¬¶àÏîʽÖÐij´ÎÃݵÄȱÏîÓÃ0±íʾ£¬Ôòp(x)µÄ¸÷ÏîϵÊý¿É±íʾΪ P=£Ûan,an-1,¡­,a1,a0£Ý ´´½¨Ò»¸ö¶àÏîʽ£¬¿ÉÒÔÓÃpoly2strºÍpoly2symº¯ÊýÀ´ÊµÏÖ£¬µ÷ÓøñʽÈçÏ£º f=poly2str(p,'x')% pΪ¶àÏîʽµÄϵÊý£¬xΪ¶àÏîʽµÄ±äÁ¿ f=poly2sym(p)% pΪ¶àÏîʽµÄϵÊý ×¢Ò⣺ Á½¸öº¯Êý¾ù´´½¨Ò»¸öϵÊýΪp£¬±äÁ¿ÎªxµÄ¶àÏîʽ£¬µ«Êý¾ÝÀàÐÍÓÐËùÇø±ð£¬Ò»¸öÊÇ×Ö·û´®ÐÍ£¬ÁíÒ»¸öΪ·ûºÅÐÍ¡£ ¡¾Àý3ª²1¡¿ÒÑÖª¶àÏîʽϵÊýΪp=£Û2£¬5£¬-3£¬-5£Ý£¬·Ö±ðÀûÓÃÉÏÊöÁ½¸öº¯Êý´´½¨¶àÏîʽ£¬²¢±È½ÏÁ½Õß²»Í¬¡£ ³ÌÐòÈçÏ£º p=£Û2,5,-3,-5£Ý f1=poly2str(p,'x') f2=poly2sym(p) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ p = 2 5-3-5 f1 = 2 x^3 + 5 x^2 - 3 x - 5 f2 = 2*x^3+5*x^2-3*x-5 ÏÔÈ»£¬Á½ÖÖº¯Êý´´½¨µÄ¶àÏîʽf1ºÍf2ÏÔʾÐÎʽÀàËÆ£¬µ«Êý¾ÝÀàÐͺʹóС¶¼²»Ò»Ñù£¬¿Éͨ¹ý¹¤×÷Çø²é¿´¡£ 3.1.2¶àÏîʽµÄËÄÔòÔËËã ¶àÏîʽ֮¼ä¿ÉÒÔ½øÐÐËÄÔòÔËË㣬½á¹ûÈÔΪ¶àÏîʽ¡£ 1. ¼Ó¼õÔËËã MATLABÖÐδÌṩרÃŶàÏîʽ¼Ó¼õÔËËãµÄº¯Êý£¬ÊÂʵÉ϶àÏîʽµÄ¼Ó¼õÔËËãÊǶàÏîʽµÄÏòÁ¿ÏµÊýÏà¼Ó¼õ£¬ÔÚ¼ÆËã¹ý³ÌÖУ¬ÐèÒª±£Ö¤¶àÏîʽ½×´ÎÒ»Ö£¬È±ÉÙ²¿·ÖÓÃ0²¹×ã¡£ 2. ³Ë·¨ÔËËã Á½¸ö¶àÏîʽµÄ³Ë·¨ÔËËã¿ÉÒÔÓÃconvº¯ÊýʵÏÖ£¬µ÷ÓøñʽÈçÏ£º P=conv(p1,p2)% p1£¬p2ΪÁ½¸ö¶àÏîʽµÄϵÊýÏòÁ¿ 3. ³ý·¨ÔËËã Á½¸ö¶àÏîʽµÄ³ý·¨ÔËËã¿ÉÒÔÓÃdeconvº¯ÊýÀ´ÊµÏÖ£¬µ÷ÓøñʽÈçÏ£º £Ûq,r£Ý = deconv(p1,p2)% p1£¬p2ΪÁ½¸ö¶àÏîʽµÄϵÊýÏòÁ¿ ÆäÖУ¬qΪÉÌʽ£¬rΪÓàʽ£¬¾ùΪ¶àÏîʽϵÊýÏòÁ¿¡£ deconvÊÇconvµÄÄæº¯Êý¡£ ΢ÊÓÆµ3ª²1 ¡¾Àý3ª²2¡¿ÒÑÖªf(x)=x4+4x3-3x+2£¬g(x)=x3-2x2+x¡£Çó½â£º (1) f(x)+g(x) (2) f(x)-g(x) (3) f(x)¡Ág(x) (4) f(x)/g(x) ³ÌÐòÈçÏ£º p1=£Û1 4 0 -3 2£Ý; p2=£Û0 1 -2 1 0£Ý; p3=£Û1 -2 1 0£Ý; p=p1+p2 poly2sym(p) p=p1-p2 poly2sym(p) p=conv(p1,p2) poly2sym(p) £Ûq,r£Ý=deconv(p1,p3) p4=conv(q,p3)+r ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ p = 1 5-2-2 2 ans = x^4+5*x^3-2*x^2-2*x+2 p = 1 3 2-4 2 ans = x^4+3*x^3+2*x^2-4*x+2 p = 0 1 2-7 1 8-7 2 0 ans = x^7+2*x^6-7*x^5+x^4+8*x^3-7*x^2+2*x q = 16 r = 0011-92 p4 = 140-32 3.1.3¶àÏîʽµÄÖµºÍ¸ù 1. ¶àÏîʽµÄÖµ ÔÚMATLABÖУ¬¶àÏîʽÇóÖµÓÐpolyvalºÍpolyvalmÁ½¸öº¯Êý£¬Á½ÕßÇø±ðÔÚÓÚǰÕßΪ´úÊý¶àÏîʽÇóÖµ£¬ºóÕßΪ¾ØÕó¶àÏîʽÇóÖµ¡£ ´úÊý¶àÏîʽÇóֵʹÓú¯Êýpolyval£¬µ÷ÓøñʽÈçÏ£º y=polyval(p,x)% pΪ¶àÏîʽϵÊý£¬xΪ×Ô±äÁ¿ ÈôxΪÊýÖµ£¬ÔòÇó¶àÏîʽÔڸõãµÄÖµ£» ÈôxΪÏòÁ¿»ò¾ØÕó£¬Ôò¶ÔÏòÁ¿»ò¾ØÕóÖÐÿ¸öÔªËØÇóÆä¶àÏîʽµÄÖµ¡£ ¡¾Àý3ª²3¡¿ÒÑÖª¶àÏîʽΪf(x)=x3-2x2+4x+6£¬·Ö±ðÇóx1=2ºÍx=£Û0,2,4,6,8,10£ÝÏòÁ¿µÄ¶àÏîʽµÄÖµ¡£ ³ÌÐòÈçÏ£º x1=2; x=£Û0:2:10£Ý; p=£Û1 -2 4 6£Ý; y1=polyval(p,x1) y=polyval(p,x) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ y1 = 14 y = 61454174422846 ¾ØÕó¶àÏîʽÇóֵʹÓú¯Êýpolyvalm£¬µ÷ÓøñʽÈçÏÂ: y=polyvalm(p,X)% pΪ¶àÏîʽϵÊý£¬XΪ×Ô±äÁ¿ Óë´úÊýÇóÖµ²»Í¬£¬´Ë´¦XÒªÇóΪ·½Õó£¬ËüÒÔ·½ÕóΪ×Ô±äÁ¿Çó¶àÏîʽµÄÖµ¡£ÈôAΪ·½Õó£¬pΪ¶àÏîʽx3-5x2+8µÄϵÊý£¬ÄÇôpolyvalm(p,A)µÄº¬ÒåÊÇ£º A*A*A-5*A*A+8*eye(size(A)) ¶øpolyval(p,A)µÄº¬ÒåÊÇ£º A. *A.*A-5.*A.*A+8*eye(size(A)) ¡¾Àý3ª²4¡¿ÒÑÖª¶àÏîʽΪf(x)=x2-3x+2£¬·Ö±ðÓÃpolyvalºÍpolyvalmº¯Êý£¬ÇóX=12 34µÄ¶àÏîʽµÄÖµ¡£ ³ÌÐòÈçÏ£º X=£Û1 2;3 4£Ý; p=£Û1 -3 2£Ý; Y=polyvalm(p,X) Y1=polyval(p,X) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ Y = 64 612 Y1 = 00 26 2. ¶àÏîʽÇó¸ù n´Î¶àÏîʽÓÐn¸ö¸ù£¬¿ÉÒÔÓÃrootsº¯ÊýÇóÈ¡¶àÏîʽµÄÈ«²¿¸ù£¬µ÷ÓøñʽÈçÏ£º r=roots(p)% pΪ¶àÏîʽϵÊýÏòÁ¿£¬rΪ¸ùÏòÁ¿ MATLABÖл¹ÌṩÁËÒ»¸öÓɶàÏîʽµÄ¸ùÇó¶àÏîʽϵÊýµÄº¯Êý£¬µ÷ÓøñʽÈçÏ£º p=poly(r)% pΪ¶àÏîʽϵÊýÏòÁ¿£¬rΪ¸ùÏòÁ¿ ¡¾Àý3ª²5¡¿ÒÑÖª¶àÏîʽΪf(x)=x4+4x3-3x+2¡£ (1) ÓÃrootsº¯ÊýÇó¸Ã¶àÏîʽµÄ¸ùr¡£ (2) ÓÃpolyº¯ÊýÇó¸ùΪrµÄ¶àÏîʽϵÊý¡£ ³ÌÐòÈçÏ£º p=£Û1 4 0 -3 2£Ý; r=roots(p) p1=poly(r) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ r = -3.7485 -1.2962 0.5224 + 0.3725i 0.5224 - 0.3725i p1 = 1.00004.0000-0.0000-3.00002.0000 ÏÔÈ»£¬rootsºÍpolyº¯ÊýµÄ¹¦ÄÜÕýºÃÏà·´¡£ 3.1.4¶àÏîʽµÄ΢»ý·ÖÔËËã 1. ¶àÏîʽµÄ΢·Ö ÔÚMATLABÖУ¬ÓÃpolyderº¯Êý¶Ô¶àÏîʽ½øÐÐ΢·ÖÔËË㣬¿ÉÒÔ¶Ôµ¥¸ö¶àÏîʽÇóµ¼£¬Ò²¿ÉÒÔ¶ÔÁ½¸ö¶àÏîʽ³Ë»ýºÍÉÌÇóµ¼£¬Æäµ÷ÓøñʽÈçÏ£º p=polyder(p1)%Çó¶àÏîʽp1µÄµ¼Êý p=polyder(p1,p2) %Çó¶àÏîʽp1*p2»ýµÄµ¼Êý £Ûp,q£Ý=polyder(p1)%Çó¶àÏîʽp1/p2µÄµ¼Êý£¬pΪµ¼ÊýµÄ·Ö×Ó¶àÏîʽϵÊý£¬qΪµ¼ %ÊýµÄ·Ö×Ó¶àÏîʽϵÊý ΢ÊÓÆµ3ª²2 ¡¾Àý3ª²6¡¿ÒÑÖªÁ½¸ö¶àÏîʽΪf(x)=x4+4x3-3x+2£¬g(x)=x3-2x2+x¡£ (1) Çó¶àÏîʽf(x)µÄµ¼Êý¡£ (2) ÇóÁ½¸ö¶àÏîʽ³Ë»ýf(x)¡Ág(x)µÄµ¼Êý¡£ (3) ÇóÁ½¸ö¶àÏîʽÏà³ýg(x)/f(x)µÄµ¼Êý¡£ ³ÌÐòÈçÏ£º p1=£Û1 4 0 -3 2£Ý; p2=£Û1 -2 1 0£Ý; p=polyder(p1) poly2sym(p) p=polyder(p1,p2) poly2sym(p) £Ûp,q£Ý=polyder(p2,p1) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ p = 4120-3 ans = 4*x^3+12*x^2-3 p = 712-35424-142 ans = 7*x^6+12*x^5-35*x^4+4*x^3+24*x^2-14*x+2 p = -14 5-1412-82 q = 1 816-6-20169-12 4 2. ¶àÏîʽµÄ»ý·Ö ÔÚMATLABÖУ¬ÓÃpolyintº¯ÊýÇó¶àÏîʽµÄ»ý·Ö£¬Æäµ÷ÓøñʽÈçÏ£º I=polyint(p,k)%ÇóÒÔpΪϵÊýµÄ¶àÏîʽµÄ»ý·Ö£¬kΪ»ý·Ö³£ÊýÏî I=polyint(p)%ÇóÒÔpΪϵÊýµÄ¶àÏîʽµÄ»ý·Ö£¬»ý·Ö³£ÊýÏîĬÈÏÖµ0 ÏÔÈ»£¬polyintÊÇpolyerµÄÄæº¯Êý¡£ ΢ÊÓÆµ3ª²3 ¡¾Àý3ª²7¡¿Çó¶àÏîʽµÄ»ý·ÖI=¡Ò(x4+4x3-3x+2)dx¡£ ³ÌÐòÈçÏ£º p=£Û1 4 0 -3 2£Ý; I=polyint(p) poly2sym(I) p=polyder(I) syms k I1=polyint(p,k) poly2sym(I1) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ I = 0.20001.00000-1.50002.00000 ans = 1/5*x^5+x^4-3/2*x^2+2*x p = 140-32 I1 = £Û1/5,1,0, -3/2,2,k£Ý ans = x^5/5 + x^4 - (3*x^2)/2 + 2*x + k 3.1.5¶àÏîʽµÄ²¿·Ö·½Ê½Õ¹¿ª ÔÚMATLABÖУ¬Ê¹ÓÃresidueº¯ÊýʵÏÖ¶àÏîʽ²¿·Ö·Öʽչ¿ª£¬Æäµ÷ÓøñʽÈçÏ£º £Ûr,p,k£Ý=residue(B,A)%BΪ·Ö×Ó¶àÏîʽϵÊýÐÐÏòÁ¿£¬AΪ·Öĸ¶àÏîʽϵÊýÐÐÏòÁ¿£¬p %Ϊ¼«µãÁÐÏòÁ¿£¬rΪÁãµãÁÐÏòÁ¿£¬kΪÓàʽ¶àÏîʽÐÐÏòÁ¿ residueº¯Êý»¹¿ÉÒÔ½«²¿·Ö·Öʽչ¿ªÊ½×ª»»ÎªÁ½¸ö¶àÏîʽµÄ³ýµÄ·Öʽ£¬Æäµ÷ÓøñʽÈçÏ£º £ÛB,A£Ý=residue(r,p,k) ¡¾Àý3ª²8¡¿ÒÑÖª·Öʽ±í´ïʽΪ f(s)=B(s)A(s)=3s2+1s2-5s+6 (1) Çóf(s)µÄ²¿·Ö·Öʽչ¿ªÊ½¡£ (2) ½«²¿·Ö·Öʽչ¿ªÊ½×ª»»Îª·Öʽ±í´ïʽ¡£ ³ÌÐòÈçÏ£º a=£Û1 -5 6£Ý; b=£Û3 0 1£Ý; £Ûr,p,k£Ý=residue(b,a) £Ûb1,a1£Ý=residue(r,p,k) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ r = 82.0000 -25.0000 p = 3.0000 2.0000 k = 315 b1 = 301 a1 = 1-56 3.2Êý¾Ýͳ¼ÆÓë·ÖÎö Êý¾Ýͳ¼ÆÊÇ¿ÆÑ§Ñо¿Öеij£Ó÷½·¨£¬MATLABÖÐÌṩÁ˶àÖÖÏà¹Øº¯Êý£¬Èç±í3ª²2Ëùʾ¡£ ±í3ª²2Êý¾Ýͳ¼ÆÓë·ÖÎö³£Óú¯Êý º¯Êý¹¦Äܺ¯Êý¹¦ÄÜ maxÇó×î´óÔªËØmeanÇóËãÊõƽ¾ùÖµ minÇó×îÐ¡ÔªËØmedianÇóÖÐÖµ sumÇóºÍcumsumÀÛ¼ÓºÍ prodÇó»ýcumprodÀ۳˻ý std±ê×¼·½²îsortÅÅÐò corrcoefÏà¹ØÏµÊý 3.2.1¾ØÕóµÄ×î´óÔªËØºÍ×îÐ¡ÔªËØ 1. ÏòÁ¿µÄ×î´óÔªËØºÍ×îÐ¡ÔªËØÇó½â ÇóÏòÁ¿×î´óÔªËØ¿Éµ÷Óú¯Êýmax(x),ÇóÏòÁ¿µÄ×îÐ¡ÔªËØ¿Éµ÷Óú¯Êýmin(x)£¬¾ßÌåµ÷ÓøñʽÈçÏ£º y=max(x)%·µ»ØxÖÐ×î´óÔªËØ¸øy £Ûy,k£Ý=max(x) %·µ»ØxÖÐ×î´óÔªËØ¸øy£¬ËùÔÚλÖÃΪk y=min(x)%·µ»ØxÖÐ×îÐ¡ÔªËØ¸øy £Ûy,k£Ý min(x)%·µ»ØxÖÐ×îÐ¡ÔªËØ¸øy£¬ËùÔÚλÖÃΪk ¡¾Àý3ª²9¡¿ÇóÏòÁ¿X=£Û34,23,-23,4,76,58,10,35£ÝµÄ×î´óÖµºÍ×îСֵ¡£ ³ÌÐòÈçÏ£º X=£Û34,23,-23,4,76,58,10,35£Ý; y=max(X) £Ûy,k£Ý=max(X) y=min(X) £Ûy,k£Ý=min(X) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ y = 76 y = 76 k = 5 y = -23 y = -23 k = 3 2. ¾ØÕóµÄ×î´óÔªËØºÍ×îÐ¡ÔªËØÇó½â Çó¾ØÕóµÄ×î´óÔªËØ¼°×îÐ¡ÔªËØÒ²¿Éµ÷ÓÃmax(x)ºÍmin(x)º¯Êý£¬¾ßÌåµ÷ÓøñʽÈçÏ£º Y=max(A) %·µ»Ø¾ØÕóAÿÁÐ×î´óÔªËØ¸øY£¬YÊÇÒ»¸öÐÐÏòÁ¿ £ÛY,k£Ý=max(A) %·µ»Ø¾ØÕóAÿÁÐ×î´óÔªËØ¸øY£¬YÊÇÒ»¸öÐÐÏòÁ¿£¬k¼Ç¼ÿÁÐ×î´óÔªËØµÄÐкŠ£ÛY,k£Ý=max(A,£Û£Ý,dim)%dim=2ʱ£¬·µ»ØÎªÃ¿ÐÐ×î´óÔªËØ;dim=1ʱ£¬Óëmax(A)ÍêÈ«Ïàͬ Y=min(A) %·µ»Ø¾ØÕóAÿÁÐ×îÐ¡ÔªËØ¸øY£¬YÊÇÒ»¸öÐÐÏòÁ¿ £ÛY,k£Ý=min(A)%·µ»Ø¾ØÕóAÿÁÐ×îÐ¡ÔªËØ¸øY£¬k¼Ç¼ÿÁÐ×îÐ¡ÔªËØµÄÐкŠ£ÛY,k£Ý=min(A,£Û£Ý,dim)%dim=2ʱ£¬·µ»ØÎªÃ¿ÐÐ×îÐ¡ÔªËØ;dim=1ʱ£¬Óëmin (A)ÍêÈ«Ïàͬ ¡¾Àý3ª²10¡¿ÒÑÖª¾ØÕóA£¬ÇóÿÐкÍÿÁеÄ×î´óºÍ×îÐ¡ÔªËØ£¬²¢ÇóÕû¸öAµÄ×î´óºÍ×îÐ¡ÔªËØ¡£ A=1216-24 -423120 2-3186 451310-7 ³ÌÐòÈçÏ£º A=£Û12 1 6 -24;-4 23 12 0;2 -3 18 6;45 13 10 -7£Ý; Y1=max(A,£Û£Ý,2) £ÛY2,K£Ý=min(A,£Û£Ý,2) Y3=max(A) £ÛY4,K1£Ý=min(A) ymax=max(max(A)) ymin=min(min(A)) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ Y1 = 12 23 18 45 Y2 = -24 -4 -3 -7 K = 4 1 2 4 Y3 = 4523186 Y4 = -4-36-24 K1 = 2311 ymax = 45 ymin = -24 3. ͬά¶ÈÏòÁ¿/¾ØÕóµÄ±È½Ï ¶ÔÓÚÏàͬά¶ÈµÄÏòÁ¿»ò¾ØÕó£¬Ò²¿ÉÒÔÓÃmax£¨x£©ºÍmin(x)º¯ÊýÇó×î´óÖµºÍ×îСֵ£¬µ÷ÓøñʽÈçÏ£º Y = max(A,B) Y = min(A,B) ¡¾Àý3ª²11¡¿ÒÑÖª¾ØÕóAºÍB£¬ÇóÆä¶ÔÓ¦ÔªËØ×î´óÖµºÍ×îСֵ¡£ A=1216-24 -423120 2-3186 451310-7£¬B=211-624 -143227 21-13816 513-1017 ³ÌÐòÈçÏ£º A=£Û12 1 6 -24;-4 23 12 0;2 -3 18 6;45 13 10 -7£Ý; B=£Û2 11 -6 24;-14 3 22 7;21 -13 8 16;5 13 -10 17£Ý; Y1=max(A,B) Y2=min(A,B) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ Y1 = 1211624 -423227 21-31816 45131017 Y2 = 21-6-24 -143120 2-1386 513-10-7 3.2.2Çó¾ØÕóµÄƽ¾ùÖµºÍÖÐÖµ Çó¾ØÕóµÄËãÊõƽ¾ùÖµ¿ÉÒÔµ÷ÓÃmeanº¯Êý£¬ÇóÖÐÖµ¿ÉÒÔµ÷ÓÃmedianº¯Êý£¬µ÷ÓøñʽÈçÏ£º y=mean(X)%·µ»ØÏòÁ¿µÄËãÊõƽ¾ùÖµ y=median(X)%·µ»ØÏòÁ¿µÄÖÐÖµ Y=mean(A) %·µ»Ø¾ØÕóÿÁеÄËãÊõƽ¾ùÖµµÄÐÐÏòÁ¿ Y=median(A) %·µ»Ø¾ØÕóÿÁеÄÖÐÖµµÄÐÐÏòÁ¿ Y=mean(A,dim) %dim=2ʱ£¬·µ»Ø¾ØÕóÿÐеÄËãÊõƽ¾ùÖµµÄÁÐÏòÁ¿;dim=1ʱ£¬Óëmean(A)ÍêÈ«Ïàͬ Y=median(A,dim)%dim=2ʱ£¬·µ»Ø¾ØÕóÿÐеÄÖÐÖµµÄÁÐÏòÁ¿;dim=1ʱ£¬Óëmedian(A)ÍêÈ«Ïàͬ ¡¾Àý3ª²12¡¿ÇóÏòÁ¿XºÍ¾ØÕóAµÄƽ¾ùÖµºÍÖÐÖµ¡£ X=£Û34,23,-23,4,76,58,10,35£Ý£¬A=1216-24 -423120 2-3186 451310-7 ³ÌÐòÈçÏ£º X=£Û34,23,-23,4,76,58,10,35£Ý; A=£Û12 1 6 -24;-4 23 12 0;2 -3 18 6;45 13 10 -7£Ý; y1=mean(X) y2=median(X) Y1=mean(A) Y2=median(A) Y3=mean(A,2) Y4=median(A,2) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ y1 = 27.1250 y2 = 28.5000 Y1 = 13.75008.500011.5000-6.2500 Y2 = 7.00007.000011.0000-3.5000 Y3 = -1.2500 7.7500 5.7500 15.2500 Y4 = 3.5000 6.0000 4.0000 11.5000 3.2.3¾ØÕóÔªËØÇóºÍÓëÇó»ý ÏòÁ¿/¾ØÕóµÄÇóºÍ¿Éµ÷ÓÃsumº¯Êý£¬Çó»ý¿Éµ÷ÓÃprodº¯Êý£¬¾ßÌåµ÷ÓøñʽÈçÏ£º y = sum(x)%·µ»ØÏòÁ¿x¸÷ÔªËØÖ®ºÍ y = prod(x) %·µ»ØÏòÁ¿x¸÷ÔªËØÖ®»ý Y = sum(A)%·µ»Ø¾ØÕó¸÷ÁÐÔªËØÖ®ºÍµÄÐÐÏòÁ¿ Y = prod(A) %·µ»Ø¾ØÕó¸÷ÁÐÔªËØÖ®»ýµÄÐÐÏòÁ¿ Y = sum(A,dim)%dim=2ʱ£¬·µ»Ø¾ØÕó¸÷ÐÐÔªËØÖ®ºÍµÄÁÐÏòÁ¿;dim=1ʱ£¬Óësum(A)ÍêÈ«Ïàͬ Y = prod(A,dim) %dim=2ʱ£¬·µ»Ø¾ØÕó¸÷ÐÐÔªËØÖ®»ýµÄÁÐÏòÁ¿;dim=1ʱ£¬Óëprod(A)ÍêÈ«Ïàͬ ¡¾Àý3ª²13¡¿ÇóÏòÁ¿XºÍ¾ØÕóAµÄ¸÷ÔªËØµÄºÍÓë»ý¡£ X=£Û34,23,-23,4,76,58,10,35£Ý£¬A=1216-24 -423120 2-3186 451310-7 ³ÌÐòÈçÏ£º X=£Û34,23,-23,4,76,58,10,35£Ý; A=£Û12 1 6 -24;-4 23 12 0;2 -3 18 6;45 13 10 -7£Ý; y1=sum(X) y2=prod(X) Y1=sum(A) Y2=prod(A) Y3=sum(A,2) Y4=prod(A,2) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ y1 = 217 y2 = -1.1100e+011 Y1 = 553446 -25 Y2 = -4320-897 12960 0 Y3 = -5 31 23 61 Y4 = -1728 0 -648 -40950 3.2.4¾ØÕóÔªËØÀÛ¼ÓºÍÓëÀ۳˻ý ÏòÁ¿/¾ØÕóÀۼӺͿɵ÷Óú¯Êýcumsum£¬À۳˻ý¿Éµ÷Óú¯Êýcumprod¡£¾ßÌåµ÷ÓøñʽÈçÏ£º y=cumsum(x) %·µ»ØÏòÁ¿xÀÛ¼ÓºÍÏòÁ¿ y=cumprod(x)%·µ»ØÏòÁ¿xÀ۳˻ýÏòÁ¿ Y=cumsum(A) %·µ»Ø¾ØÕó¸÷ÁÐÔªËØÀۼӺ͵ľØÕó Y=cumprod(A) %·µ»Ø¾ØÕó¸÷ÁÐÔªËØÀ۳˻ýµÄ¾ØÕó Y=cumsum(A,dim)%dim=2ʱ£¬·µ»Ø¾ØÕó¸÷ÐÐÔªËØÀۼӺ͵ľØÕó;dim=1ʱ£¬Óëcumsum (A)ÍêÈ«Ïàͬ Y=cumprod(A,dim) %dim=2ʱ£¬·µ»Ø¾ØÕó¸÷ÐÐÔªËØÀ۳˻ýµÄ¾ØÕó;dim=1ʱ£¬Óëcumsum (A)ÍêÈ«Ïàͬ ¡¾Àý3ª²14¡¿ÇóÏòÁ¿XºÍ¾ØÕóAµÄ¸÷ÔªËØµÄÀÛ¼ÓºÍÓëÀ۳˻ý¡£ X=£Û3,2,-2,4,7,9,10,5£Ý£¬A=1216-24 -423120 2-3186 451310-7 ³ÌÐòÈçÏ£º X=£Û3,2,-2,4,7,9,10,5£Ý; A=£Û12 1 6 -24;-4 23 12 0;2 -3 18 6;45 13 10 -7£Ý; y1=cumsum(X) y2=cumprod(X) Y1=cumsum(A) Y2=cumprod(A) Y3=cumsum(A,2) Y4=cumprod(A,2) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ y1 = 353714233338 y2 = 36-12-48-336-3024-30240-151200 Y1 = 1216-24 82418-24 102136-18 553446-25 Y2 = 12 1 6-24 -4823720 -96-6912960 -4320-897129600 Y3 = 121319-5 -4193131 2-11723 45586861 Y4 = 121272-1728 -4-92-11040 2-6-108-648 455855850-40950 3.2.5±ê×¼·½²îºÍÏà¹ØÏµÊý 1. ±ê×¼·½²î ¶ÔÓÚ¾ßÓÐN¸öÔªËØµÄÊý¾ÝÐòÁÐx1,x2,x3,¡­,xN£¬±ê×¼·½²î¿ÉÒÔÓÉÏÂÁÐÁ½ÖÖ¹«Ê½¼ÆË㣺 S1=1N-1¡ÆNi=1(xi-x-)2 »ò S2=1N¡ÆNi=1(xi-x-)2 ÆäÖÐ x-=1N¡ÆNi=1xi ¼ÆËãÏòÁ¿/¾ØÕóµÄ±ê×¼·½²îʱ£¬¿Éµ÷ÓÃstdº¯Êý£¬¾ßÌåµ÷ÓøñʽÈçÏ£º d=std(x)%ÇóÏòÁ¿xµÄ±ê×¼·½²î D=std(A,flag,dim) %Çó¾ØÕóAµÄ±ê×¼·½²î¡£dim=1ʱÇó¸÷ÁÐÔªËØµÄ±ê×¼·½²î£¬dim=2ʱÇó¸÷ÐÐ %ÔªËØµÄ±ê×¼·½²î;flag=0ʱ°´¹«Ê½¼ÆËã±ê×¼·½²îS1£¬flag=1ʱ°´¹«Ê½¼Æ %Ëã±ê×¼·½²îS2¡£Ä¬ÈÏflag=0£¬dim=1 ¡¾Àý3ª²15¡¿ÇóÏòÁ¿XºÍ¾ØÕóAµÄ±ê×¼·½²î¡£ X=£Û3,2,-2,4,7,9,10,5£Ý£¬A=1216 -42312 2-318 ³ÌÐòÈçÏ£º X=£Û3,2,-2,4,7,9,10,5£Ý; A=£Û12 1 6;-4 23 12;2 -3 18£Ý; d=std(X) D1=std(A,0,1) D2=std(A,0,2) D3=std(A,1,1) D4=std(A,1,2) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ d = 3.9188 D1 = 8.082914.00006.0000 D2 = 5.5076 13.5769 10.9697 D3 = 6.599711.43104.8990 D4 = 4.4969 11.0855 8.9567 2. Ïà¹ØÏµÊý ¶ÔÓÚÁ½×éÊý¾ÝÐòÁÐxi,yi(i=1,2,¡­,n)£¬Ïà¹ØÏµÊý¿ÉÒÔÓÉÏÂÁй«Ê½¼ÆË㣺 r=¡Æ(xi-x-)(yi-y-)¡Æ(xi-x-)2¡Æ(yi-y-)2 Ïà¹ØÏµÊýµÄ¼ÆËã¿ÉÒÔµ÷ÓÃcorrcoefº¯Êý£¬¾ßÌåµ÷ÓøñʽÈçÏ£º R=corrcoef(X,Y)%·µ»ØÏà¹ØÏµÊý£¬XºÍYΪ³¤¶ÈÏàµÈµÄÏòÁ¿ R=corrcoef(A)%·µ»Ø¾ØÕóAµÄÿÁÐÖ®¼ä¼ÆËãÏà¹ØÐγɵÄÏà¹ØÏµÊý¾ØÕó ΢ÊÓÆµ3ª²4 ¡¾Àý3ª²16¡¿ÇóÏòÁ¿XºÍYÒÔ¼°Õý̬·Ö²¼µÄ1000¡Á5Ëæ»ú¾ØÕóµÄ5ÁÐËæ»úÊý¾ÝµÄÏà¹ØÏµÊý¡£ X=£Û3,2,-2,4,7,9,10,5£Ý£¬Y=£Û31,12,-12,24,37,91,18,53£Ý ³ÌÐòÈçÏ£º X=£Û3,2,-2,4,7,9,10,5£Ý; Y=£Û31,12,-12,24,37,91,18,53£Ý; r=corrcoef(X,Y) R=corrcoef(randn(1000,5)) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ r = 1.00000.6599 0.65991.0000 R = 1.0000-0.05430.04780.00830.0177 -0.05431.00000.00240.0399-0.0157 0.04780.00241.0000-0.0147-0.0559 0.00830.0399-0.01471.00000.0069 0.0177-0.0157-0.05590.00691.0000 3.2.6¾ØÕóµÄÅÅÐò ¶ÔÏòÁ¿/¾ØÕó½øÐÐÅÅÐò¿ÉÒÔµ÷ÓÃsortº¯Êý£¬¾ßÌåµ÷ÓøñʽÈçÏ£º Y=sort(X) %·µ»ØÒ»¸ö°´ÉýÐòÅÅÁеÄÏòÁ¿ £ÛY,I£Ý=sort(A,dim,mode)%dim=1ʱ°´ÁÐÅÅÐò£¬dim=2ʱ°´ÐÐÅÅÐò;modeΪ'ascend'ʱ %ΪÉýÐò£¬Îª'descend'ʱΪ½µÐò;I¼Ç¼YÖÐÔªËØÔÚAÖеÄλÖà ¡¾Àý3ª²17¡¿¶ÔÏòÁ¿XºÍ¾ØÕóA×ö¸÷ÖÖÅÅÐò¡£ X=£Û3,2,-2,4,7,9,10,5£Ý£¬A=1216 -42312 2-318 ³ÌÐòÈçÏ£º X=£Û3,2,-2,4,7,9,10,5£Ý; A=£Û12 1 6;-4 23 12;2 -3 18£Ý; Y=sort(X) Y1=sort(A) Y2=sort(A,1,'ascend') Y3=sort(A,2,'ascend') £ÛY4,I£Ý=sort(A,2,'descend') ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ Y = -223457910 Y1 = -4-36 2112 122318 Y2 = -4-36 2112 122318 Y3 = 1612 -41223 -3218 Y4 = 1261 2312-4 182-3 I = 132 231 312 3.3Êý¾Ý²åÖµ ÔÚ¹¤³Ìʵ¼ùÓ¦ÓÃÖУ¬Í¨³£»ñÈ¡µ½µÄÊý¾ÝÊÇÀëÉ¢µÄ£¬ÈôÏëµÃµ½ÀëÉ¢ÖµÒÔÍâµÄÆäËûÊý¾Ý£¬¾ÍÐèÒª¶ÔÆä½øÐвåÖµ²Ù×÷¡£MATLABÖÐÌṩÁ˶àÖÖ²åÖµº¯Êý£¬Èç±í3ª²3Ëùʾ¡£ ±í3ª²3³£ÓòåÖµº¯Êý º¯Êý¹¦Äܺ¯Êý¹¦ÄÜ interp1һά²åÖµlinearÏßÐÔ²åÖµ interpftһά¿ìËÙ¸µÀïÒ¶²åÖµnearest×îÁÚ½üµã²åÖµ splineÈý´ÎÑùÌõ²åÖµnextÏÂÒ»µã²åÖµ interp2¶þά²åÖµpreviousǰһµã²åÖµ interp3Èýά²åÖµcubicÈý´Î¶àÏîʽ²åÖµ interpnnά²åÖµinterp1qһά²åÖµ 3.3.1һά²åÖµ һά²åÖµÖ¸µÄÊDZ»²åÖµº¯Êý×Ô±äÁ¿ÊÇÒ»¸öµ¥±äÁ¿º¯Êý¡£²åÖµ·½·¨·ÖΪһά¶àÏîʽ²åÖµ¡¢Ò»Î¬¿ìËÙ²åÖµºÍÈý´ÎÑùÌõ²åÖµ¡£ 1. һά¶àÏîʽ²åÖµ һά¶àÏîʽ²åÖµ¿Éµ÷ÓÃinterp1º¯ÊýʵÏÖ£¬Í¨¹ýÒÑÖªÊý¾Ýµã¼ÆËãÄ¿±ê²åÖµµã¶ÔÊý¾Ý£¬¸ñʽÈçÏ£º yi=interp1(Y,xi)%YÔÚĬÈÏ×Ô±äÁ¿xѡΪ1:nµÄÖµ yi=interp1(X,Y,xi)% X£¬YΪ³¤¶ÈÒ»ÑùµÄÒÑÖªÏòÁ¿£¬xi¿ÉÒÔÊDZêÁ¿£¬Ò²¿ÉÒÔÊÇÏòÁ¿ yi=interp1(X,Y,xi,'method') % methodÊDzåÖµ·½·¨ Method²åÖµ·½·¨Ñ¡È¡ÈçÏ£º (1) ÏßÐÔ£¨linear£©²åÖµ¡ª¡ªÕâÊÇĬÈϲåÖµ·½·¨£¬ËüÊǰÑÓë²åÖµµã¿¿½üµÄÁ½¸öÊý¾ÝµãÒÔÖ±ÏßÁ¬½Ó£¬ÔÚÖ±ÏßÉÏѡȡ¶ÔÓ¦²åÖµµãµÄÊý¾Ý¡£ÕâÖÖ²åÖµ·½·¨¼æ¹ËËٶȺÍÎó²î£¬²åÖµº¯Êý¾ßÓÐÁ¬ÐøÐÔ£¬µ«Æ½»¬ÐÔ²»ºÃ¡£ (2) ×îÁÚ½üµã£¨nearest£©²åÖµ¡ª¡ª¸ù¾Ý²åÖµµãºÍ×î½Ó½üÒÑÖªÊý¾Ýµã½øÐвåÖµ£¬ÕâÖÖ²åÖµ·½·¨Ëٶȿ죬ռÓÃÄÚ´æÐ¡£¬µ«Ò»°ãÎó²î×î´ó£¬²åÖµ½á¹û×ƽ»¬¡£ (3) ÏÂÒ»µã£¨next£©²åÖµ¡ª¡ª¸ù¾Ý²åÖµµãºÍÏÂÒ»µãµÄÒÑÖªÊý¾Ýµã²åÖµ£¬ÕâÖÖ²åÖµ·½·¨µÄÓÅȱµãºÍ×îÁÚ½üµã²åÖµÒ»Ñù¡£ (4) ǰһµã£¨previous£©²åÖµ¡ª¡ª¸ù¾Ý²åÖµµãºÍǰһµãµÄÒÑÖªÊý¾Ýµã²åÖµ£¬ÕâÖÖ²åÖµ·½·¨µÄÓÅȱµãºÍ×îÁÚ½ü²åÖµµãÒ»Ñù¡£ (5) Èý´ÎÑùÌõ£¨spline£©²åÖµ¡ª¡ª²ÉÓÃÈý´ÎÑùÌõº¯Êý»ñµÃ²åÖµµãÊý¾Ý£¬ÒªÇóÔÚ¸÷µã´¦¾ßÓй⻬Ìõ¼þ£¬ÕâÖÖ²åÖµ·½·¨Á¬ÐøÐԺ㬲åÖµ½á¹û×î¹â»¬£¬È±µãΪÔËÐÐʱ¼ä³¤¡£ (6) Èý´Î¶àÏîʽ£¨cubic£©²åÖµ¡ª¡ª¸ù¾ÝÒÑÖªÊý¾Ý£¬Çó³öÒ»¸öÈý´Î¶àÏîʽ½øÐвåÖµ£¬ÕâÖÖ²åÖµ·½·¨Á¬ÐøÐԺ㬹⻬ÐԽϺã¬È±µãÊÇÕ¼ÓÃÄÚ´æ¶à£¬ËٶȽÏÂý¡£ ÐèҪעÒâxiµÄȡֵ£¬Èç¹û³¬³öÒÑÖªÊý¾ÝXµÄ·¶Î§£¬Ôò»á·µ»ØNaN´íÎóÐÅÏ¢¡£ MATLAB»¹Ìṩinterp1qº¯ÊýÓÃÓÚһά²åÖµ£¬ËüÓëinterp1º¯ÊýµÄÖ÷񻂿±ðÊÇ£¬µ±ÒÑÖªÊý¾Ý²»Êǵȼä¾à·Ö²¼Ê±£¬interp1²åÖµËٶȱÈinterp1q¿ì¡£ÐèҪעÒ⣬interp1qÖ´ÐеIJåÖµÊý¾Ý£¬X±ØÐëÊǵ¥µ÷µÝÔöµÄ¡£ ¡¾Àý3ª²18¡¿¸ø³ö¸ÅÂÊ»ý·Ö£º f(x)=2¦Ð¡Òx0e-x2dx ÆäÊý¾Ý±íÈç±í3ª²4Ëùʾ£¬Óò»Í¬µÄ²åÖµ·½·¨¼ÆËãf(0.472)¡£ ±í3ª²4¸ÅÂÊ»ý·ÖÊý¾Ý±í x0.460.470.480.49 f(x)0.48465550.49375420.50274980.5116683 ³ÌÐòÈçÏ£º x=0.46:0.01:0.49; %¸ø³öx£¬f(x) f=£Û0.4846555,0.4937542,0.5027498,0.5116683£Ý; format long F1=interp1(x,f,0.472)%ÓÃĬÈÏ·½·¨£¬¼´ÏßÐÔ²åÖµ·½·¨¼ÆËãf(x) F2=interp1(x,f,0.472,'nearest') %ÓÃ×î½üµã²åÖµ·½·¨¼ÆËãf(x) F3=interp1(x,f,0.472,'nest') %ÓÃÏÂÒ»µã²åÖµ·½·¨¼ÆËãf(x) F4=interp1(x,f,0.472,'previous') %ÓÃǰһµã²åÖµ·½·¨¼ÆËãf(x) F5=interp1(x,f,0.472,'spline') %ÓÃ3´ÎÑùÌõ²åÖµ·½·¨¼ÆËãf(x) F6=interp1(x,f,0.472,'cubic')%ÓÃ3´Î¶àÏîʽ²åÖµ·½·¨¼ÆËãf(x) format short ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ F1 = 0.495553320000000 F2 = 0.493754200000000 F3 = 0.493754200000000 F4 = 0.495561119712056 F5 = 0.495560736000000 F6 = 0.495561119712056 ²åÖµ·½·¨µÄºÃ»µÒÀÀµÓÚ±»²åÖµº¯Êý£¬Ã»ÓÐÒ»ÖÖ¶ÔËùÓк¯Êý¶¼ÊÇ×îºÃµÄ²åÖµ·½·¨¡£ 2. һά¿ìËÙ¸µÀïÒ¶²åÖµ һά¿ìËÙ¸µÀïÒ¶²åÖµ¿ÉÒÔµ÷ÓÃinterpftº¯ÊýʵÏÖ£¬µ÷ÓøñʽÈçÏ£º y=interpft(x,n)%¶Ôx½øÐиµÀïÒ¶±ä»»£¬È»ºó²ÉÓÃnµã¸µÀïÒ¶Äæ±ä»»£¬µÃµ½²åÖµºóµÄÊý¾Ý y=interpft(x,n,dim) %±íʾÔÚdimάÉϽøÐиµÀïÒ¶²åÖµ ¡¾Àý3ª²19¡¿¼ÙÉè²âÁ¿µÄÊý¾ÝÀ´×Ôº¯Êýf(x)=sinx£¬ÊÔ¸ù¾ÝÉú³ÉµÄÊý¾Ý£¬ÓÃһά¿ìËÙ¸µÀïÒ¶²åÖµ£¬±È½Ï²åÖµ½á¹û¡£ ³ÌÐòÈçÏ£º clear x=0:0.4:2*pi; y=sin(x); N=length(y); M=N*4; x1=0:0.1:2*pi; y1=interpft(y,M-1); y2=sin(x1); plot(x,y,'O',x1,y1,'*',x1,y2,'-') legend('ԭʼÊý¾Ý','¸µÀïÒ¶²åÖµÊý¾Ý','²åÖµµãÕæÊµÊý¾Ý') max(abs(y1-y2)) ³ÌÐòÖ´Ðк󣬲åÖµ½á¹ûÈçͼ3ª²1Ëùʾ£¬ÔËÐнá¹ûΪ ans = 0.0980 ͼ3ª²1һά¿ìËÙ¸µÀïÒ¶²åÖµ¼°±È½Ï 3. Èý´ÎÑùÌõ²åÖµ Èý´ÎÑùÌõ²åÖµ¿Éµ÷ÓÃsplineº¯Êý£¬µ÷ÓøñʽÈçÏ£º Yi=spline(x,y,xi)%Ï൱ÓÚyi=interp1(x,y,xi,'spline') ¡¾Àý3ª²20¡¿Ä³¼ì²â²ÎÊýfËæÊ±¼ätµÄ²ÉÑù½á¹ûÈç±í3ª²5Ëùʾ£¬ÓÃÊý¾Ý²åÖµ·¨¼ÆËãt=2£¬7£¬12£¬17£¬22£¬27£¬32£¬37£¬42£¬47£¬52£¬57ʱµÄfÖµ£¬±È½Ï²åÖµ½á¹û¡£ ±í3ª²5¼ì²â²ÎÊýfËæÊ±¼ätµÄ²ÉÑù½á¹û t051015202530 f3.10252.256879.51835.92968.84136.25237.9 t35404550556065 f6152.76725.36848.36403.56824.77328.57857.6 ³ÌÐòÈçÏ£º T=0:5:65; X=2:5:57; F=£Û3.2015,2.2560,879.5,1835.9,2968.8,4136.2,5237.9,6152.7,... 6725.3,6848.3,6403.5,6824.7,7328.5,7857.6£Ý; F1=interp1(T,F,X)%ÓÃÏßÐÔ²åÖµ·½·¨²åÖµ F2=interp1(T,F,X,'nearest') %ÓÃ×î½üµã²åÖµ·½·¨²åÖµ F3=interp1(T,F,X,'spline')%ÓÃÈý´ÎÑùÌõ²åÖµ·½·¨²åÖµ F4=interp1(T,F,X,'cubic') %ÓÃÈý´Î¶àÏîʽ²åÖµ·½·¨²åÖµ plot(T,F,X,F1,'O',X,F2,'+',X,F3,'*',X,F4,'s') legend('ԭʼÊý¾Ý','ÏßÐÔ²åÖµ','nearest²åÖµ','spline²åÖµ','cubic²åÖµ') max(abs(F1-F4)) ³ÌÐòÖ´Ðк󣬲åÖµ½á¹ûÈçͼ3ª²2Ëùʾ£¬ÔËÐнá¹ûΪ F1 = 1.0e+003 * 0.00280.35321.26212.28913.43584.57695.60386.3817 6.77456.67046.57207.0262 F2 = 1.0e+003 * 0.00320.00230.87951.83592.96884.13625.23796.1527 6.72536.84836.40356.8247 F3 = 1.0e+003 * -0.17020.30701.25602.26983.43964.58965.63706.4229 6.85936.65356.48177.0441 F4 = 1.0e+003 * 0.00250.22321.24842.27363.43654.59135.63626.4362 6.79786.69176.50777.0186 ans = 129.9586 ͼ3ª²2Èý´ÎÑùÌõ²åÖµ¼°±È½Ï 3.3.2¶þά²åÖµ ¶þά²åÖµÊÇÖ¸ÒÑÖªÒ»¸ö¶þÔªº¯ÊýµÄÈô¸É¸ö²ÉÓÃÊý¾Ýµãx¡¢yºÍz(x£¬y)£¬Çó²åÖµµã(x1£¬y1)´¦µÄz1µÄÖµ¡£ÔÚMATLABÖÐÌṩÁËinterp2º¯Êý£¬ÓÃÓÚʵÏÖ¶þά²åÖµ£¬Æäµ÷ÓøñʽΪ£º z1=interp2(X,Y,Z,X1,Y1,'method') ÆäÖУ¬XºÍYÊÇÁ½¸ö²ÎÊýµÄ²ÉÑùµã£¬Ò»°ãÊÇÏòÁ¿£¬ZÊDzÉÑùµã¶ÔÓ¦µÄº¯ÊýÖµ¡£X1ºÍY1ÊDzåÖµµã£¬¿ÉÒÔÊDZêÁ¿£¬Ò²¿ÉÒÔÊÇÏòÁ¿¡£Z1ÊǸù¾ÝÑ¡¶¨µÄ²åÖµ·½·¨µÃµ½µÄ²åÖµ½á¹û¡£²åÖµ·½·¨ºÍһά²åÖµº¯ÊýÏàͬ¡£ ΢ÊÓÆµ3ª²5 ¡¾Àý3ª²21¡¿Ä³ÊµÑé¶Ô¼ÆËã»úÖ÷°åµÄζȷֲ¼×ö²âÊÔ¡£ÓÃx±íʾÖ÷°åµÄ¿í¶È(cm)£¬y±íʾÖ÷°åµÄÉî¶È(cm)£¬ÓÃT±íʾ²âµÃµÄ¸÷µãζÈ(0¡æ)£¬²âÁ¿½á¹ûÈç±í3ª²6Ëùʾ¡£ (1) ·Ö±ðÓÃ×î½üµã¶þά²åÖµºÍÏßÐÔ¶þά²åÖµ·¨Çó(12.6,7.2)µãµÄζȣ» (2) ÓÃÈý´Î¶àÏîʽ²åÖµÇóÖ÷°å¿í¶Èÿ¼ä¸ô1cm£¬Éî¶Èÿ¼ä¸ô1cm´¦¸÷µãµÄζȣ¬²¢ÓÃͼÐÎÏÔʾ²åֵǰºóÖ÷°åµÄζȷֲ¼Í¼¡£ ±í3ª²6Ö÷°å¸÷µãζȲâÁ¿Öµ y x 0510152025 0303234333231 5333741383533 10353844433734 15323436353332 ³ÌÐòÈçÏ£º x=£Û0:5:25£Ý; y=£Û0:5:15£Ý'; T=£Û30 3234333231; 333741383533; 353844433734; 323436353332£Ý; x1=12.6;y1=7.2; T1=interp2(x,y,T,x1,y1,'nearest') T2=interp2(x,y,T,x1,y1,'linear') xi=£Û0:1:25£Ý;yi=£Û0:1:15£Ý'; Ti=interp2(x,y,T,xi,yi,'cubic'); subplot(1,2,1) mesh(x,y,T) xlabel('Ö÷°å¿í¶È(cm)');ylabel('Ö÷°åÉî¶È(cm)');zlabel('ζÈ(ÉãÊ϶È)') title('²åֵǰÖ÷°åζȷֲ¼Í¼') subplot(1,2,2) mesh(xi,yi,Ti) xlabel('Ö÷°å¿í¶È(cm)');ylabel('Ö÷°åÉî¶È(cm)');zlabel('ζÈ(ÉãÊ϶È)') title('²åÖµºóÖ÷°åζȷֲ¼Í¼') ³ÌÐòÖ´Ðк󣬲åÖµ½á¹ûÈçͼ3ª²3Ëùʾ£¬ÔËÐнá¹ûΪ T1 = 38 T2 = 41.2176 ͼ3ª²3²åֵǰºóÖ÷°åζȷֲ¼Í¼ 3.3.3¶àά²åÖµ 1. Èýά²åÖµ Èýά²åÖµ¿Éµ÷Óú¯Êýinterp3£¬Æäµ÷ÓøñʽΪ£º U1=interp3(X,Y,Z,U£¬X1,Y1,Z1£¬'method') ÆäÖУ¬X¡¢Y¡¢ZÊÇ3¸ö²ÎÊýµÄ²ÉÑùµã£¬Ò»°ãÊÇÏòÁ¿£¬UÊDzÉÑùµã¶ÔÓ¦µÄº¯ÊýÖµ¡£X1¡¢Y1ºÍZ1ÊDzåÖµµã£¬¿ÉÒÔÊDZêÁ¿£¬Ò²¿ÉÒÔÊÇÏòÁ¿¡£U1ÊǸù¾ÝÑ¡¶¨µÄ²åÖµ·½·¨µÃµ½µÄ²åÖµ½á¹û¡£²åÖµ·½·¨ºÍһά²åÖµº¯ÊýÏàͬ¡£ 2. nά²åÖµ ÈôÐèÒª¶Ô¸ü¸ßά½øÐвåÖµÔËË㣬¿ÉÒÔµ÷ÓÃinterpnº¯ÊýʵÏÖ£¬µ÷ÓøñʽÈçÏ£º U1=interpn(X1£¬X2£¬¡­£¬Xn£¬U£¬Y1£¬Y2£¬¡­£¬Yn£¬'method') ÆäÖУ¬X1£¬X2£¬¡­£¬XnÊÇn¸ö²ÎÊýµÄ²ÉÑùµã£¬Ò»°ãÊÇÏòÁ¿£¬UÊDzÉÑùµã¶ÔÓ¦µÄº¯ÊýÖµ¡£Y1£¬Y2£¬¡­£¬YnÊDzåÖµµã£¬¿ÉÒÔÊDZêÁ¿£¬Ò²¿ÉÒÔÊÇÏòÁ¿¡£U1ÊǸù¾ÝÑ¡¶¨µÄ²åÖµ·½·¨µÃµ½µÄ²åÖµ½á¹û¡£²åÖµ·½·¨ºÍһά²åÖµº¯ÊýÏàͬ¡£ 3.4Êýֵ΢»ý·Ö ÔÚMATLABÖУ¬ÌṩÁ˶àÖÖº¯ÊýʵÏÖÓйصÄÊýֵ΢»ý·ÖÔËË㣬Èç±í3ª²7Ëùʾ¡£ ±í3ª²7Êýֵ΢»ý·Ö³£Óú¯Êý º¯Êý¹¦Äܺ¯Êý¹¦ÄÜ diffÇó΢·Ö¡¢²î·Ö¡¢µ¼ÊýquadÒ»ÖØ»ý·Ö fminbndÇóÒ»Ôªº¯ÊýµÄ×îСֵquadl×ÔÊÊÓ¦Ò»ÖØ»ý·Ö fminsearchÇó¶àÔªº¯ÊýµÄ×îСֵdblquad¶þÖØ»ý·Ö fzeroÇóº¯ÊýÁãµãtriplequadÈýÖØ»ý·Ö ode23¶þ½×¡¢Èý½×Áú¸ñª²¿âËþ·¨ode45ËĽס¢Îå½×Áú¸ñª²¿âËþ·¨ 3.4.1Êýֵ΢·Ö ÔÚMATLABÖУ¬Ã»ÓпÉÖ±½ÓÌṩÇóÊýÖµµ¼Êý»ò΢·ÖµÄº¯Êý£¬Ö»ÓмÆËãÏòǰ²î·ÖµÄº¯Êýdiff£¬¾ßÌåµ÷ÓøñʽÈçÏ£º DX=diff(X)%¼ÆËãÏòÁ¿XµÄÏòǰ²î·Ö DX=diff(X,n) %¼ÆËãÏòÁ¿XµÄn½×Ïòǰ²î·Ö DX=diff(A,n,dim) %¼ÆËã¾ØÕóAµÄn½×Ïòǰ²î·Ö£¬dim=1£¬°´ÁмÆËã;dim=2£¬°´ÐмÆËã ¡¾Àý3ª²22¡¿ÉèxÓÉÔÚ£Û0£¬2¦Ð£ÝÇø¼ä¾ùÔÈ·Ö²¼µÄ10¸öµã×é³É£¬ÇósinxµÄ1~3½×²î·Ö¡£ ³ÌÐòÈçÏ£º X=linspace(0,2*pi,10) Y=sin(X) DY=diff(Y) %¼ÆËãYµÄÒ»½×²î·Ö D2Y=diff(Y,2) %¼ÆËãYµÄ¶þ½×²î·Ö£¬Ò²¿ÉÓÃÃüÁîdiff(DY)¼ÆËã D3Y=diff(Y,3)%¼ÆËãYµÄÈý½×²î·Ö£¬Ò²¿ÉÓÃdiff(D2Y)»òdiff(DY,2) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ X = 00.69811.39632.09442.79253.49074.18884.88695.58516.2832 Y = 00.64280.98480.86600.3420-0.3420-0.8660-0.9848-0.6428-0.0000 DY = 0.64280.3420-0.1188-0.5240-0.6840-0.5240-0.11880.34200.6428 D2Y = -0.3008 -0.4608 -0.4052 -0.1600 0.1600 0.4052 0.4608 0.3008 D3Y = -0.1600 0.0556 0.2452 0.3201 0.2452 0.0556 -0.1600 3.4.2º¯Êý¼«ÖµÓëÁãµã 1. º¯Êý¼«Öµ ÊýѧÉÏÀûÓüÆË㺯ÊýµÄµ¼ÊýÀ´È·¶¨º¯ÊýµÄ×î´óÖµµãºÍ×îСֵµã£¬È»¶øºÜ¶àº¯ÊýºÜÄÑÕÒµ½µ¼ÊýΪÁãµÄµã£¬Îª´Ë¿ÉÒÔͨ¹ýÊýÖµ·ÖÎöÀ´È·¶¨º¯ÊýµÄ¼«Öµµã¡£MATLABÖ»Óд¦Àí¼«Ð¡ÖµµÄº¯Êý£¬Ã»ÓÐרÃÅÇ󼫴óÖµµÄº¯Êý¡£ÒòΪf(x)¼«´óÖµÎÊÌâµÈ¼ÛÓÚÒ»½×f(x)¼«Ð¡ÖµÎÊÌâ¡£MATLABÇóº¯ÊýµÄ¼«Ð¡ÖµÊ¹ÓÃfminbndºÍfminsearchº¯Êý¡£¾ßÌåµ÷ÓøñʽÈçÏ£º x=fminbnd(fun,x1,x2) %Ò»Ôªº¯ÊýÇó¸ø¶¨Çø¼äÄÚµÄ×îСֵ£¬xΪ¼«ÖµËùÔÚºá×ø±ê £Ûx,y£Ý=fminbnd(fun,x1,x2)%yΪ¼«ÖµµãµÄº¯ÊýÖµ x=fminsearch(fun,x0) %¶àÔªº¯Êý×îСֵ£¬x0Ϊ³õʼֵ£¬xΪ¼«ÖµËùÔÚºá×ø±ê £Ûx,y£Ý=fminsearch(fun,x0)%yΪ¼«ÖµµãµÄº¯ÊýÖµ ΢ÊÓÆµ3ª²6 ¡¾Àý3ª²23¡¿ÒÑÖªy=e-0.2xsinx£¬ÔÚ0¡Üx¡Ü5¦Ð·¶Î§ÄÚ£¬Ê¹ÓÃfminbndº¯Êý»ñÈ¡yº¯ÊýµÄ¼«Ð¡Öµ¡£ ³ÌÐòÈçÏ£º x1=0;x2=5*pi; fun=@(x)(exp(-0.2*x)*sin(x)); £Ûx,y1£Ý=fminbnd(fun,x1,x2) x=0:0.1:5*pi; y=exp(-0.2*x).*sin(x); plot(x,y) grid on ³ÌÐòÖ´Ðкó£¬yº¯ÊýÇúÏßÈçͼ3ª²4Ëùʾ£¬ÔËÐнá¹ûΪ x = 4.5150 y1 = -0.3975 ͼ3ª²4yº¯ÊýÇúÏß ¡¾Àý3ª²24¡¿Ê¹ÓÃfminsearch()º¯Êý»ñÈ¡¶þÔªº¯Êýf(x,y)=100(y-x2)2+(1-x)2ÔÚ³õʼֵ(0£¬0)¸½½üµÄ¼«Ð¡Öµ¡£ ³ÌÐòÈçÏ£º fun=@(x)(100*(x(2)-x(1)^2)^2+(1-x(1))^2); %´´½¨¾ä±úº¯Êý x0=£Û0,0£Ý; £Ûx,y1£Ý=fminsearch(fun,x0) %¼ÆËã¾Ö²¿º¯ÊýµÄ¼«Ð¡Öµ ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ x = 1.00001.0000 y1 = 3.6862e-010 Óɽá¹û¿ÉÖª£¬Óɺ¯Êýfminsearch()¼ÆËã³ö¾Ö²¿×îСֵµãÊÇ£Û1, 1£Ý£¬×îСֵΪy1=3ª±6862eª²10£¬ºÍÀíÂÛ½á¹ûÊÇÒ»Öµġ£ 2. º¯Êý¹ýÁãµã Ò»Ôªº¯Êýf(x)µÄ¹ýÁãµãµÄÇó½âÏ൱ÓÚÇó½âf(x)=0·½³ÌµÄ¸ù¡£MATLAB¿ÉÒÔʹÓÃfzeroº¯ÊýʵÏÖ£¬ÐèÒªÖ¸¶¨Ò»¸ö³õʼֵ£¬ÔÚ³õʼֵ¸½½ü²éÕÒº¯ÊýÖµ±äºÅʱµÄ¹ýÁãµã£¬Ò²¿ÉÒÔ¸ù¾ÝÖ¸¶¨Çø¼äÀ´Çó¹ýÁãµã¡£¸Ãº¯ÊýµÄµ÷ÓøñʽÈçÏ£º x=fzero(fun,x0)%xΪ¹ýÁãµãµÄλÖã¬funÊǺ¯Êý¾ä±ú»òÄäÃûº¯Êý£¬x0Êdzõʼֵ»ò³õÊ¼Çø¼ä £Ûx,y£Ý=fzero(fun,x0)%yΪº¯ÊýÔÚ¹ýÁãµã´¦µÄº¯ÊýÖµ ¡¾Àý3ª²25¡¿Ê¹ÓÃfzero()º¯Êýf(x)=x2-5x+4·Ö±ðÔÚ³õʼֵx=0ºÍx=5¸½½üµÄ¹ýÁãµã£¬²¢Çó³ö¹ýÁãµãº¯ÊýµÄÖµ¡£ ³ÌÐòÈçÏ£º fun=@(x)(x^2-5*x+4);%´´½¨¾ä±úº¯Êý x0=0; £Ûx,y1£Ý=fzero(fun,x0)%Çó³õʼֵx0Ϊ0¸½½üʱº¯ÊýµÄ¹ýÁãµã x0=5; £Ûx,y1£Ý=fzero(fun,x0)%Çó³õʼֵx0Ϊ5¸½½üʱº¯ÊýµÄ¹ýÁãµã x0=£Û0,3£Ý; £Ûx,y1£Ý=fzero(fun,x0)%Çó³õʼֵx0ÔÚÇø¼äÄÚº¯ÊýµÄ¹ýÁãµã ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ x = 1 y1 = 0 x = 4.0000 y1 = -3.5527e-015 x = 1 y1 = 0 3.4.3³£Î¢·Ö·½³ÌµÄÊýÖµÇó½â ³£Î¢·Ö·½³Ì³õÖµÎÊÌâµÄÊýÖµ½â·¨¶àÖÖ¶àÑù£¬±È½Ï³£ÓõÄÓÐÅ·À­·¨¡¢Áú¸ñª²¿âËþ·¨¡¢ÏßÐԶಽ·¨¡¢Ô¤±¨Ð£Õý·¨µÈ¡£ÏÂÃæ¼òÒª½éÉÜÁú¸ñª²¿âËþ·¨¼°ÆäʵÏÖ¡£ 1. Áú¸ñª²¿âËþ·¨¼ò½é ¶ÔÓÚÒ»½×³£Î¢·Ö·½³ÌµÄ³õÖµÎÊÌ⣬ÔÚÇó½âδ֪º¯Êýyʱ£¬yÔÚt0µãµÄÖµyt0=y0ÊÇÒÑÖªµÄ£¬²¢ÇÒ¸ù¾Ý¸ßµÈÊýѧÖеÄÖÐÖµ¶¨Àí£¬Ó¦ÓУº y(t0+h)=y1¡Öy0+hf(t0,y0) y(t0+2h)=y2¡Öy1+hf(t1,y1)£¬h>0 Ò»°ãµØ£¬ÔÚÈÎÒâµãti=t0+ih£¬ÓУº y(t0+ih)=yi¡Öyi-1+hf(ti-1,yi-1),i=1,2,¡­,n µ±(t0,y0)È·¶¨ºó£¬¸ù¾ÝÉÏÊöµÝÍÆÊ½ÄܼÆËã³öδ֪º¯ÊýyÔÚµãti=t0+ih,i=0,1,¡­,nµÄÒ»ÁÐÊýÖµ½â yi=y0,y1,y2,¡­,yn,i=0,1,2,¡­,n µ±È»£¬ÔÚµÝÍÆ¹ý³ÌÖÐÓÐÒ»¸öÎó²îÀÛ»ýµÄÎÊÌâ¡£ÔÚʵ¼Ê¼ÆËã¹ý³ÌÖÐʹÓõĵÝÍÆ¹«Ê½Ò»°ã½øÐйý¸ÄÔì£¬ÖøÃûµÄÁú¸ñª²¿âËþ¹«Ê½Îª£º y(t0+ih)=yi¡Öyi-1+h6(k1+2k2+3k3+4k4) ÆäÖÐ k1=f(ti-1,yi-1) k2=fti-1+h2,yi-1+h2k1 k3=fti-1+h2,yi-1+h2k2 k4=f(ti-1+h,yi-1+hk3) 2. Áú¸ñª²¿âËþ·¨µÄʵÏÖ »ùÓÚÁú¸ñª²¿âËþ·¨£¬MATLABÌṩÁËÇó³£Î¢·Ö·½³ÌÊýÖµ½âµÄº¯Êý£¬Ò»°ãµ÷ÓøñʽÈçÏ£º £Ût,y£Ý=ode23(filename,tspan,y0) %¶þ½×¡¢Èý½×Áú¸ñ-¿âËþ·¨ £Ût,y£Ý=ode45(filename,tspan,y0) %ËĽס¢Îå½×Áú¸ñ-¿âËþ·¨ ÆäÖУ¬filenameÊǶ¨Òåf(t,y)µÄº¯ÊýÎļþÃû£¬¸Ãº¯ÊýÎļþ±ØÐë·µ»ØÒ»¸öÁÐÏòÁ¿¡£tspanÐÎʽΪ£Ût0,tf£Ý£¬±íʾÇó½âÇø¼ä¡£y0Êdzõʼ״̬ÁÐÏòÁ¿¡£tºÍy·Ö±ð¸ø³öʱ¼äÏòÁ¿ºÍÏàÓ¦µÄ״̬ÏòÁ¿¡£ ¡¾Àý3ª²26¡¿ÉèÓгõÖµÎÊÌâ y¡ä=y2-t-24(t+1) y(0)=2 ÊÔÇóÆäÊýÖµ½â£¬²¢Ó뾫ȷ½âÏà±È½Ï(¾«È·½âΪy(t)=t+1+1)¡£ ³ÌÐòÈçÏ£º (1) ½¨Á¢º¯ÊýÎļþfunt.m¡£ function y=funt(t,y) y=(y^2-t-2)/4/(t+1); (2) Çó½â΢·Ö·½³Ì¡£ t0=0;tf=10; y0=2; £Ût,y£Ý=ode23('funt',£Ût0,tf£Ý,y0); %ÇóÊýÖµ½â y1=sqrt(t+1)+1;%Çó¾«È·½â plot(t,y,'b.',t,y1,'r-');%ͨ¹ýͼÐÎÀ´±È½Ï legend('ÊýÖµ½â'£¬'¾«È·½â'£©;%¼ÓͼÀý ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûÈçͼ3ª²5Ëùʾ£¬¿ÉÒÔ¿´³ö£¬Á½ÖÖ½á¹û½üËÆ¡£ ͼ3ª²5΢·Ö·½³ÌÊýÖµ½âºÍ¾«È·½âµÄ±È½Ï 3.4.4ÊýÖµ»ý·Ö ÊýÖµ»ý·ÖÑо¿¶¨»ý·ÖµÄÊýÖµÇó½â·½·¨¡£MATLABÌṩÁ˶àÖÖÇóÊýÖµ»ý·ÖµÄº¯Êý£¬Ö÷Òª°üÀ¨Ò»ÖØ»ý·ÖºÍ¶àÖØ»ý·Öº¯Êý¡£ 1. Ò»ÖØÊýÖµ»ý·Ö MATLABÌṩÁËquadº¯ÊýºÍquadlº¯Êý£¬Æäµ÷ÓøñʽÈçÏ£º quad(filename,a,b,tol,trace) quadl(filename,a,b,tol,trace) %ÊÇÒ»ÖÖ²ÉÓÃ×ÔÊÊÓ¦µÄ·½·¨ ÆäÖУ¬filenameÊDZ»»ýº¯ÊýÃû£» aºÍb·Ö±ðÊǶ¨»ý·ÖµÄÏÂÏÞºÍÉÏÏÞ£» tolÓÃÀ´¿ØÖÆ»ý·Ö¾«¶È£¬Ä¬ÈÏʱȡtol=10-6£» trace¿ØÖÆÊÇ·ñÕ¹ÏÖ»ý·Ö¹ý³Ì£¬ÈôÈ¡·Ç0ÔòÕ¹ÏÖ»ý·Ö¹ý³Ì£¬È¡0²»Õ¹ÏÖ£¬Ä¬ÈÏʱȡtrace=0¡£ ¡¾Àý3ª²27¡¿ÓÃÁ½ÖÖ²»Í¬µÄ·½·¨Çó»ý·Ö¡£ I=¡Ò10e-x2dx ³ÌÐòÈçÏ£º g=inline('exp(-x.^2)'); %¶¨ÒåÒ»¸öÓï¾äº¯Êý(ÄÚÁªº¯Êý)g(x)=exp(-x.^2) I=quad(g,0,1) I=quadl(g,0,1) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ I = 0.746824180726425 I = 0.746824133988447 2. ¶àÖØÊýÖµ»ý·Ö MATLABÌṩÁËdblquadº¯ÊýºÍtriplequadº¯ÊýÇó¶þÖØ»ý·ÖºÍÈýÖØ»ý·Ö£¬Æäµ÷ÓøñʽÈçÏ£º dblquad(filename,xmin,xmax,ymin,ymax,tol,trace) triplequad(filename,xmin,xmax,ymin,ymax,zmin,zmax,tol,trace) º¯ÊýµÄ²ÎÊý¶¨ÒåºÍÒ»ÖØ»ý·ÖÒ»Ñù¡£ ΢ÊÓÆµ3ª²7 ¡¾Àý3ª²28¡¿¼ÆËã¶þÖØ¶¨»ý·Ö¡£ I=¡Ò1-1¡Ò2-2e-x2/2sin(x2+y)dxdy ³ÌÐòÈçÏ£º fxy=inline('exp(-x.^2/2).*sin(x.^2+y)'); I=dblquad(fxy,-2,2,-1,1) ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûΪ I = 1.574493189744944 3.5Ó¦ÓÃʵÀý 3.5.1Van Der Pol·½³Ì ¡¾Àý3ª²29¡¿1928Ä꣬ºÉÀ¼¿ÆÑ§¼Ò·¶¡¤µÂ¡¤²¨¶û(Van Der Pol)ΪÁËÃèÊöLCµç×Ó¹ÜÕñµ´µç·£¬Ìá³ö²¢½¨Á¢ÁËÖøÃûµÄVan Der Pol·½³Ìʽ d2ydt2-¦Ì(1-y2)y¡ä+y=0 ËüÊÇÒ»¸ö¾ßÓпɱä·ÇÏßÐÔ×èÄáµÄ΢·Ö·½³Ì£¬ÔÚ×Ô¼¤Õñµ´ÀíÂÛÖоßÓÐÖØÒªÒâÒå¡£ ÓÃMATLABµÄode45º¯ÊýÇóÔÚ¦Ì=10£¬³õʼÌõ¼þy(0)=1£¬dy(0)dt=0Çé¿öϸ÷½³ÌµÄ½â£¬²¢×÷³öy~tµÄ¹ØÏµÇúÏßͼºÍy~y¡äÏàÆ½ÃæÍ¼¡£ (1) °Ñ¸ß½×΢·Ö·½³Ì¸ÄдΪһ½×΢·Ö·½³Ì×é¡£ Áîy1=y£¬y2=y¡ä£¬Ôò dy1dt dy2dt=y1 101-y21y2-y1£¬y1(0) y2(0)=0 1 (2) ¶¨ÒåVan Der Pol·½³Ì¡£ function y=VDP(t,y) mu=10; y=£Ûy(2);mu*(1-y(1)^2)*y(2)-y(1)£Ý; end (3) ±àд³ÌÐò¡£ clear t0=£Û0,40£Ý; y0=£Û1;0£Ý; £Ût,y£Ý=ode45(@VDP,t0,y0); subplot(1,2,1) plot(t,y(:,1)) xlabel('t'),ylabel('y') title('y(t)-t') grid on subplot(1,2,2) plot(y(:,1),y(:,2)) xlabel('y(t)'),ylabel('y''(t)') title('y''(t)-y(t)') grid on ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûÈçͼ3ª²6Ëùʾ¡£ ͼ3ª²6Van Der Pol΢·Ö·½³Ì½â 3.5.2µçºÉÔڴų¡ÖеÄÔ˶¯ ͼ3ª²7Àý3ª²30ͼ ¡¾Àý3ª²30¡¿ÉèÒ»ÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄÁ£×ÓÒÔËÙ¶Èÿðþ½›0½øÈë·Ç¾ùÔȴų¡BÖУ¬ÈôËٶȵķ½ÏòÔÚxyÆ½ÃæÄÚÓëxÖá³É¦È½Ç£¬´Å¸ÐӦǿ¶ÈµÄ´óСÓëx³ÉÕý±È£¬B=B0x£¬·½ÏòÑØxÕý·½Ïò£¬Èçͼ3ª²7Ëùʾ¡£ÊÔд³ö¸Ã´øµçÁ£×ÓµÄÔ˶¯·½³Ì£¬²¢Ãè»æËüÔÚÕâÒ»·Ç¾ùÔȴų¡ÖÐÔ˶¯µÄ¹ìµÀ£¬ÖØÁ¦ºöÂÔ²»¼Æ¡£ (1) ¸Ã´øµçÁ£×ÓÔڷǾùÔȴų¡ÖнöÊܵ½ÂåÂØ×ÈÁ¦µÄ×÷Óã¬Òò´ËÔ˶¯·½³ÌΪ mdÿðþ½›dt=qÿðþ½›¡ÁB ½«ËٶȺʹų¡µÄÏòÁ¿ÿðþ½›=vxi+vyj+vzk¼°B=B0xi´úÈëÉÏʽ£¬Õ¹¿ªºóµÃµ½ mdvxdt=0 mdvydt=qB0vzx mdvzdt=-qB0vyx ¼ÓÉÏËÙ¶ÈÓëλÖõĹØÏµ dxdt=vx£¬dydt=vy£¬dzdt=vz ÔÚ³õʼÌõ¼þt=0ʱ£¬x=y=z=0ÒÔ¼°vx=v0cos¦È£¬vy=v0sin¦È£¬vz=0ÏÂÁªÁ¢Çó½âÒÔÉÏ6¸ö·½³Ì×é³ÉµÄÒ»½×΢·Ö·½³Ì×飬¿ÉÒԵõ½3¸öλÖÃ(x,y,z)¼°3¸ö·ÖËÙ¶È(vx,vy,vz)¡£Îª±ãÓڽⷽ³Ì£¬¼ÙÉèv0=1000m/s£¬¦È=30¡ã£¬qB0/m=100¡£ (2) ¶¨ÒåµçºÉÔڷǾùÔȴų¡ÖÐÔ˶¯µÄ΢·Ö·½³Ì¡£ %µçºÉÔڷǾùÔȴų¡ÖÐÔ˶¯µÄ΢·Ö·½³Ì function yp=dzc(t,y) global A;%¶¨ÒåÈ«¾Ö±äÁ¿ yp=£Ûy(2),0,y(4),A*y(6)*y(1),y(6),-A*y(4)*y(1)£Ý';%дÈë΢·Ö·½³Ì (3) ±àд³ÌÐò¡£ %µçºÉÔڷǾùÔȴų¡ÖеÄÔ˶¯ clear global A;%¶¨ÒåÈ«¾Ö±äÁ¿ A=100;v=1000;sita=pi/6;%É趨qBo/m£¬´øµçÁ£×ӵijõËٶȼ°ÈëÉä½Ç vx=v*cos(sita);vy=v*sin(sita);%¼ÆËãx,y·½ÏòµÄ³õËÙ¶È y0=£Û0 vx 0 vy 0 0£Ý';%É趨t=0µÄ³õʱÌõ¼þ tspan=£Û0 0.1£Ý; %É趨»ý·Öʱ¼ä £Ût,y£Ý=ode23('dzc',tspan,y0);%Çó½âÃûΪdzcµÄ΢·Ö·½³Ì×é subplot(2,2,1)%ÒÔÏÂΪÃè»æ¸÷·½ÏòµÄÔ˶¯¹ìµÀ %plot(t,y(:,1));%»æÖÆÒ»°ã¶þάÇúÏß comet(t,y(:,1));%»æÖƶþά¶¯Ì¬¹ìÏß xlabel('t');ylabel('x'); subplot(2,2,2) plot(t,y(:,3)); comet(t,y(:,3)); xlabel('t');ylabel('y'); subplot(2,2,3) %plot(t,y(:,5)); comet(t,y(:,5)); xlabel('t');ylabel('z'); subplot(2,2,4) plot(y(:,3),y(:,5)); comet(y(:,3),y(:,5)); xlabel('y');ylabel('z'); figure %пªÍ¼Ðδ°¿Ú %plot3(y(:,1),y(:,3),y(:,5)) %»æÖÆÒ»°ãÈýάÇúÏß comet3(y(:,1),y(:,3),y(:,5));%»æÖÆÈýά¶¯Ì¬¹ìÏß xlabel('x');ylabel('y');zlabel('z'); ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûÈçͼ3ª²8Ëùʾ¡£ ͼ3ª²8´øµçÁ£×ÓÔڷǾùÔȴų¡ÖеÄÔ˶¯¹ì¼£ ´Ó³ÌÐòµÄÔËÐнá¹û¿ÉÒÔ¿´³ö£¬ÔÚx·½Ïò´øµçÁ£×ÓûÓÐÊܵ½ÈκÎÁ¦£¬×öÔÈËÙÖ±ÏßÔ˶¯£¬Èçͼ3ª²8(a)Ëùʾ£» Ôڴų¡Óëx³ÉÕý±ÈÔöÇ¿µÄÂåÂ××ÈÁ¦×÷ÓÃÏ£¬yºÍz·½ÏòµÄ¹ì¼£³Ê°ë¾¶Öð²½±äСµÄÂÝÐýÐΣ¬Èçͼ3ª²8(b)¡¢Í¼3ª²8(c)¡¢Í¼3ª²8(d)Ëùʾ£» ͼ3ª²8(e)ÔòÊÇÔÚÈýά¿Õ¼ä»æ³öµÄÂÝÐýÐÎÔ˶¯¹ì¼£¡£ 3.5.3СÇòÔÚ¿ÕÆøÖÐÊúÖ±ÉÏÅ×Ô˶¯µÄ¹æÂÉ ¡¾Àý3ª²31¡¿ÉèÒ»ÖÊÁ¿ÎªmµÄСÇòÒÔËÙÂÊv0´ÓµØÃ濪ʼÉÏÅס£ÔÚÔ˶¯¹ý³ÌÖУ¬Ð¡ÇòËùÊÜ¿ÕÆø×èÄáµÄ´óСÓëËÙÂʳÉÕý±È£¬±ÈÀýϵÊýΪk¡£ (1) ÇóСÇòÉÏÅ×¹ý³ÌÖеÄËٶȺ͸߶ÈÓëÊÀ¼äµÄ¹ØÏµ¡£ËÙ¶ÈÓë¸ß¶ÈÓÐʲô¹ØÏµ£¿Ð¡ÇòÉÏÉýµÄ×î´ó¸ß¶ÈºÍµ½´ï×î´ó¸ß¶ÈµÄʱ¼äÊǶàÉÙ£¿ (2) ÇóСÇòÂä»ØÔ­´¦µÄʱ¼äºÍËÙ¶È¡£ ¡¾½âÎö¡¿(1) СÇòÊúÖ±ÉÏÉýʱÊܵ½ÖØÁ¦ºÍ¿ÕÆø×èÁ¦£¬Á½Õß·½ÏòÊúÖ±ÏòÏ£¬È¡ÊúÖ±ÏòÉϵķ½ÏòΪÕý£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵõ½·½³Ì f=-mg-kv=mdvdt ·ÖÀë±äÁ¿£¬µÃ dt=-mdvmg+kv=-mkd(mg+kv)mg+kv Çó»ý·ÖµÃ t=- mkln(mg+kv)vv0=-mklnmg+kvmg+kv0=-mklnmg/k+vmg/k+v0 СÇòËÙ¶ÈËæÊ±¼äµÄ±ä»¯¹ØÏµÎª v=v0+mgkexp-kmt-mgk ÓÉÓÚv=dhdt£¬ËùÒÔ dh=v0+mgkexp-kmt-mgkdt=-m(v0+mg/k)kdexp-kmt-mgkdt Çó»ý·ÖµÃ h=-m(v0+mg/k)kexp-kmt-mgktt0 СÇò¸ß¶ÈËæÊ±¼äµÄ±ä»¯¹ØÏµÎª h=mv0+mg/kk1-exp-kmt-mgkt ¸ù¾Ý¸ß¶ÈÓëʱ¼äµÄ¹ØÏµºÍËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ£¬¿ÉµÃ¸ß¶ÈÓëËٶȵĹØÏµ¡£ µ±Ð¡ÇòÉÏÉýµ½×î¸ßµãʱ£¬ÆäËÙ¶ÈΪÁ㡣СÇòµ½×î¸ßµãËùÐèÒªµÄʱ¼äΪ T=mklnmg/k+v0mg/k=mkln1+kv0mg СÇòÉÏÉýµÄ×î´ó¸ß¶ÈΪ H=mv0k-m2gk2ln1+kv0mg ¿É¼û£¬Ð¡ÇòÉÏÉýµ½×î¸ßµãµÄʱ¼äºÍ¸ß¶ÈÓɱÈÀýϵÊýºÍ³õËٶȾö¶¨¡£ÔÚСÇòÖÊÁ¿ºÍ¿ÕÆø×èÁ¦ÏµÊýÒ»¶¨µÄÇé¿öÏ£¬³õËٶȾö¶¨ÁËСÇòµÄÔ˶¯¹æÂÉ¡£ ¡¾ÌÖÂÛ¡¿µ±k¡ú0ʱ£¬ÀûÓù«Ê½ex¡ú1+x£¬¿ÉµÃ v¡úv0+mgk1-kmt-mgk=v01-kmt-gt¡úv0-gt ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±ÊúÖ±ÉÏÅ×Ô˶¯µÄËٶȹ«Ê½¡£ ÀûÓù«Ê½ex¡ú1+x+x22£¬¿ÉµÃ h¡úm(v0+mg/k)kktm-12ktm2-mgkt=v0t-kv02mt2-12gt2¡úv0t-12gt2 ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±ÊúÖ±ÉÏÅ×Ô˶¯µÄ¸ß¶È¹«Ê½¡£ ÀûÓù«Ê½ln(1+x)¡úx£¬¿ÉµÃ T¡úmkkv0mg¡úv0g ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±Ð¡ÇòÊúÖ±ÉÏÉý×î´ó¸ß¶ÈµÄʱ¼ä¡£ ÀûÓù«Ê½ln(1+x)¡úx-x22£¬¿ÉµÃ H¡úmv0k-m2gk2kv0mg-12kv0mg2¡úv202g ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±Ð¡ÇòÊúÖ±ÉÏÅ×Ô˶¯µÄ×î´ó¸ß¶È¡£ ¡¾Ëã·¨Ò»¡¿ÓýâÎöʽ¡£È¡ÌØÕ÷ʱ¼ä¦Ó=mkΪʱ¼äµ¥Î»£¬È¡Ëٶȵ¥Î»ÎªV0=mgk£¬ÔòËٶȿɱíʾΪ v*=(v*0+1)exp(-t*)-1 ÆäÖУ¬t*=t¦Ó£¬v*0=v0V0=kv0mg£¬v*=vV0¡£v*0ÊÇÎÞÁ¿¸ÙµÄ³õËÙ¶È£¬ÔÚСÇòÖÊÁ¿Óë¿ÕÆø×èÁ¦ÏµÊýÒ»¶¨µÄÇé¿öÏ£¬ÎÞÁ¿¸ÙµÄ³õËٶȾʹú±íÁ˳õËÙ¶È¡£kv0Êdzõʼ×èÁ¦£¬ÎÞÁ¿¸ÙµÄ³õËÙ¶È»¹Êdzõʼ×èÁ¦ÓëСÇòÖØÁ¦mgµÄ±ÈÖµ¡£ È¡¸ß¶Èµ¥Î»h0=V0¦Ó=m2gk2£¬¸ß¶È¹«Ê½¿É»¯Îª h*=(v*0+1)£Û1-exp(-t*)£Ý-t* ÆäÖУ¬h*=hh0¡£Ð¡ÇòÉÏÉýµ½×î¸ßµãËùÐèÒªµÄʱ¼ä¿É±íʾΪ T*=ln(1+v*0) ÆäÖУ¬T*=T¦Ó¡£Ð¡ÇòÉÏÉýµ½×î´ó¸ß¶È¿É±íʾΪ H*=v*0-ln(1+v*0) ÆäÖУ¬H*=Hh0¡£È¡Ô¼»¯³õËÙ¶ÈΪ²ÎÊýÏòÁ¿£¬È¡Ê±¼äΪ×Ô±äÁ¿ÏòÁ¿£¬ÐγɾØÕ󣬼ÆËãËٶȺ͸߶ÈÓëʱ¼äµÄ¹ØÏµ£¬Ò²È·¶¨ÁËËÙ¶ÈÓë¸ß¶ÈµÄ¹ØÏµ¡£ÓþØÕó»­Ïß·¨»­³öËٶȺ͸߶ÈÓëʱ¼äµÄÇúÏß×壬²¢»­³öËٶȺ͸߶ȵÄÇúÏß×壬³ÌÐòÈçÏ£º %СÇòÊܵ½ÓëËÙÂʳÉÕý±ÈµÄĦ²Á×èÁ¦µÄÉÏÅ×Ô˶¯(ÓýâÎöʽ) clear%Çå³ý±äÁ¿ t=0:0.02:2.5;%ʱ¼äÏòÁ¿(t0µÄ±¶Êý»òÎÞÁ¿¸Ùʱ¼ä) v0=1:7;%³õËÙ¶ÈÏòÁ¿ £ÛV0,T£Ý=meshgrid(v0,t); %³õËٶȺÍʱ¼ä¾ØÕó V=(V0+1).*exp(-T)-1; %ËÙ¶È H=(V0+1).*(1-exp(-T))-T; %¸ß¶È n=length(v0);%³õËٶȸöÊý H(V<0)=nan;%ËÙ¶ÈСÓÚ0µÄ¸ß¶È¸ÄΪ·ÇÊý V(V<0)=nan;%ËÙ¶ÈСÓÚ0µÄËٶȸÄΪ·ÇÊý figure %´´½¨Í¼Ðδ°¿Ú %plot(t,V,'LineWidth',2)%»­ËÙ¶ÈÇúÏß×å plot(t,V(:,1),'o-',t,V(:,2),'d-',t,V(:,3),'s-',t,V(:,4),'p-',... t,V(:,5),'h-',t,V(:,6),'^-',t,V(:,7),'v-')%»­ËÙ¶ÈÇúÏß×å grid on%¼ÓÍø¸ñ fs=10; %×ÖÌå´óС title('СÇòÉÏÅ×µÄËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ʱ¼ä£Üitt/£Ütau','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('ËÙ¶È£Üitv/V£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý text(0,1,'£Üit£Ütau£Ürm=£Üitm/k£Ürm,£ÜitV£Ürm_0=£Üitmg/k','FontSize',fs)%ʱ¼äºÍËٶȵ¥Î»Îı¾ figure %´´½¨Í¼Ðδ°¿Ú %plot(t,H,'LineWidth',2)%»­¸ß¶ÈÇúÏß×å plot(t,H(:,1),'o-',t,H(:,2),'d-',t,H(:,3),'s-',t,H(:,4),'p-',... t,H(:,5),'h-',t,H(:,6),'^-',t,H(:,7),'v-')%»­¸ß¶ÈÇúÏß×å title('СÇòÉÏÅ׵ĸ߶ÈÓëʱ¼äµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ʱ¼ä£Üitt/£Ütau','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('¸ß¶È£Üith/h£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ grid on%¼ÓÍø¸ñ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý text(0,3,'£Üith£Ürm_0=£Üitm£Ürm^2£Üitg/k£Ürm^2','FontSize',fs)%±ê¼Ç¸ß¶Èµ¥Î» £Ûhm,im£Ý=max(H);%Çó×î´ó¸ß¶È¼°Æäϱê hold on%±£³ÖͼÏñ stem(t(im),hm,'--')%»­×î¸ßµãµÄ¸Ëͼ txt=£Ûnum2str(t(im)',3),repmat(',',n,1),num2str(hm',3)£Ý;%Ô˶¯Ê±¼äºÍ¸ß¶È×Ö·û´® text(t(im),hm,txt,'FontSize',fs) %±ê¼Çʱ¼äºÍ×î´ó¸ß¶È vm=1:0.1:7;%½ÏÃܵijõËÙ¶ÈÏòÁ¿ tm=log(1+vm);%×ʱ¼ä hm=vm-log(1+vm); %×î¸ß¸ß¶È plot(tm,hm,'--','LineWidth',2) %»­·åÖµÏß figure %´´½¨Í¼Ðδ°¿Ú %plot(H,V,'LineWidth',2)%»­ËٶȺ͸߶ÈÇúÏß×å plot(H(:,1),V(:,1),'o-',H(:,2),V(:,2),'d-',H(:,3),V(:,3),'s-',... H(:,4),V(:,4),'p-',H(:,5),V(:,5),'h-',H(:,6),V(:,6),'^-',... H(:,7),V(:,7),'v-')%»­ËٶȺ͸߶ÈÇúÏß×å title('СÇòÉÏÅ×µÄËÙ¶ÈÓë¸ß¶ÈµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('¸ß¶È£Üith/h£Ürm_0','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('ËÙ¶È£Üitv/V£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ grid on%¼ÓÍø¸ñ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûÈçͼ3ª²9Ëùʾ¡£ ͼ3ª²9СÇòÔÚ¿ÕÆøÖÐÊúÖ±ÉÏÅ×Ô˶¯µÄ¹æÂÉ ÓÉͼ3ª²9(a)¿ÉÒÔ¿´³ö£¬²»ÂÛ³õËÙ¶ÈΪ¶àÉÙ£¬Ð¡ÇòµÄËÙ¶ÈËæÊ±¼äÖð½¥¼õС£¬Ö±µ½0Ϊֹ¡£³õËÙ¶ÈÔ½´ó£¬Ð¡Çòµ½´ï×î¸ßµãËùÐèÒªµÄʱ¼äÔ½³¤¡£ ÓÉͼ3ª²9(b)¿ÉÒÔ¿´³ö£¬²»ÂÛ³õËÙ¶ÈΪ¶àÉÙ£¬Ð¡ÇòµÄ¸ß¶ÈËæÊ±¼äÔö¼Ó£¬¿ªÊ¼µÄʱºò¼¸ºõÖ±ÏßÔö¼Ó£¬ÔÚ×î¸ßµã¸½½ü»ºÂýÔö¼Ó£¬Ö±µ½×î´ó¸ß¶ÈΪֹ¡£³õËÙ¶ÈÔ½´ó£¬Ð¡Çò´ïµ½µÄ×î´ó¸ß¶ÈÔ½¸ß¡£ ÓÉͼ3ª²9(c)¿ÉÒÔ¿´³ö£¬²»ÂÛ³õËÙ¶ÈΪ¶àÉÙ£¬Ð¡ÇòµÄËÙ¶ÈËæ¸ß¶È¼õС£¬ÔÚ×î¸ßµãËÙ¶ÈΪ0¡£ ˵Ã÷£º µ±Ð¡ÇòÔ˶¯µ½×î¸ßµãÖ®ºó£¬ÆäÔ˶¯·½³Ì·¢ÉúÁ˸ı䣬ֻ¿¼ÂÇСÇòÉÏÉýµÄ¹ý³Ì£¬ÆäËûÔ˶¯Ê±¼äµÄËٶȺ͸߶Ⱦ͸ÄΪ·ÇÊý£» ΪÁË»­³ö×î¸ßµãµÄÁ¬ÐøÇúÏߣ¬ÐèÒªÉèÖýÏÃܼ¯µÄ³õËÙ¶ÈÏòÁ¿¡£ ¡¾Ëã·¨¶þ¡¿ÓÃÁ½¸öÒ»½×΢·Ö·½³ÌµÄÊýÖµ½â¡£ d2hdt2=-g-kmdhdt ¿É»¯Îª d2(h/h0)d(t/t0)2=-gt20h0-kmt0d(h/h0)d(t/t0)=-1-d(h/h0)d(t/t0) ¼´ d2h*dt*2=-1-dh*dt* Éèh(1)=h*ºÍh(2)=dh*dt*£¬Ôò¿ÉµÃ dh(1)dt*=h(2)£¬dh(2)dt*=-1-h(2) µ±t=0ʱ£¬h=0£¬Òò´Ë³õʼÌõ¼þh(1)=0£¬¶ø h(2)=dh*dt*=d(h/h0)d(t/t0)=t0h0dhdt=dhV0dt=v0V0 ¸ù¾Ý³õʼÌõ¼þ¿ÉÇóµÃ³£Î¢·Ö·½³ÌµÄÊýÖµ½â£¬³ÌÐòÈçÏ£º %СÇòÊܵ½ÓëËÙÂʳÉÕý±ÈµÄĦ²Á×èÁ¦µÄÉÏÅ×Ô˶¯(Óöþ½×΢·Ö·½³ÌµÄÊýÖµ½â) clear%Çå³ý±äÁ¿ t=0:0.02:2.5;%ʱ¼äÏòÁ¿(t0µÄ±¶Êý»òÎÞÁ¿¸Ùʱ¼ä) v0=1:7;%³õËÙ¶ÈÏòÁ¿ n=length(v0);%³õËٶȸöÊý H=£Û£Ý;%¸ß¶È¾ØÕóÖÃ¿Õ V=£Û£Ý;%ËٶȾØÕóÖÃ¿Õ for i=1:n%°´³õËÙ¶ÈÑ­»· £Ûtt,HV£Ý=ode45('fun',t,£Û0,v0(i)£Ý);%Çó¸ß¶ÈºÍËٶȵÄÊýÖµ½â V=£ÛV,HV(:,2)£Ý; %Á¬½ÓËÙ¶È H=£ÛH,HV(:,1)£Ý; %Á¬½Ó¸ß¶È end%½áÊøÑ­»· H(V<0)=nan;%ËÙ¶ÈСÓÚ0µÄ¸ß¶È¸ÄΪ·ÇÊý V(V<0)=nan;%ËÙ¶ÈСÓÚ0µÄËٶȸÄΪ·ÇÊý figure %´´½¨Í¼Ðδ°¿Ú %plot(t,V,'LineWidth',2)%»­ËÙ¶ÈÇúÏß×å plot(t,V(:,1),'o-',t,V(:,2),'d-',t,V(:,3),'s-',t,V(:,4),'p-',... t,V(:,5),'h-',t,V(:,6),'^-',t,V(:,7),'v-')%»­ËÙ¶ÈÇúÏß×å grid on%¼ÓÍø¸ñ fs=10; %×ÖÌå´óС title('СÇòÉÏÅ×µÄËÙ¶ÈÓëʱ¼äµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ʱ¼ä£Üitt/£Ütau','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('ËÙ¶È£Üitv/V£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý text(0,1,'£Üit£Ütau£Ürm=£Üitm/k£Ürm,£ÜitV£Ürm_0=£Üitmg/k','FontSize',fs)%ʱ¼äºÍËٶȵ¥Î»Îı¾ figure %´´½¨Í¼Ðδ°¿Ú %plot(t,H,'LineWidth',2)%»­¸ß¶ÈÇúÏß×å plot(t,H(:,1),'o-',t,H(:,2),'d-',t,H(:,3),'s-',t,H(:,4),'p-',... t,H(:,5),'h-',t,H(:,6),'^-',t,H(:,7),'v-')%»­¸ß¶ÈÇúÏß×å title('СÇòÉÏÅ׵ĸ߶ÈÓëʱ¼äµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ʱ¼ä£Üitt/£Ütau','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('¸ß¶È£Üith/h£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ grid on%¼ÓÍø¸ñ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý text(0,3,'£Üith£Ürm_0=£Üitm£Ürm^2£Üitg/k£Ürm^2','FontSize',fs)%±ê¼Ç¸ß¶Èµ¥Î» £Ûhm,im£Ý=max(H);%Çó×î´ó¸ß¶È¼°Æäϱê hold on%±£³ÖͼÏñ stem(t(im),hm,'--')%»­×î¸ßµãµÄ¸Ëͼ txt=£Ûnum2str(t(im)',3),repmat(',',n,1),num2str(hm',3)£Ý;%Ô˶¯Ê±¼äºÍ¸ß¶È×Ö·û´® text(t(im),hm,txt,'FontSize',fs) %±ê¼Çʱ¼äºÍ×î´ó¸ß¶È vm=1:0.1:7;%½ÏÃܵijõËÙ¶ÈÏòÁ¿ tm=log(1+vm);%×î´óʱ¼ä hm=vm-log(1+vm); %×î´ó¸ß¶È plot(tm,hm,'--','LineWidth',2) %»­·åÖµÏß figure %´´½¨Í¼Ðδ°¿Ú %plot(H,V,'LineWidth',2)%»­ËٶȺ͸߶ÈÇúÏß×å plot(H(:,1),V(:,1),'o-',H(:,2),V(:,2),'d-',H(:,3),V(:,3),'s-',... H(:,4),V(:,4),'p-',H(:,5),V(:,5),'h-',H(:,6),V(:,6),'^-',... H(:,7),V(:,7),'v-')%»­ËٶȺ͸߶ÈÇúÏß×å title('СÇòÉÏÅ×µÄËÙ¶ÈÓë¸ß¶ÈµÄ¹ØÏµ(×èÁ¦ÓëËÙÂʳÉÕý±È)','FontSize',fs)%ÏÔʾ±êÌâ xlabel('¸ß¶È£Üith/h£Ürm_0','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('ËÙ¶È£Üitv/V£Ürm_0','FontSize',fs)%ÏÔʾ×Ý×ø±ê±êÄ¿ grid on%¼ÓÍø¸ñ legend(£Ûrepmat('£Üitkv£Ürm_0/£Üitmg£Ürm=',n,1),num2str(v0')£Ý)%ͼÀý ¶¨ÒåµÄº¯ÊýÎļþΪ£º %СÇòµÄÔ¼»¯ËٶȺͼÓËٶȺ¯Êý function f=fun(t,h)%º¯Êý¹ý³Ì f=£Ûh(2);-1-h(2)£Ý;%Ô¼»¯Ëٶȱí´ïʽºÍÔ¼»¯¼ÓËٶȱí´ïʽ ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûͬͼ3ª²9Ëùʾ¡£ ¡¾Ëã·¨Èý¡¿ÓÃÒ»½×΢·Ö·½³ÌµÄÊýÖµ½â¡£ dvdt=-g-kmv ¿Éת»¯Îª d(v/V0)d(t/t0)=-gt0V0-kt0mV0v=-1-vV0 ÀûÓÃÔ¼»¯Ê±¼ät*=t¦ÓºÍÔ¼»¯ËÙ¶Èv*=vV0£¬¿ÉµÃÎÞÁ¿¸ÙµÄ΢·Ö·½³Ì dv*dt*=-1-v* ΢·Ö·½³ÌµÄ³õʼÌõ¼þΪ£º t*=0ʱ£¬v*=v0V0£¬¸ß¶ÈΪ h=¡Òt0vdt=Vt¡Òt*0v*dt*=h0¡Òt*0v*dt* ͨ¹ýÎÞÁ¿¸ÙËٶȶÔÎÞÁ¿¸Ùʱ¼äµÄÊýÖµ»ý·Ö¿ÉÇóµÃ¸ß¶ÈÓëʱ¼äµÄ¹ØÏµ¡£³ÌÐò×ÔÐбàд£¬½á¹ûͬͼ3ª²9¡£ ¡¾Ëã·¨ËÄ¡¿ÓÃ΢·Ö·½³ÌµÄ·ûºÅ½â¡£ d2hdt2+dhdt+1=0 µ±t=0ʱ£¬h*=0£¬dh*dt*=v0V0£¬¸ù¾Ý³õʼÌõ¼þ¿ÉÇóµÃ³£Î¢·Ö·½³ÌµÄ·ûºÅ½â£¬³ÌÐò×ÔÐбàд£¬½á¹ûͬͼ3ª²9¡£ ¡¾½âÎö¡¿(2) µ±Ð¡Çò´Ó×î¸ßµãÊúÖ±ÏÂÂäʱ£¬¿ÕÆø×èÁ¦µÄ·½ÏòÏòÉÏ£¬ËÙ¶È·½ÏòÏòÏ£¬È¡ÊúÖ±Ïòϵķ½ÏòΪÕý£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵõ½·½³Ì f=mg-kv=mdvdt ·ÖÀë±äÁ¿£¬µÃ dt=mdvmg-kv=-mkd(mg-kv)mg-kv »ý·ÖµÃ t=-mkln(mg-kv)vv0=-mklnmg-kvmg=-mkln1-kvmg СÇòËÙ¶ÈËæÊ±¼äµÄ±ä»¯¹ØÏµÎª v=mgk1-exp-kmt ÓÉÓÚv=dhdt£¬ËùÒÔ dh=mgk1-exp-kmtdt=mgkdt+m2gk2dexp-kmt »ý·ÖµÃ h=mgk-m2gk21-exp-kmt ÕâÊÇСÇòÏÂÂäµÄ¸ß¶ÈÓëʱ¼äµÄ¹ØÏµ¡£ µ±Ð¡ÇòÂä»ØÔ­´¦Ê±£¬h=H£¬Ôò kmT¡ä-1+exp-kmT¡ä=kv0mg-ln1+kv0mg ÕâÊǹØÓÚʱ¼äµÄ³¬Ô½·½³Ì¡£Èç¹ûÇóµÃT¡ä£¬¾Í¿ÉÇóµÃСÇòÂä»ØÔ­´¦µÄËÙ¶È¡£ ¡¾ÌÖÂÛ¡¿µ±k¡ú0ʱ£¬ÀûÓù«Ê½ex¡ú1+x£¬¿ÉµÃ v¡úmgkkmt=gt ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±Ð¡Çò×ÔÓÉÏÂÂäµÄËٶȹ«Ê½¡£ ÀûÓù«Ê½ex¡ú1+x+x22£¬¿ÉµÃ h¡úmgkt-m2gk21-1-kmt+12kmt2¡ú12gt2 ÕâÊÇСÇò×ÔÓÉÏÂÂäµÄ¸ß¶È¹«Ê½¡£ ÀûÓù«Ê½ln(1+x)¡úx-x22£¬¿ÉµÃ kmT¡ä-1+1-kmT¡ä+12kmT¡ä2+¡­=kv0mg-kv0mg-12kv0mg+¡­ »¯¼òµÃ T¡ä¡úv0g ÕâÊDz»¼Æ¿ÕÆø×èÁ¦Ê±Ð¡Çò×ÔÓÉÏÂÂäµ½Ô­´¦µÄʱ¼ä¡£ ¡¾Ëã·¨¡¿È¡ÌØÕ÷ʱ¼ä¦Ó=mkΪʱ¼äµ¥Î»£¬È¡Ëٶȵ¥Î»ÎªV0=mgk£¬ÔòСÇòÏÂÂäµÄËÙ¶ÈΪ v=V0£Û1-exp(-t*)£Ý ÆäÖУ¬t*=t¦Ó¡£µ±Ð¡ÇòÂä»ØÔ­´¦Ê±¹ØÓÚʱ¼äµÄ³¬Ô½·½³Ì¿É±íʾΪ t*+exp(-t*)-(1+v*0)+ln(1+v*0)=0 ÆäÖУ¬v0=vV0¡£´Ë·½³ÌÓÐÒ»¸ö½â t*=-ln(1+v*0) ÓÉÓÚt*<0£¬´Ë½âûÓÐÒâÒå¡£½«³õËٶȺÍʱ¼äÐγɾØÕ󣬼ÆËã¸ß¶È²î£¬ÀûÓõÈÖµÏߺ¯ÊýcontourÈ¡ÁãÖµÏߣ¬¼´¿ÉÇó³öСÇòÂä»ØÔ­´¦µÄʱ¼äÓë³õËٶȵÄÊýÖµ½â£¬½ø¶øÇó³öСÇòÂä»ØÔ­´¦µÄËÙ¶È¡£ Èç¹û²»¼Æ¿ÕÆø×èÁ¦£¬Ð¡ÇòÀ´»ØÔ˶¯µÄʱ¼ä¿É±íʾΪ t=2v0g=¦Ó2v0¦Óg=¦Ó2v*0 СÇòÔÚ¿ÕÆøÖÐÀ´»ØÔ˶¯µÄʱ¼ä¿ÉÓëÎÞ¿ÕÆø×èÁ¦µÄÇé¿öÏà±È½Ï¡£³ÌÐòÈçÏ£º %СÇòÊܵ½ÓëËÙÂʳÉÕý±ÈµÄĦ²Á×èÁ¦×÷ÓÃʱÉÏÉýµÄ¸ß¶ÈºÍÂä»ØÔ­´¦µÄʱ¼äÒÔ¼°ËÙ¶È clear%Çå³ý±äÁ¿ v0=0:0.05:7; %½ÏÃܵijõËÙ¶ÈÏòÁ¿ h=v0-log(1+v0);%×î´ó¸ß¶È figure %´´½¨Í¼Ðδ°¿Ú plot(v0,h,'LineWidth',2) %»­×î´ó¸ß¶ÈÇúÏß grid on%¼ÓÍø¸ñ fs=10; %×ÖÌå´óС title('СÇòÉÏÉýµÄ×î´ó¸ß¶ÈÓëÉÏÉý³õËٶȵĹØÏµ','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ÉÏÉý³õËÙ¶È£Üitv£Ürm_0/£ÜitV£Ürm_0','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('×î´ó¸ß¶È£ÜitH/h£Ürm_0','FontSize',fs) %ÏÔʾ×Ý×ø±ê±êÄ¿ txt1='£Üith£Ürm_0=£Üitm£Ürm^2£Üitg/k£Ürm^2'; %¸ß¶Èµ¥Î»Îı¾ txt2='£ÜitV£Ürm_0=£Üitmg/k';%Ëٶȵ¥Î»Îı¾ txt3='£Üit£Ütau£Ürm=£Üitm/k£Ürm'; %ʱ¼äµ¥Î»Îı¾ text(0,3,£Ûtxt1,',',txt2£Ý,'FontSize',fs)%±ê¼Ç¸ß¶Èµ¥Î»ºÍËٶȵ¥Î» t=0:0.05:1; %Âä»ØÊ±¼äÏòÁ¿ £ÛV0,T£Ý=meshgrid(v0,t); %³õËٶȺÍʱ¼ä¾ØÕó H=T+exp(-T)-1-V0+log(1+V0);%ÏÂÂäµÄ¸ß¶È²îº¯Êý figure %´´½¨Í¼Ðδ°¿Ú h=contour(V0,T,H,£Û0,0£Ý);%¸ß¶È²îΪÁãµÄÂä»ØÊ±¼äÓë³õËٶȵÈÖµÏß v0=h(1,2:end);%È¡³õËÙ¶È t2=h(2,2:end); %È¡Âä»ØÊ±¼ä t1=log(1+v0);%ÉÏÉýʱ¼ä %plot(v0,£Ût1;t2;t1+t2;2*v0£Ý)%»­Ê±¼äÇúÏß plot(v0,t1,'o-',v0,t2,'d-',v0,t1+t2,'s-',v0,2*v0,'^-')%»­Ê±¼äÇúÏß legend('ÉÏÉýµ½×î¸ßµãµÄʱ¼ä£ÜitT/£Ütau','Âä»ØÔ­´¦µÄʱ¼ä£ÜitT£Üprime/£Ütau',... 'ÉÏÉýºÍÂ仨µÄ×Üʱ¼ä','ÎÞ¿ÕÆø×èÁ¦ÉÏÉýºÍÂ仨µÄ×Üʱ¼ä',num2str(v0'))%ͼÀý title('СÇòÔ˶¯µÄʱ¼äÓëÉÏÉý³õËٶȵĹØÏµ','FontSize',fs)%ÏÔʾ±êÌâ xlabel('ÉÏÉý³õËÙ¶È£Üitv£Ürm_0/£ÜitV£Ürm_0','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('ʱ¼ä£ÜitT/£Üit£Ütau','FontSize',fs) %ÏÔʾ×Ý×ø±ê±êÄ¿ text(0,1,£Ûtxt3,',',txt2£Ý,'FontSize',fs) %±ê¼Çʱ¼äµ¥Î»ºÍËٶȵ¥Î» grid on%¼ÓÍø¸ñ v2=1-exp(-t2); %Â仨µÄËÙ¶È figure %´´½¨Í¼Ðδ°¿Ú plot(v0,v2,'LineWidth',2)%»­ÓÐ¿ÕÆø×èÁ¦µÄËÙ¶ÈÇúÏß grid on%¼ÓÍø¸ñ axis equal %Ê¹×ø±ê¼ä¸ôÏàµÈ title('СÇòÉÏÅ׺óÂä»ØÔ­´¦µÄËÙ¶ÈÓëÉÏÉý³õËٶȵĹØÏµ','FontSize',fs) %ÏÔʾ±êÌâ xlabel('ÉÏÉý³õËÙ¶È£Üitv£Ürm_0/£ÜitV£Ürm_0','FontSize',fs)%ÏÔʾºá×ø±ê±êÄ¿ ylabel('Â仨ĩËÙ¶È£Üitv/itV£Ürm_0','FontSize',fs) %ÏÔʾ×Ý×ø±ê±êÄ¿ text(0,0,txt2,'FontSize',fs) %±ê¼ÇËٶȵ¥Î» hold on%±£³ÖͼÏñ plot(v0,v0,'r--','LineWidth',2)%»­ÎÞ¿ÕÆø×èÁ¦µÄËÙ¶ÈÇúÏß legend('ÓÐ¿ÕÆø×èÁ¦','ÎÞ¿ÕÆø×èÁ¦',num2str(v0'))%ͼÀý ³ÌÐòÖ´Ðкó£¬ÔËÐнá¹ûÈçͼ3ª²10Ëùʾ¡£ ÓÉͼ3ª²10(a)¿ÉÒÔ¿´³ö£¬ÉÏÉýµÄ³õËÙ¶ÈÔ½´ó£¬Ð¡ÇòÉÏÉýµÄ¸ß¶È¾ÍÔ½´ó¡£µ±³õËٶȱȽϴóʱ£¬Ð¡ÇòÉÏÉýµÄ¸ß¶ÈËæ³õËٶȼ¸ºõ³ÊÖ±ÏßÔö¼Ó¡£ ÓÉͼ3ª²10(b)¿ÉÒÔ¿´³ö£¬ÉÏÉýµÄ³õËÙ¶ÈÔ½´ó£¬Ð¡Çò´ïµ½×î´ó¸ß¶ÈËùÐèÒªµÄʱ¼äÔ½´ó£¬µ«ÊÇСÓÚСÇò´Ó×î¸ßµãÏÂÂäµ½Ô­´¦µÄʱ¼ä¡£Ð¡ÇòÔÚ¿ÕÆøÖÐÉÏÉýºÍÏÂÂäµ½Ô­´¦µÄ×Üʱ¼ä±È²»¼Æ×èÁ¦µÄʱ¼äÒª¶Ì¡£ ÓÉͼ3ª²10(c)¿ÉÒÔ¿´³ö£¬ÉÏÉýµÄ³õËÙ¶ÈÔ½´ó£¬Ð¡Çò»Øµ½Ô­´¦µÄËÙ¶ÈÔ½´ó£¬ÓëСÇòÉÏÉýµÄ³õËÙ¶ÈÏà²îÒ²Ô½´ó¡£ ˵Ã÷£º »­µÈÖµÏßÖ÷ÒªÊÇΪÁËÈ¡¾ä±ú£» ¾ä±úÓÐÁ½ÐÐÈô¸ÉÁУ¬µÚÒ»ÐеĵÚÒ»¸öÊýÖµ±íʾµÈÖµÏßÊý¾Ý¶ÔµÄÊýÄ¿£¬µÚ¶þÐеĵÚÒ»¸öÊýÖµ±íʾµÈÖµÏßµÄÖµ£¬µÚÒ»ÐÐµÄÆäËûÊýÖµ±íʾËÙ¶È£¬µÚ¶þÐÐµÄÆäËûÊýÖµ±íʾʱ¼ä£» »­Ê±¼äÇúÏßʱ¾ÍĨȥÁ˵ÈÖµÏß¡£ ͼ3ª²10СÇòÔÚ¿ÕÆøÖÐÊúÖ±ÉÏÅ×Ô˶¯µÄ¹æÂÉ ÊµÑµÏîÄ¿Èý ±¾ÊµÑµÏîÄ¿µÄÄ¿µÄÈçÏ£º ¤r ÕÆÎÕ¶àÏîʽµÄ³£ÓÃÔËËã¡£ ¤r ÕÆÎÕÊýÖµ²åÖµµÄ·½·¨¼°Ó¦Óᣠ¤r ÕÆÎÕÊý¾Ýͳ¼ÆºÍ·ÖÎöµÄ·½·¨¡£ ¤r ÕÆÎÕÇóÊýÖµµ¼ÊýºÍÊýÖµ»ý·ÖµÄ·½·¨¡£ ¤r ÕÆÎÕ³£Î¢·Ö·½³ÌÊýÖµÇó½âµÄ·½·¨¡£ 3ª²1ÀûÓÃMATLABÌṩµÄrandº¯ÊýÉú³É2000¸ö·ûºÏ¾ùÔÈ·Ö²¼µÄËæ»úÊý£¬È»ºó¼ìÑéËæ»úÊýµÄÐÔÖÊ£º (1) ¾ùÖµºÍ±ê×¼·½²î¡£ (2) ×î´óÔªËØºÍ×îÐ¡ÔªËØ¡£ (3) ´óÓÚ0.5µÄËæ»úÊý¸öÊýÕ¼×ÜÊýµÄ°Ù·Ö±È¡£ 3ª²2½«100¸öѧÉú5Ãſεijɼ¨´æÈë¾ØÕóPÖУ¬½øÐÐÈçÏ´¦Àí£º (1) ·Ö±ðÇóÿÃſεÄ×î¸ß·Ö¡¢×îµÍ·Ö¼°ÏàӦѧÉúÐòºÅ¡£ (2) ·Ö±ðÇóÿÃÅ¿ÎµÄÆ½¾ù·ÖºÍ±ê×¼·½²î¡£ (3) 5ÃÅ¿Î×Ü·ÖµÄ×î¸ß·Ö¡¢×îµÍ·Ö¼°ÏàӦѧÉúÐòºÅ¡£ (4) ½«5ÃÅ¿Î×Ü·Ö°´´Ó´óµ½Ð¡Ë³Ðò´æÈëzongchengjiÖУ¬ÏàӦѧÉúÐòºÅ´æÈëxsxh¡£ Ìáʾ£º ÉÏ»úʱ£¬¿ÉÓÃȡֵ·¶Î§Îª£Û45£¬95£ÝµÄËæ»ú¾ØÕóÀ´±íʾѧÉúµÄ³É¼¨¡£ 3ª²3Ä³ÆøÏóÕ¾¹Û²âµÄijÈÕ6:00~18:00ÿ¸ô2СʱµÄÊÒÄÚÍâζÈ(¡æ)Èç±í3ª²8Ëùʾ¡£ ±í3ª²8ÊÒÄÚÍâζȹ۲â½á¹û ʱ¼ä/h681012141618 ÊÒÄÚζÈt1/¡æ18.020.022.025.030.028.024.0 ÊÒÍâζÈt2/¡æ15.019.024.028.034.032.030.0 ÊÔÓÃÈý´ÎÑùÌõ²åÖµ·Ö±ðÇó³ö¸ÃÊÒÄÚÍâ6:30~17:30ÿ¸ô2Сʱ¸÷µãµÄ½üËÆÎ¶È(¡æ)¡£ 3ª²4ijµç·Ԫ¼þ£¬²âÊÔÁ½¶ËµÄµçѹUÓëÁ÷¹ýµÄµçÁ÷IµÄ¹ØÏµ£¬Êµ²âÊý¾ÝÈç±í3ª²9Ëùʾ¡£Óò»Í¬µÄ²åÖµ·½·¨(×î½üµã·¨¡¢ÏßÐÔ·¨¡¢Èý´ÎÑùÌõ·¨ºÍÈý´Î¶àÏîʽ·¨)¼ÆËãI=9A´¦µÄµçѹU¡£ ±í3ª²9ʵ²âÊý¾Ý µçÁ÷I/A024681012 µçѹU/V0058.2121621 3ª²5ÒÑÖª¶àÏîʽP1(x)=3x+2£¬P2(x)=5x2-x+2£¬P3(x)=x2-0.5£¬Çó£º (1) P(x)=P1(x)P2(x)P3(x) (2) P(x)=0µÄÈ«²¿¸ù (3) ¼ÆËãx=0.2i(i=0,1,2,¡­,10)¸÷µãÉϵÄP(xi) 3ª²6Çóº¯ÊýÔÚÖ¸¶¨µãµÄÊýÖµµ¼Êý¡£ f(x)=xx2x3 12x3x2 026x£¬x=1,2,3 3ª²7ÓÃÊýÖµ·½·¨Ç󶨻ý·Ö¡£ (1) I1=¡Ò2¦Ð0cost2+4sin(2t)2+1dtµÄ½üËÆÖµ¡£ (2) I2=¡Ò10ln(1+x)1+x2dx (3) I1=¡Ò¦Ð0¡Ò¦Ð0|cos(x+y)|dxdy 3ª²8Çóº¯ÊýÔÚÖ¸¶¨Çø¼äµÄ¼«Öµ¡£ (1) f(x)=x3+cosx+xlogxexÔÚ(0,1)ÄÚµÄ×îСֵ¡£ (2) fx1,x2=2x31+4x1x32-10x1x2+x22ÔÚ£Û0,0£Ý¸½½üµÄ×îСֵµãºÍ×îСֵ¡£ 3ª²9Çó΢·Ö·½³Ì×éµÄÊýÖµ½â£¬²¢»æÖƽâµÄÇúÏß¡£ y¡ä1=y2y3 y¡ä2=-y1y3 y¡ä3=-y1y2 y1(0)=0,y2(0)=1,y3(0)=1 3ª²10Á½¸öͬÐĵ¼ÌåÇòÃæµÄÄڰ뾶ΪR0£¬Íâ°ë¾¶ÎªR£¬¹¹³ÉÇòÐεçÈÝÆ÷£¬ÇòÃæ¼ä³äÂú½éµç³£ÊýΪ¦ÅµÄ¸÷ÏòͬÐԵĽéÖÊ¡£ÇóÇòÐεçÈÝÆ÷µÄµçÈÝ(ÄÚÇòÃæÒ²¿ÉÒÔÓÃͬÑù°ë¾¶µÄÇòÌå´úÌæ)¡£