µÚ5Õ CHAPTER 5 ʱ±äµç´Å³¡ ±¾ÕÂÊÇѧϰµç´Å³¡Óëµç´Å²¨µÄÖØÒª¹ý¶ÉÄÚÈÝ£¬¼´´Ó¾²Ì¬³¡¡¢¾²Ì¬³¡µÄ½â·¨¹ý¶Éµ½Ê±±äµç´Å³¡¡¢µç´Å²¨ÒÔ¼°µç´Å·øÉäµÈ¡£±¾ÕµÄÖ÷ÒªÄÚÈÝÊÇÂó¿Ë˹Τ·½³Ì×éµÄÒýÈë¼°Æä½²½â¡¢Ê±Ð³µç´Å³¡µÄÏàÁ¿±íʾ·¨¼°ÆäÔËË㡢ʸÁ¿ÊƺͱêÁ¿ÊÆËùÂú×ãµÄ·½³Ì¡¢ÍƳÙÊÆµÄ¸ÅÄî¼°Æä¼ÆËãµÈ¡£ÒªÇóͬѧÃÇÊìÁ·ÕÆÎÕ·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ£¬Àí½âÎ»ÒÆµçÁ÷µÄº¬Ò壬²¢Äܹ»ÀûÓÃÂó¿Ë˹Τ·½³Ì×é½øÐмÆËã¡£ÔÚÄÚÈݰ²ÅÅÉÏ£¬Ê×ÏȹéÄÉ×ܽáÁ˱¾ÕµÄÖ÷Ҫ֪ʶµã¡¢ÖصãºÍÄѵ㣬ÏêϸÇó½âÁËһЩµäÐÍÀýÌ⣬Ȼºó¶ÔÖ÷½Ì²Ä¿ÎºóϰÌâ½øÐÐÁËÏê½â£¬²¢¸ø³öÏà¹ØMATLAB±à³Ì´úÂëÒÔ¼°ËùÉæ¼°µÄ¿Æ¼¼Ç°ÑØÖªÊ¶£¬×îºóÁоÙÓдú±íÐÔµÄÍùÄ꿼ÑÐÊÔÌâ²¢¿ªÕ¹½²½â¡£ 5.1ʱ±äµç´Å³¡Ë¼Î¬µ¼Í¼ ÀûÓÃ˼άµ¼Í¼¹´ÀÕ³öʱ±äµç´Å³¡¸÷²¿·ÖÄÚÈÝÖ®¼äµÄÂß¼­¹ØÏµ£¬Èçͼ5ª²1Ëùʾ¡£±¾ÕÂÄÚÈÝÊÇÁªÏµ¾²Ì¬³¡ºÍʱ±ä³¡µÄÇÅÁº£¬ºËÐÄÊÇÂó¿Ë˹Τ·½³Ì×é¼°ÆäÍÆµ¼¡£Ê×ÏÈ£¬¸ø³öÁË·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ£¬ÒýÈëÁËÎÐÐýµç³¡µÄ¸ÅÄ Æä´Î£¬Õë¶Ô¾²Ì¬³¡°²Å໷·¶¨ÂÉÔÚʱ±äÇé¿öÏÂʧЧµÄÎÊÌ⣬ÒýÈëÁË Í¼5ª²1ʱ±äµç´Å³¡µÄ˼άµ¼Í¼ Î»ÒÆµçÁ÷µÄ¸ÅÄ´Ó¶ø½¨Á¢ÁËÈ«µçÁ÷¶¨ÂÉ£» ×îºó£¬Í¨¹ý¼ÙÉè¸ß˹¶¨ÀíºÍ´ÅͨÁ¬ÐøÔ­ÀíÔÚʱ±äÇé¿öÏÂÒÀÈ»³ÉÁ¢£¬±ã¿ÉÒԵõ½Âó¿Ë˹Τ·½³Ì×éµÄËĸöÍêÕû·½³Ì¡£ÎªÁËʹµÃ·½³ÌÄܹ»µÃÒÔÇó½â£¬±ØÐ뿼ÂDzÄÁϵı¾¹¹·½³Ì£¬¼´´Å¸ÐӦǿ¶ÈºÍ´Å³¡Ç¿¶È¡¢µçÎ»ÒÆÊ¸Á¿ºÍµç³¡Ç¿¶ÈÒÔ¼°µçÁ÷ÃܶȺ͵糡ǿ¶ÈÖ®¼äµÄ¹ØÏµ¡£±ß½çÌõ¼þÊÇÁ½ÖÖýÖÊ·Ö½çÃæÉÏÂó¿Ë˹Τ·½³Ì×éµÄ¾ßÌåÌåÏÖ£¬¿ÉÒÔʹÓûý·Ö·½³ÌµÃµ½£¬ÊÂʵÉÏ£¬½«¾²µç¡¢¾²´ÅÐÎʽµÄ±ß½çÌõ¼þºÏ²¢ÆðÀ´£¬¾ÍµÃµ½ÁËʱ±ä³¡µÄ±ß½çÌõ¼þ¡£ÔÚʱ±äµç´Å³¡ÖУ¬×îµäÐÍ¡¢×î¾ßÑо¿¼ÛÖµµÄÊÇËæÊ±¼ä×öÕýÏұ仯µÄµç´Å³¡£¬¼´Ê±Ð³µç´Å³¡£¬¿ÉÒÔʹÓø´ÊýÐÎʽµÄ¡°ÏàÁ¿¡±¼ò»¯¼ÆËã¡£Òò´Ë£¬Ë²Ê±Á¿¡¢ÏàÁ¿Ö®¼äµÄÁé»îת»»·Ç³£ÖØÒª¡£´ËÍ⣬ʱ±ä³¡Çé¿öϵÄÄÜÁ¿Êغ㡢ÆÂӡͤʸÁ¿µÈ£¬¶¼ÊǷdz£ÖØÒªµÄÑо¿¶ÔÏó¡£ÎªÁ˼ò»¯Âó¿Ë˹Τ·½³Ì×éµÄ¼ÆË㣬ÒýÈ븨ÖúÊÆº¯ÊýµÄ¸ÅÄ²¢µÃµ½ÁËÆä¶ÔÓ¦µÄ´ïÀʱ´¶û·½³Ì¡£ 5.2֪ʶµã¹éÄÉ Ê±±äµç´Å³¡²¿·ÖËùÉæ¼°µÄ֪ʶµãÓУº ·¨À­µÚµç´Å¸ÐÓ¦¶¨Âɼ°Æä¼ÆË㣻 ¸ÐÉúµç¶¯ÊƼ°Æä¼ÆË㣻 ÎÐÐýµç³¡»ò¸ÐÓ¦µç³¡µÄ¶¨Ò壻 ¶¯Éúµç¶¯ÊƵļÆË㣻 ÀûÓÃÁ½ÖÖ·½·¨ÍƵ¼¶¯Éúµç¶¯ÊƵļÆË㹫ʽ£» Âó¿Ë˹Τ·½³Ì×鼰ÿ¸ö·½³ÌµÄº¬Ò壻 ÀûÓÃÂó¿Ë˹Τ·½³Ì×鼯Ëãµç³¡»òÕߴų¡£» Î»ÒÆµçÁ÷¼°Æä¼ÆË㣻 ʱгµç´Å³¡µÄ¸´Ê¸Á¿±íʾ·¨¼°ÆäÏ໥ת»»£» ÆÂӡͤʸÁ¿£¬Ë²Ê±ÖµÓëÆ½¾ùÆÂӡͤʸÁ¿µÄת»¯¡¢Ïà¹Ø¼ÆË㣻 ÄÜÁ¿Êغ㶨Âɼ°ÆäÀí½â£» ʸÁ¿ÊÆ¡¢±êÁ¿ÊÆÂú×ãµÄ·½³Ì¼°ÆäÍÆµ¼£¬ÂåÂ××ȹ淶Ìõ¼þ£» ÈçºÎÀûÓø¨ÖúÊÆº¯Êý¼ÆËãµç´Å³¡£» ÎÞ½ç¿Õ¼äÖÐʸÁ¿ÊƵıíʾÐÎʽ£» ËÆÎÈÌõ¼þ£» µç·ÀíÂÛÓëµç´Å³¡ÀíÂÛµÄÁªÏµ£» ʱ±äµç´Å³¡µÄ±ß½çÌõ¼þµÈ¡£ 5.3Ö÷ÒªÄÚÈݼ°¹«Ê½ ±¾ÕÂÖ÷ÒªÄÚÈݼòÊöÈçÏ¡£ 5.3.1·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ 1. ·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂɵÄÊýѧ±í´ïÐÎʽ E=-dymdt(5ª²1) ÕýȷʹÓÃÉÏÊö¹«Ê½£¬±ØÐëÇ¿µ÷²Î¿¼·½Ïò£¬Èçͼ5ª²2Ëùʾ¡£ Ò²¾ÍÊÇ˵£¬ÇúÃæµÄ·¨Ïß·½ÏòÓëÇúÏߵĻ·ÈÆ·½ÏòÂú×ãÓÒÊÖÂÝÐýµÄ¹ØÏµ£» ËüÃǶÔÓ¦µÄÒ²¾ÍÊÇ´ÅͨÁ¿ºÍ¸ÐÓ¦µç¶¯ÊÆÎªÕýµÄ²Î¿¼·½Ïò¡£ ͼ5ª²2·¨À­µÚµç´Å¸ÐÓ¦ ¶¨ÂɵIJο¼·½Ïò 2. ¸ÐÉúµç¶¯ÊƺͶ¯Éúµç¶¯ÊÆ (1) ¸ÐÉúµç¶¯ÊÆ Ei=-ddt¡ÒSB¡¤dS=-¡ÒSªµBªµt¡¤dS(5ª²2) ÓëÇ°ÃæÏàÀàËÆ£¬ÇúÃæµÄ·¨Ïß·½Ïò(´ÅͨÁ¿ÎªÕýµÄ·½Ïò)ÓëÇúÏߵĻ·ÈÆ·½Ïò(¸ÐÉúµç¶¯ÊÆÎªÕýµÄ·½Ïò)£¬Âú×ãÓÒÊÖÂÝÐýµÄ¹ØÏµ¡£ (2) ¶¯Éúµç¶¯ÊÆ Em=-dymdt=¡Òl(ÿðþ½›¡ÁB)¡¤dl(5ª²3) ʽ(5ª²3)ÖУ¬ÇúÏß»ý·ÖµÄ·½Ïò¼´Îª¶¯Éúµç¶¯ÊÆÎªÕýµÄ²Î¿¼·½Ïò¡£ 5.3.2Âó¿Ë˹Τ·½³Ì×é¼°¸¨Öú·½³Ì 1. »ý·ÖÐÎʽ ¡ÓlH¡¤dl=¡ÒSJ+ªµDªµt¡¤dS¡ÓlE¡¤dl=-¡ÒSªµBªµt¡¤dS ¡ÓSB¡¤dS=0¡ÓSD¡¤dS=Q 2. ΢·ÖÐÎʽ «ý¡ÁH=J+ªµDªµt«ý¡ÁE=-ªµBªµt «ý¡¤B=0«ý¡¤D=¦Ñ 3. ÕýÏÒµç´Å³¡ «ý¡ÁH=J+j¦ØD«ý¡ÁE=-j¦ØB «ý¡¤B=0«ý¡¤D=¦Ñ 4. ±¾¹¹·½³Ì B=¦ÌHD=¦ÅEJc=¦ÒE 5. ÆäËûÖØÒª¹«Ê½ ÂåÂ××ÈÁ¦F=Q(E+ÿðþ½›¡ÁB) ÂåÂ××ÈÁ¦ÃܶÈf=¦ÑE+J¡ÁB Î»ÒÆµçÁ÷ÃܶÈJD=ªµDªµt ´©¹ýijÇúÃæµÄÎ»ÒÆµçÁ÷iD=¡ÒSJD¡¤dS 5.3.3µç´Å³¡±ßÖµ¹ØÏµ ʱ±äµç´Å³¡¶ÔÓ¦µÄ±ß½çÌõ¼þÈç±í5ª²1Ëùʾ¡£ ±í5ª²1µç´Å³¡±ß½çÌõ¼þÒ»ÀÀ±í ýÖÊ·Ö½çÃæÁ½ÖÖýÖÊ·Ö½çÃæÁ½ÖÖ½éÖÊ·Ö½çÃæ½éÖÊÓëÀíÏë µ¼Ìå·Ö½çÃæ ±ßÖµ¹ØÏµn¡Á(H1-H2)=JS n¡Á(E1-E2)=0 n¡¤(B1-B2)=0 n¡¤(D1-D2)=¦ÑSH1t=H2t E1t=E2t B1n=B2n D1n=D2nHt=JS Et=0 Bn=0 Dn=¦ÑS 5.3.4ÆÂӡͤ¶¨ÀíºÍÆÂӡͤʸÁ¿ ÆÂӡͤ¶¨Àí ¡ÓS(E¡ÁH)¡¤dS+¡ÒVE¡¤JdV=-ªµWªµt(»ý·ÖÐÎʽ)(5ª²4) «ý¡¤(E¡ÁH)+E¡¤J=-ªµwªµt(΢·ÖÐÎʽ)(5ª²5) ÆÂӡͤʸÁ¿Ë²Ê±Öµ S=E¡ÁH(5ª²6) ÕýÏÒµç´Å³¡µÄ¸´ÊýÆÂӡͤʸÁ¿ Sc=Ee¡ÁH*e=12Em¡ÁH*m(5ª²7) ÕýÏÒµç´Å³¡µÄÆÂӡͤʸÁ¿Ê±¼äƽ¾ùÖµ =ReSc=ReEe¡ÁH*e=12ReEm¡ÁH*m(5ª²8) 5.3.5µç´Å³¡µÄʸÁ¿ÊƺͱêÁ¿ÊƼ°Æä΢·Ö·½³Ì µç´Å³¡¸¨ÖúÊÆº¯ÊýËùÂú×ãµÄ·½³Ì¡¢±íʾʽÒÔ¼°³¡Á¿µÄÇó½â¹«Ê½£¬Èç±í5ª²2Ëùʾ¡£ ±í5ª²2µç´Å³¡¸¨ÖúÊÆº¯Êý ÊÆ µÄ ·½ ³Ì ¶¯Ì¬³¡ ʱ±ä³¡ÕýÏÒ³¡ «ý2A-¦Å¦Ìªµ2Aªµt2=-¦ÌJ «ý2¦¼-¦Å¦Ìªµ2¦¼ªµt2=-¦Ñ¦Å«ý2A+k2A=-¦ÌJ «ý2¦¼+k2¦¼=-¦Ñ¦Å (k2=¦Ø2¦Å¦Ì) ¾²Ì¬³¡ «ý2A=-¦ÌJ «ý2¦¼=-¦Ñ¦Å ʸ Á¿ ÊÆ ºÍ ±ê Á¿ ÊÆ µÄ ¼Æ Ëã ÍÆ³ÙÊÆ(¶¯Ì¬ÊÆ) A= ¦Ì4¦Ð¡ÒV¡äJx¡ä,y¡ä,z¡ä,t-RvRdV¡ä ¦¼= 14¦Ð¦Å¡ÒV¡ä¦Ñx¡ä,y¡ä,z¡ä,t-RvRdV¡äA= ¦Ì4¦Ð¡ÒV¡äJ(x¡ä,y¡ä,z¡ä)ej(¦Øt-kR)RdV¡ä ¦¼= 14¦Ð¦Å¡ÒV¡ä¦Ñ(x¡ä,y¡ä,z¡ä)ej(¦Øt-kR)RdV¡ä ËÆÎȳ¡ A=¦Ì4¦Ð¡ÒV¡äJ(x¡ä,y¡ä,z¡ä,t)RdV¡ä ¦¼=14¦Ð¦Å¡ÒV¡ä¦Ñ(x¡ä,y¡ä,z¡ä,t)RdV¡äA=¦Ì4¦Ð¡ÒV¡äJ(x¡ä,y¡ä,z¡ä)ej¦ØtRdV¡ä ¦¼=14¦Ð¦Å¡ÒV¡ä¦Ñ(x¡ä,y¡ä,z¡ä)ej¦ØtRdV¡ä ¾²Ì¬ÊÆ A=¦Ì4¦Ð¡ÒV¡äJ(x¡ä,y¡ä,z¡ä)RdV¡ä ¦¼=14¦Ð¦Å¡ÒV¡ä¦Ñ(x¡ä,y¡ä,z¡ä)RdV¡ä ³¡ Á¿H=1¦Ì«ý¡ÁA E=-«ý¦¼-ªµAªµtH=1¦Ì«ý¡ÁA E=-«ý¦¼-j¦ØA H=1¦Ì«ý¡ÁA E=-«ý¦¼ 5.4ÖØµãÓëÄѵã·ÖÎö ½áºÏÉÏÊöÄÚÈÝ£¬ÏÖ½«±¾ÕÂÖØµãÓëÄѵã×öÈçϾßÌå·ÖÎö¡£ 5.4.1Ñо¿ÕýÏÒµç´Å³¡µÄÔ­ÒòºÍÀíÂÛ»ù´¡ ÓÐͬѧ»áÎÊ£¬ÎªÊ²Ã´ÒªÑо¿ÕýÏÒµç´Å³¡£¿ÎªÊ²Ã´²»Ñо¿ÆÕ±éÒâÒåÉϵÄʱ±äµç´Å³¡£¿ÕâÊÇÒòΪ£¬ÈκÎÒ»¸öʱ±äÐźÅ(¼Ù¶¨ÊÇʵº¯Êý)¶¼¿ÉÒÔ¸ù¾Ý¸µÀïÒ¶±ä»»£¬¿´×÷һϵÁÐÕýÏÒ(°üº¬ÓàÏÒ)Ðźŵĵþ¼Ó£¬¼´ f(t)=12¦Ð¡Ò¡Þ-¡ÞF(¦Ø)ej¦Øtd¦Ø=12¦Ð¡Ò¡Þ-¡ÞA(¦Ø)cos¦Øt+¦Õ(¦Ø)d¦Ø ÆäÖУ¬F(¦Ø)=¡Ò¡Þ-¡Þf(t)e-j¦Øtdt=A(¦Ø)ej¦Õ(¦Ø)³ÆÎª¸ÃÐźŵĸµÀïÒ¶±ä»»¡£ ¶ÔÓÚµç´Å³¡¶øÑÔ£¬ÒԵ糡ǿ¶ÈΪÀý£¬¶Ôʱ¼ä±äÁ¿×ö¸µÀïÒ¶±ä»»£¬ÔòÓÐ E(r,¦Ø)=¡Ò¡Þ-¡ÞE(r,t)e-j¦Øtdt(5ª²9) E(r,t)=12¦Ð¡Ò¡Þ-¡ÞE(r,¦Ø)ej¦Øtd¦Ø(5ª²10) ¶ÔÓÚÆäËû³¡Á¿£¬ÓÐÀàËÆµÄ¹ØÏµ¡£ ´ó¶àÊýÇé¿öÏ£¬Âó¿Ë˹Τ·½³Ì×éÊÇÏßÐԵ쬼´Âú×ãÆë´ÎÐԺ͵þ¼ÓÐÔ¡£ Ò²¾ÍÊÇ˵£¬Èç¹ûÓÐN¸ö³¡£¬·Ö±ðÂú×ãÂó¿Ë˹Τ·½³Ì×é «ý¡ÁHi=Ji+ªµDiªµt£» «ý¡ÁEi=-ªµBiªµt£» «ý¡¤Bi=0£» «ý¡¤Di=¦Ñi ÆäÖУ¬i=1,2£¬¡­£¬N¡£ÄÇô£¬ËüÃǵÄʸÁ¿ºÍËù¶ÔÓ¦µÄ³¡£¬Ò²ÊÇÂó¿Ë˹Τ·½³Ì×éµÄ½â£¬¼´ «ý¡Á¡ÆiHi=¡ÆiJi+ªµªµt¡ÆiDi£» «ý¡Á¡ÆiEi=-ªµªµt¡ÆiBi£» «ý¡¤¡ÆiBi=0£» «ý¡¤¡ÆiDi=¡Æi¦Ñi ͬʱ£¬·½³ÌÒ²Âú×ãÆë´ÎÐÔ£¬¼´¶ÔÓÚÈÎÒâ³£Êý¦Ëi£¬ÓÐ «ý¡Á¦ËiHi=¦ËiJi+ªµ¦ËiDiªµt£» «ý¡Á¦ËiEi=-ªµ¦ËiBiªµt£» «ý¡¤¦ËiBi=0£» «ý¡¤¦ËiDi=¦Ëi¦Ñi ¸ù¾ÝÂó¿Ë˹Τ·½³Ì×éµÄÏßÐÔÐÔÖÊ£¬²¢½áºÏµç´Å³¡µÄ¸µÀïÒ¶±ä»»±í´ïʽ£¬Ôò¶ÔÈÎÒâʱ±äµç´Å³¡£¬Ö»ÐèÒªÑо¿×î¾ß´ú±íÐÔµÄÆµÂÊΪ¦ØµÄÕýÏÒÐÎʽµÄ³¡¼´¿É£¬¼´ «ý¡ÁH(r,¦Ø)=J(r,¦Ø)+j¦ØD(r,¦Ø) «ý¡ÁE(r,¦Ø)=-j¦ØB(r,¦Ø) «ý¡¤B(r,¦Ø)=0 «ý¡¤D(r,¦Ø)=¦Ñ(r,¦Ø)(5ª²11) ËüʵÖÊÉÏÏ൱ÓÚ¶ÔÂó¿Ë˹Τ·½³Ì×éÕûÌåÉϽøÐÐÁ˸µÀïÒ¶±ä»»¡£¶Ô·½³ÌÖеġ°ÏàÁ¿¡±(¸µÀïÒ¶±ä»»Ö®ºó¶ÔÓ¦µÄº¯Êý)×öÕë¶Ô¸÷¸öƵÂʳɷֵġ°ÇóºÍ¡±£¬¾Í¿ÉÒԵõ½ÈÎÒâʱ±ä³¡µÄÇéÐΡ£ ±ÈÈ磬J(r,t)=12¦Ð¡Ò¡Þ-¡ÞJ(r,¦Ø)ej¦Øtd¦Ø£¬¦Ñ(r,t)=12¦Ð¡Ò¡Þ-¡Þ¦Ñ(r,¦Ø)ej¦Øtd¦Ø£¬¼´¿ÉµÃµ½ÈÎÒâµçÁ÷ºÍµçºÉ¼¤ÀøÏµij¡¾°£» ¶øE(r,t)=12¦Ð¡Ò¡Þ-¡ÞE(r,¦Ø)ej¦Øtd¦Ø£¬H(r,t)=12¦Ð¡Ò¡Þ-¡ÞH(r,¦Ø)ej¦Øtd¦Ø£¬¾ÍÊǶÔÓ¦¼¤ÀøÏµĵ糡ºÍ´Å³¡µÄ±í´ïʽ¡£ Òò´Ë£¬Ñо¿ÕýÏÒµç´Å³¡²¢Ã»ÓÐʧµôÒ»°ãÐÔ£¬µ«ÊÇÄѶÈÈ´´ó´ó½µµÍ¡£ÕâÒ²ÊÇΪʲôҪ·ÖÎöʱгµç´Å³¡µÄÔ­Òò¡£ 5.4.2ʱгµç´Å³¡Ó븴ʸÁ¿Ö®¼äµÄת»» ÈçǰËùÊö£¬ÔÚʱ±äµç´Å³¡µÄÇé¿öÏ£¬ÎÒÃǾ­³£Ñо¿µÄÊÇËæÊ±¼ä×öÕýÏÒ(»òÕßÓàÏÒ)±ä»¯µÄµç´Å³¡£¬Ò²¾ÍÊÇʱгµç´Å³¡¡£´Ëʱ£¬²ÉÓø´Ê¸Á¿ÐÎʽ±íʾÕýÏÒµç´Å³¡ÊÇÆÕ±éµÄ×ö·¨£¬¶øÇÒ²»Ê§Ò»°ãÐÔ£¬Òò´ËÊìÁ·ÕÆÎÕʱг³¡ºÍ¸´Ê¸Á¿Ö®¼äµÄת»»¾ßÓÐÖØÒªÒâÒå¡£ÕâЩ¸´ÊýÐÎʽµÄʸÁ¿(»òÕß±êÁ¿)Ò²³ÆÎªÏàÁ¿¡£ ±ÈÈ磬 E=Exex+Eyey+Ezez =Exmcos(¦Øt+¦Õx)ex+Eymcos(¦Øt+¦Õy)ey+Ezmcos(¦Øt+¦Õz)ez =ReExmej(¦Øt+¦Õx)ex+Eymej(¦Øt+¦Õy)ey+Ezmej(¦Øt+¦Õz)ez =ReE¡¤xmex+E¡¤ymey+E¡¤zmezej¦Øt=ReE¡¤mej¦Øt(5ª²12) ¼´ E=ReE¡¤mej¦Øt ÆäÖÐ E¡¤m= E¡¤xmex+E¡¤ymey+E¡¤zmez(5ª²13) ³ÆÎªµç³¡Ç¿¶È¸´Ê¸Á¿¡£ ¶ÔÓÚʱгµç´Å³¡ÆäËûËùÓг¡Á¿£¬Ò²¿ÉÒÔÔËÓÃÀàËÆµÄ±í´ïʽ¡£ÎÒÃÇÕâÖÖ¡°¼òµ¥ÎÊÌ⸴ÔÓ»¯¡±µÄ×ö·¨ÓÐʲôºÃ´¦ÄØ£¿¸´Êý±í´ïʽµÄÔËÓÃʹµÃÊýѧÔËËã¼ò»¯£¬±ÈÈ罫¶Ôʱ¼ä±äÁ¿µÄƫ΢·Ö±äΪ´úÊýÔËËã¡£ÀýÈçD=Re(D¡¤mej¦Øt)£¬ÔòÓÐ ªµDªµt=ªµªµtRe(D¡¤mej¦Øt)=Re(j¦ØD¡¤mej¦Øt) Ò²¾ÍÊÇ˵£¬µçÎ»ÒÆÊ¸Á¿ÔÚʱÓòÇóµ¼£¬µÈ¼ÛÓÚÆäÏàÁ¿³Ëj¦Ø£» ͬÀí£¬Ê±Óò»ý·Ö²Ù×÷µÈ¼ÛÓÚÏàÁ¿³ýÒÔj¦Ø¡£ ¶ÔÓڵ糡ǿ¶ÈËæÊ±¼ä×öÕýÏұ仯µÄÇé¿ö£¬ÎÒÃÇ¿ÉÒÔÕâÑù´¦Àí E=Exex+Eyey+Ezez =Exmsin(¦Øt+¦Õx)ex+Eymsin(¦Øt+¦Õy)ey+Ezmsin(¦Øt+¦Õz)ez =Exmcos¦Øt+¦Õx-¦Ð2ex+Eymcos¦Øt+¦Õy-¦Ð2ey+Ezmcos¦Øt+¦Õz-¦Ð2ez =ReExmej¦Øt+¦Õx-¦Ð2ex+Eymej¦Øt+¦Õy-¦Ð2ey+Ezmej¦Øt+¦Õz-¦Ð2ez =Re-jExmej¦Õxex-jEymej¦Õyey-jEzmej¦Õzezej¦Øt =ReE¡¤mej¦Øt Ò²¾ÍÊÇ˵£¬Èç¹û³¡Á¿°´ÕÕÕýÏұ仯£¬µç³¡Ç¿¶ÈÒ²¿ÉÒÔд×÷ÀàËÆµÄ¸´ÊýÐÎʽ¡£ ÊÂʵÉÏ£¬ÉÏÊö²Ù×÷ÖУ¬¶ÔÓÚ¾ßÌåÊÇȡʵ²¿»¹ÊÇÈ¡Ð鲿£¬²¢Ã»ÓÐÑϸñµÄÒªÇ󣬶¼ÊÇÕýÈ·µÄ¡£µ«ÊÇÔÚ¾ßÌåÓ¦ÓÃʱ£¬Òª¼á³ÖÒ»ÖÖÑ¡Ôñ£¬¶ø²»ÄÜ¡°ºö×óºöÓÒ¡±£¬Ò»»á¶ùȡʵ²¿£¬Ò»»á¶ùÈ¡Ð鲿¡£ ´ËÍ⣬ÔÚ×öÌâµÄ¹ý³ÌÖУ¬Ò»¶¨ÒªÊ¶±ð·½³Ì¡¢³¡Á¿µÄÐÎʽÊÇ˲ʱֵÐÎʽ»¹ÊǸ´ÊýÐÎʽ£» ·ñÔò£¬¾Í»áÄÖ³ö´óЦ»°¡£Ò»°ãÀ´½²£¬ÏÔº¬Ê±¼ä±äÁ¿µÄÐÎʽ¶¼ÊÇ˲ʱֵÐÎʽ£» ¶øÏÔº¬´¿ÐéÊýµ¥Î»jµÄ¶¼ÊǸ´ÊýÐÎʽ¡£Ò»¶¨Òª¸ù¾Ý¾ßÌåµÄ±í´ïʽѡÔñÏàÓ¦µÄ²Ù×÷¡£±ÈÈ磺 ÒÑÖªHx,z=ey0.1sin10¦Ðxe-jkzzA/m£¬ÀûÓÃÂó¿Ë˹Τ·½³Ì×éÇóµç³¡Ç¿¶È¡£´Å³¡Ç¿¶È¾ÍÊǵäÐ͵ĸ´ÊýÐÎʽ£» Õâʱ£¬±ØÐë²ÉÓÃEx,z=1j¦Ø¦Å0«ý¡ÁHÕâ¸ö¸´ÊýÐÎʽµÄÂó¿Ë˹Τ·½³ÌÀ´Çó½âµç³¡¡£ µ«ÊÇ£¬Èç¹ûÒÑÖªHx,z=ey0.1sin10¦Ðxcos(6¦Ð¡Á109t-103¦Ðz)A/m£¬Õâ¸ö¾ÍÊǵäÐ͵Ä˲ʱֵÐÎʽ¡£´Ëʱ£¬±ØÐë²ÉÓëý¡ÁH=ªµDx,zªµtµÄ˲ʱֵ ÐÎʽµÄÂó¿Ë˹Τ·½³Ì£¬Í¨¹ý»ý·ÖÀ´¼ÆËãµç³¡Ç¿¶È£¬µÃµ½µÄÒ²ÊÇ˲ʱֵÐÎʽ¡£ 5.4.3ƽ¾ùÆÂӡͤʸÁ¿µÄÑϸñÍÆÖ¤¹ý³Ì Ò»°ãÇé¿öÏ£¬¼ÙÉèÕýÏÒµç´Å³¡µÄ˲ʱֵΪ E=Exex+Eyey+Ezez =Exmcos(¦Øt+¦Õex)ex+Eymcos(¦Øt+¦Õey)ey+Ezmcos(¦Øt+¦Õez)ez(5ª²14) H=Hxex+Hyey+Hzez =Hxmcos(¦Øt+¦Õhx)ex+Hymcos(¦Øt+¦Õhy)ey+Hzmcos(¦Øt+¦Õhz)ez(5ª²15) ËüÃǵĸ´Ê¸Á¿ÐÎʽΪ E¡¤m=Exmej¦Õexex+Eymej¦Õeyey+Ezmej¦Õezez(5ª²16) H¡¤m=Hxmej¦Õhxex+Hymej¦Õhyey+Hzmej¦Õhzez(5ª²17) Ôò°´ÕÕÆÂӡͤʸÁ¿µÄ¶¨Ò壬ÓÐ S=E¡ÁH =ExmHymcos(¦Øt+¦Õex)cos(¦Øt+¦Õhy)ez-ExmHzmcos(¦Øt+¦Õex)cos(¦Øt+¦Õhz)ey- EymHxmcos(¦Øt+¦Õey)cos(¦Øt+¦Õhx)ez+EymHzmcos(¦Øt+¦Õey)cos(¦Øt+¦Õhz)ex+ EzmHxmcos(¦Øt+¦Õez)cos(¦Øt+¦Õhx)ey-EzmHymcos(¦Øt+¦Õez)cos(¦Øt+¦Õhy)ex(5ª²18) ¿ÉÒÔ¿´³ö£¬ÆÂӡͤʸÁ¿µÄÁùÏîÐÎʽÏàËÆ£¬Òò´Ë£¬½ö¿¼ÂǵÚÒ»ÏîÔÚÒ»¸öÖÜÆÚÄ򵀮½¾ùÖµ£¬È»ºóд³öÈ«²¿½á¹û¡£ÏÔÈ» 1T¡ÒT0ExmHymcos(¦Øt+¦Õex)cos(¦Øt+¦Õhy)dt=12ExmHymcos(¦Õex-¦Õhy) ÆäÖУ¬T=2¦Ð¦Ø¡£ÓÚÊÇÆÂӡͤʸÁ¿ÔÚÒ»¸öÖÜÆÚµÄÆ½¾ùÖµ¿ÉÒÔ±íʾΪ =12EymHzmcos(¦Õey-¦Õhz)-EzmHymcos(¦Õez-¦Õhy)ex+ 12EzmHxmcos(¦Õez-¦Õhx)-ExmHzmcos(¦Õex-¦Õhz)ey+ 12ExmHymcos(¦Õex-¦Õhy)-EymHxmcos(¦Õey-¦Õhx)ez(5ª²19) Õâ¾ÍÊÇÆÂӡͤʸÁ¿µÄƽ¾ùÖµÐÎʽ¡£ÔÚʱгÇé¿öÏ£¬Æ½¾ùÆÂӡͤʸÁ¿¸ü¾ßÓÐʵ¼ÊÒâÒå¡£ ¶ÔÓÚÕýÏÒµç´Å³¡¶øÑÔ£¬¶àÊýÇé¿öϳ¡Á¿¶¼²ÉÓø´Ê¸Á¿ÐÎʽ£¬Òò´ËÖ±½ÓÓø´Ê¸Á¿ÐÎʽ¼ÆËãµÃµ½Æ½¾ùÆÂӡͤʸÁ¿¸ü¾ßʵ¼ÊÒâÒå¡£ ¸ù¾Ý²æ³ËµÄ¶¨Òå¡¢¸´Ê¸Á¿µÄ±íʾ·½·¨£¬²»ÄÑ¿´³ö E¡¤m¡ÁH¡¤*m=(Exmej¦Õexex+Eymej¦Õeyey+Ezmej¦Õezez)¡Á (Hxme-j¦Õhxex+Hyme-j¦Õhyey+Hzme-j¦Õhzez) =(EymHzmej(¦Õey-¦Õhz)-EzmHymej(¦Õez-¦Õhy))ex+ (EzmHxmej(¦Õez-¦Õhx)-ExmHzmej(¦Õex-¦Õhz))ey+ (ExmHymej(¦Õex-¦Õhy)-EymHxmej(¦Õey-¦Õhx))ez ¹Û²ì¿ÉÖª£¬ =12ReEm¡ÁH*m(5ª²20) Òò´Ë£¬¶¨Òå Sc=12Em¡ÁH*m=Ee¡ÁH*e(5ª²21) ³ÆÎª¸´ÊýÐÎʽµÄÆÂӡͤʸÁ¿¡£Ê¹ÓÃÖÐÓ¦¸ÃÌØ±ð×¢Òâ×î´óÖµºÍÓÐЧֵµÄ²»Í¬¡£ÓÚÊÇ =ReSc=12ReEm¡ÁH*m=ReEe¡ÁH*e(5ª²22) ÕâÒ²¾ÍÖ¤Ã÷ÁËʽ(5ª²22)¾ÍÊÇÆ½¾ùÆÂӡͤʸÁ¿µÄ¼ÆËã½á¹û¡£ ¿ÉÒÔ½«ÉÏÊö½áÂÛ×öÒ»¸öÍÆ¹ã¡£¼ÙÉèA(r,t),B(r,t)ÊÇÁ½¸öʱг±ä»¯µÄʸÁ¿³¡£¬A¡¤( r,¦Ø),B¡¤(r,¦Ø)ÊǶÔÓ¦µÄÏàÁ¿±í´ïÐÎʽ£¬Ôò»ùÓÚÇ°ÃæµÄÍÆÖ¤½á¹û£¬ºÜÈÝÒ׵õ½ 1T¡ÒT0A(r,t)¡ÁB(r,t)dt=12ReA¡¤(r,¦Ø)¡ÁB¡¤*(r,¦Ø)(5ª²23) 1T¡ÒT0A(r,t)¡¤B(r,t)dt=12ReA¡¤(r,¦Ø)¡¤B¡¤*(r,¦Ø)(5ª²24) 5.4.4¹ØÓÚ²¨¶¯·½³ÌµÄ¼¸¸öÎÊÌâ ÔÚÊýѧÉÏ£¬±êÁ¿ÐÎʽµÄ¡¢Ò»Î¬¡¢·ÇÆë´Î²¨¶¯·½³ÌÒ»°ãд×÷ utt-a2uxx=h(x,t)(5ª²25) Æäͨ½â¿ÉÒÔд×÷u(x,t)=f(x-at)+g(x+at)+p(x,t)£¬ÆäÖÐ ptt-a2pxx=h(x,t)(5ª²26) ÊÇÂú×ã·ÇÆë´Î²¨¶¯·½³ÌµÄÒ»¸öÌØ½â£» ¶øf(x-at)£¬g(x+at)¾ùÂú×ãÆë´ÎµÄ²¨¶¯·½³Ì£¬ÇÒ f(x),g(x)ÊÇÈÎÒâÁ½¸öº¯Êý£¬ËüÃÇ×é³ÉÁËÆë´Î·½³ÌµÄͨ½â¡£½«u=f(x-at)´úÈë·½³ÌÖУ¬¼´¿ÉÑéÖ¤ÉÏÊö½áÂÛ¡£ ut=-af¡ä(x-at) utt=a2f¡å(x-at) ux=f¡ä(x-at) uxx=f¡å(x-at) ËùÒÔutt-a2uxx=0¡£Í¬Àí£¬u=g(x+at)Ò²ÊÇÈç´Ë¡£ ͼ5ª²3Ðв¨Ê¾Òâͼ ͼ5ª²3¸ø³öÁ˺¯Êýf(x-at)µÄͼÏñ¡£µ±t=0ʱ£¬º¯ÊýͼÏñÈçͼ5ª²3ÖÐʵÏßËùʾ£¬f(x)ΪÈÎÒ⺯Êý£» µ±t=tʱ£¬º¯ÊýͼÏñÈçͼ5ª²3ÖÐÐéÏßËùʾ£¬Ïà¶ÔÓÚf(x)µÄͼÏñ£¬Í¼ÏñÕûÌåÏòÓÒÆ½ÒÆÁËatµÄ¾àÀë¡£Òò´Ë£¬µ±Ê±¼äÁ¬Ðø±ä»¯µÄʱºò£¬f(x-at)ÃèÊöµÄ¾ÍÊÇÒ»¸öÑØxÖáÕý·½ÏòË®Æ½ÒÆ¶¯µÄÐв¨¡£Æä´«²¥ËÙ¶ÈÏÔÈ»¾ÍÊÇv=att=a£¬Ó벨¶¯·½³ÌÀïÃæÀ­ÊÏËã·û(¶þ½×΢·ÖÔËËã)Ç°ÃæµÄϵÊýÏà¹Ø¡£Í¬Àí£¬u=g(x+at)±íʾµÄÊÇÑØxÖḺ·½ÏòˮƽÔ˶¯µÄÒ»¸öÐв¨¡£ ÈýάÇé¿öÏ£¬²¨¶¯·½³ÌµÄÐÎʽÈçÏ utt-a2«ý2u=h(x,y,z,t) ´Ëʱ£¬aÒÀÈ»±íʾÐв¨µÄ²¨ËÙ¡£ »ùÓÚÂó¿Ë˹Τ·½³Ì×飬ºÜÈÝÒ׵õ½ÈçϹØÓÚʸÁ¿ÊƺͱêÁ¿ÊƵķ½³Ì£¬¼´ «ý2A-¦Å¦Ìªµ2Aªµt2=-¦ÌJ «ý2¦¼-¦Å¦Ìªµ2¦¼ªµt2=-¦Ñ¦Å(5ª²27) ʽ(5ª²27)·Ö±ðÊÇʸÁ¿ÐÎʽºÍ±êÁ¿ÐÎʽµÄ¡¢·ÇÆë´ÎµÄ²¨¶¯·½³Ì¡£ÒòΪʸÁ¿ÐÎʽµÄ·½³Ì¿ÉÒԵȼÛΪÈý¸öÖ±½Ç·ÖÁ¿ËùÂú×ãµÄ±êÁ¿ÐÎʽµÄ·½³Ì£¬Òò´Ëʽ(5ª²27)Ò²¿ÉÒÔÓñêÁ¿ÐÎʽµÄ²¨¶¯·½³Ì¶Ô±È×öһЩ½ÏΪÉîÈëµÄ½âÊÍ¡£ Ò»¸öÖ±¹ÛµÄ¶Ô±È£¬¶ÔÓÚµç´Å²¨À´½²£¬¿ÉÒԵõ½Æä´«²¥ËÙ¶ÈΪ v=1¦Å¦Ì=1¦Å0¦Ì0¦År¦Ìr=cn(5ª²28) ÆäÖУ¬c=1¦Å0¦Ì0±íÊ¾Õæ¿ÕÖеIJ¨ËÙ£» n=¦År¦Ìr±íʾýÖʵÄÕÛÉäÂÊ¡£¶ÔÓÚ´ó¶àÊý·Ç´ÅÐÔ²ÄÁÏ£¬ÓÐn=¦År¡£ ÁíÍ⣬u=f(x-at)=f-at-xa=Ft-xa£¬ÕâÊÇͨ½âµÄÁíÍâÒ»ÖÖ±íʾÐÎʽ¡£ Ëü±íʾλÓÚxλÖõij¡£¬ÊÇÓÉx=0´¦µÄ³¡ÔÚt=t-xaʱ¿ÌµÄ״̬ËùÈ·¶¨£» Ïà¶ÔÓÚǰÕߣ¬ºóÕßÍÆ³ÙÁËxaµÄʱ¼ä£¬¶øÕâÕýºÃÊǵç´Å²¨´«²¥ËùÐèµÄʱ¼ä¡£ ¶ÔÓÚu=g(x+at)=gat+xa=Gt+xa£¬¿ÉÒÔ×öÀàËÆµÄ·ÖÎö¡£ Òò´Ë£¬Ï°¹ßÉϰÑu=Ft-xa³ÆÖ®ÎªÍƳÙÊÆ¡£ 5.4.5´ÅÐÍÔ´Ëù¶ÔÓ¦µÄÂó¿Ë˹Τ·½³Ì×é ±¾Õ¸ø³öµÄÂó¿Ë˹Τ·½³Ì×éÖУ¬±ä»¯µÄµçºÉ¡¢µçÁ÷ÊDzúÉúµç´Å³¡µÄÔ´£¬Òò´Ë£¬Õâ¸ö·½³Ì×éÒ²³ÆÎªµçÐÍÔ´Ëù¶ÔÓ¦µÄÂó¿Ë˹Τ·½³Ì×é¡£ÓëÖ®Ïà¶ÔÓ¦£¬Í¨¹ýÀà±ÈµÄ·½·¨£¬Ò²¿ÉÒԵõ½´ÅÐÍÔ´µÄ·½³Ì¡£Ò»°ãͨ¹ý¶Ô¸÷¸ö±äÁ¿¼Óϱꡰe¡±»òÕß¡°m¡±À´·Ö±ð±íʾÕâÁ½¸öÇéÐΡ£ ËäÈ»´ÅºÉ¼°´ÅÁ÷Ôڿ͹ÛÉϲ¢²»´æÔÚ£¬µ«Òý³öÕâÖÖ¸ÅÄî¿ÉʹÎÊÌâ·ÖÎö¼ò»¯£¬ËüÊÇÒ»ÖÖÊýѧÉϵÄÀà±È·½·¨£» ͬʱ£¬ºÜ¶àÇé¿öÏ¿ÉÒÔÓõÈЧµÄ°ì·¨¡°²úÉú¡±´ÅºÉºÍ´ÅÁ÷£» ¸üÎªÖØÒªµÄÊÇ£¬Ìí¼ÓÁ˴źÉÓë´ÅÁ÷ºó£¬Âó¿Ë˹Τ·½³Ì×éºÍ±ß½çÌõ¼þ¸ü¼ÓÒ»°ã»¯£¬ÇÒ¿É·Ö±ð¸Äд³É¶Ô³ÆÐÎʽ£¬¼´ «ý¡ÁHe=Je+ªµDeªµt «ý¡ÁEe=-ªµBeªµt «ý¡¤Be=0 «ý¡¤De=¦Ñe «ý¡Á-Em=Jm+ªµBmªµt «ý¡ÁHm=-ªµ-Dmªµt «ý¡¤-Dm=0 «ý¡¤Bm=¦Ñm ͬÑù£¬±ß½çÌõ¼þ·Ö±ðΪ n¡Á(He1-He2)=JeS n¡Á(Ee1-Ee2)=0 n¡¤(Be1-Be2)=0 n¡¤(De1-De2)=¦ÑeS n¡Á(Hm1-Hm2)=0 n¡Á(Em1-Em2)=-JmS n¡¤(Bm1-Bm2)=¦ÑSm n¡¤(Dm1-Dm2)=0 ͨ¹ý¹Û²ìÕâÁ½×é·½³Ì£¬¿ÉÒԵõ½µçÐÍÔ´ºÍ´ÅÐÍÔ´Ö®¼äµÄ¶ÔÕÕ¹ØÏµ£¬¼´ËùνµÄ¶ÔżÁ¿£¬Èç±í5ª²3Ëùʾ¡£¶ÔÓÚ¶ÔżÁ¿£¬ËüÃÇÂú×ãÏàͬµÄÂó¿Ë˹Τ·½³Ì×éºÍ±ß½çÌõ¼þ£¬¾ßÓÐͬÑùÐÎʽµÄ½â¡£ÀûÓöÔż¹ØÏµÀ´Çó½â¶ÔżÁ¿µÄ³¡·Ö²¼£¬³ÆÎªµç´Å³¡µÄ¶ÔżԭÀí£¬Ò²³ÆÎªµç´Å³¡µÄ¶þÖØÐÔÔ­Àí¡£ ±í5ª²3µçż¼«×ÓÓë´Åż¼«×ӵij¡Á¿µÄ¶Ôż µçÁ¿HeEeBeDe¦Å¦Ì¦ÑeJe ´ÅÁ¿-EmHm-DmBm¦Ì¦Å¦ÑmJm ÒýÈë´ÅÐÍÔ´ºó£¬Ò»°ãÇé¿öϵÄÂó¿Ë˹Τ·½³Ì×éÐÎʽÈçÏ «ý¡ÁH=J+ªµDªµt «ý¡ÁE=-Jm-ªµBªµt «ý¡¤B=¦Ñm «ý¡¤D=¦Ñ(5ª²29) ±ß½çÌõ¼þÈçÏ n¡Á(H1-H2)=JS n¡Á(E1-E2)=-JSm n¡¤(B1-B2)=¦ÑSm n¡¤(D1-D2)=¦ÑS(5ª²30) ÔÚºóÃæµÚ7ÕÂÌÖÂÛż¼«×Ó·øÉäʱ£¬Ö»Òª×÷¶ÔżÁ¿µÄ´ú»»£¬¼´¿ÉÓÉÆäÖеçż¼«×Ó·øÉäµÄ½âµÃµ½´Åż¼«×Ó·øÉäµÄ½â£¬·´Ö®ÒàÈ»¡£ÕâÖÖÀûÓöÔż¹ØÏµÀ´Çó½â¶ÔżÁ¿µÄ³¡·Ö²¼£¬³ÆÎªµç´Å³¡µÄ¶ÔżԭÀí£¬Ò²³ÆÎªµç´Å³¡µÄ¶þÖØÐÔÔ­Àí¡£ 5.4.6´ÅÐÍÔ´Ëù¶ÔÓ¦µÄ¸¨ÖúÊÆº¯Êý ÓëµçÐÍÔ´ÏàËÆ£¬µ±¸ø³ö´ÅÐÍÔ´ËùÂú×ãµÄÂó¿Ë˹Τ·½³Ì×éʱ£¬ÀûÓÃÀàËÆµÄ×ö·¨£¬¿ÉÒÔ¶¨ÒåÏàÓ¦µÄʸÁ¿ÊƺͱêÁ¿ÊÆ£¬¸ø³öËùνµÄÂåÂ××ȹ淶£¬½ø¶øµÃµ½ËüÃÇËù±ØÐëÂú×ãµÄ·½³Ì¡£ ÓÉ«ý¡¤-Dm=0£¬ÒýÈë´ÅÐÍÔ´µÄʸÁ¿ÊÆ£¬¼´¶¯Ì¬Ê¸Á¿ÊÆF£¬Âú×ã -Dm=«ý¡ÁF(5ª²31) »ò Em=-1¦Å«ý¡ÁF(5ª²32) ½«Ê½(5ª²32)´úÈë´ÅÐÍÔ´·½³Ì×éÖеĵڶþ·½³Ì£¬µÃ «ý¡ÁHm=ªµDmªµt=-ªµªµt«ý¡ÁF ¼´ «ý¡ÁHm+ªµFªµt=0(5ª²33) ʽ(5ª²33)À¨ºÅÖеÄʸÁ¿ÊÇÎÞÐýµÄ£¬Óë¾²µç³¡ÖеçÊÆµÄÒýÈëÀàËÆ£¬ÕâÀïÎÒÃÇÒýÈ붯̬±êÁ¿ÊƦ¼m£¬Áî Hm+ªµFªµt=-«ý¦¼m ¼´ Hm=-«ý¦¼m-ªµFªµt(5ª²34) ʽÖУ¬¦¼mºÍF·Ö±ðΪ´ÅÐÍÔ´¶ÔÓ¦µÄ±êÁ¿ÊƺÍʸÁ¿ÊÆ¡£ËüÃǾùÊǿռä×ø±êºÍʱ¼äµÄº¯Êý£¬¶¼ÊÇÈËΪÒýÈëµÄ¸¨Öúº¯Êý¡£Èç¹ûÎÒÃÇÒÑÖªÁËÁ½¸ö¸¨Öúº¯Êý¦¼mºÍFµÄÖµ£¬Ôò¿ÉÒÔ´úÈëʽ(5ª²32)ºÍʽ(5ª²34)ÇóµÃEmºÍHm£¬ÏÂÃæÎÒÃǽ«ÓÉÂó¿Ë˹Τ×éµÄÁíÍâÁ½¸ö·½³ÌµÃµ½Á½¸öÊÆº¯Êý¦¼mºÍFÂú×ãµÄ·½³Ì£¬¼´´ïÀʱ´¶û·½³Ì¡£ ΪÁËÇóµÃÊÆº¯Êý¦¼mºÍFÓ볡Դ֮¼äµÄ¹ØÏµ£¬½«Ê½(5ª²32)´úÈë´ÅÐÍÔ´·½³Ì×é¶ÔÓ¦·½³ÌÖеĵÚÒ»·½³Ì£¬²¢ÀûÓÃʸÁ¿Î¢·ÖºãµÈʽ£¬µÃ «ý¡ÁEm=-1¦Å«ý¡Á«ý¡ÁF=-1¦Å«ý«ý¡¤F-«ý2F=-Jm-ªµBmªµt ½«Ê½(5ª²34)´úÈëÉÏʽ£¬ÓÐ «ý(«ý¡¤F)-«ý2F=¦ÅJm-«ý¦Å¦Ìªµ¦¼mªµt-¦Å¦Ìªµ2Fªµt2 ¼´ «ý2F-«ý«ý¡¤F+¦Å¦Ìªµ¦¼mªµt-¦Å¦Ìªµ2Fªµt2=-¦ÅJm(5ª²35) ͬÀí£¬ÔÙ½«Ê½(5ª²34)´úÈë´ÅÐÍÔ´·½³Ì×éÖеĵÚËÄ·½³Ì£¬µÃ «ý¡¤Bm=-¦Ì«ý¡¤«ý¦¼m+ªµFªµt=¦Ñm ¼´ «ý2¦¼m+ªµªµt«ý¡¤F=-¦Ñm¦Ì (5ª²36) ÓÚÊÇÎÒÃǵõ½ÁËÁ½¸öÊÆº¯ÊýÂú×ãµÄ·½³Ìʽ(5ª²35)ºÍ·½³Ìʽ(5ª²36)£¬µ«ÊÇÕâÁ½¸ö·½³Ì¶¼°üº¬ÓЦ¼mºÍF£¬ÊÇÁªÁ¢·½³Ì¡£ ¹Û²ìFºÍ¦¼mµÄÒýÈë¿ÉÖª¶þÕß¶¼²»ÊÇΨһµÄ£¬ËüÃǵÄȡֵ¾ßÓÐÒ»¶¨µÄÈÎÒâÐÔ¡£Èç¹ûÎÒÃǼٶ¨ «ý¡¤F+¦Å¦Ìªµ¦¼mªµt=0(5ª²37) ʽ(5ª²37)³ÆÎªÂåÂ××ÈÌõ¼þ,¼´ÂåÂ××ȹ淶Ìõ¼þ£¬Ôòʽ(5ª²35)Óëʽ(5ª²36)¿É·Ö±ð¼ò»¯Îª «ý2F-¦Å¦Ìªµ2Fªµt2=-¦ÅJm «ý2¦¼m-¦Å¦Ìªµ2¦¼mªµt2=-¦Ñm¦Ì(5ª²38) ÔÚÎÞÔ´¿Õ¼ä£¬Jm=0£¬¦Ñm=0£¬¶¯Ì¬Êƺ¯ÊýµÄ²¨¶¯·½³Ì±äΪÆë´Î΢·Ö·½³Ì,¼´ «ý2F-¦Å¦Ìªµ2Fªµt2=0 «ý2¦¼m-¦Å¦Ìªµ2¦¼mªµt2=0(5ª²39) ¶ÔÓÚÕýÏÒµç´Å³¡£¬¶¯Ì¬Êƺ¯ÊýµÄ´ïÀʱ´¶û·½³Ìʽ(5ª²38)¿É±íʾΪ «ý2F+k2F=-¦ÅJm «ý2¦¼m+k2¦¼m=-¦Ñm¦Ì(5ª²40) ʽÖУ¬k=¦Ø¦Å¦Ì³ÆÎª²¨Êý¡£ÂåÂ××ÈÌõ¼þʽ(5ª²37)Ôò±äΪ «ý¡¤F+j¦Ø¦Å¦Ì¦¼m=0(5ª²41) µç³¡Ç¿¶ÈºÍ´Å³¡Ç¿¶ÈµÄ±í´ïʽΪ Hm=-«ý¦¼m-j¦ØF Em=-1¦Å«ý¡ÁF(5ª²42) ÎÞÔ´¿Õ¼äÖУ¬ÕýÏÒµç´Å³¡µÄÊÆº¯ÊýËùÂú×ãµÄ·½³Ì×éΪ «ý2F+k2F=0 «ý2¦¼m+k2¦¼m=0(5ª²43) µ«ÕâÖÖÇé¿öÏÂÎÒÃDz»²ÉÓÃÊÆº¯ÊýÇó½âµç´Å³¡£¬ÒòΪÕâʱEmºÍHmÒ²Âú×ãÏàͬÐÎʽµÄ·½³Ì£¬¸Ã·½³Ì³ÆÎªº¥Ä·»ô×È·½³Ì¡£ 5.4.7ÀûÓÃÂó¿Ë˹Τ·½³ÌÇó½â³¡Á¿Ê±µÄ»ý·Ö³£ÊýÎÊÌâ ÔÚʱ±ä³¡µÄÇé¿öÏ£¬Èç¹û¸ø¶¨Á˵糡»òÕߴų¡£¬ÄÇôͨ¹ýÂó¿Ë˹Τ·½³Ì×é¾Í¿ÉÒԺܿìÈ·¶¨´Å³¡»òÕߵ糡¡£ÕâÀïÃæÒ»°ã»áÉæ¼°»ý·ÖµÄÎÊÌ⣬ÈçÒÑÖªµç³¡Eʱ£¬ÀûÓ÷¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ«ý¡ÁE=-ªµBªµt£¬Í¨¹ý¶Ôµç³¡ÇóÐý¶È£¬¼´¿É»ñµÃ´Å³¡¶Ôʱ¼äµÄ±ä»¯ÂÊ£» ÔÙͨ¹ý¶Ôʱ¼ä»ý·Ö£¬¾Í¿ÉµÃµ½´Å³¡B¡£Ò»°ãÇé¿öÏ£¬»ý·Ö³£ÊýÎÒÃǶ¼»áÑ¡ÔñΪÁã¡£ÕâÊÇÎªÊ²Ã´ÄØ£¿ ¿ÉÒÔ´ÓÂó¿Ë˹Τ·½³Ì×éµÄÏßÐÔÐÔÖʺ͵þ¼ÓÔ­ÀíÀ´Àí½âÕâ¸ö²Ù×÷¡£»¹ÒԸղŵÄÀý×ÓÀ´½éÉÜ£¬µ±ÎÒÃǶÔʱ¼ä±äÁ¿»ý·ÖµÃµ½´Å¸ÐӦǿ¶ÈBʱ£¬¶ÔÓ¦µÄ»ý·Ö³£ÊýÒ»°ãÇé¿öÏÂÓ¦¸Ã½ö½öÊǿռä×ø±êµÄº¯Êý£¬¼´B(x,y,z)¡£»»¾ä»°Ëµ£¬Bt(x,y,z,t)=B(x,y,z,t)+Br(x,y,z)£¬¿ÉÒÔÓÃÁ½¸ö³¡µÄµþ¼ÓÀ´±íʾ¡£»ùÓÚͬÑùµÄÏë·¨£¬ÆäËû³¡Á¿Ò²Âú×ãÕâ¸ö¹ØÏµ¡£Òò´Ë£¬Âó¿Ë˹Τ·½³Ì×é¿ÉÒÔ±íʾΪ «ý¡Á(H+Hr)=J+Jr+ªµDªµt+ªµDrªµt «ý¡ÁE+Er=-ªµBªµt-ªµBrªµt «ý¡¤B+Br=0 «ý¡¤D+Dr=¦Ñ+¦Ñr(5ª²44) ʽ(5ª²44)ÖУ¬Ï±êr±íʾ½ö½öÊǿռä×ø±êµÄº¯Êý¡£ÀûÓõþ¼ÓÔ­Àí£¬¿ÉÒÔ°Ñʽ(5ª²44)Öеķ½³Ì·Ö³ÉÁ½×飬¼´ «ý¡ÁH=J+ªµDªµt «ý¡ÁE=-ªµBªµt «ý¡¤B=0 «ý¡¤D=¦Ñ«ý¡ÁHr=Jr+ªµDrªµt=Jr «ý¡ÁEr=-ªµBrªµt=0 «ý¡¤Br=0 «ý¡¤Dr=¦Ñr ×ó²àµÄ·½³Ì£¬µç³¡ºÍ´Å³¡¶¼ËæÊ±¼ä±ä»¯ÇÒÏ໥ñîºÏ£¬´Ó¶ø²úÉúʱ±äµç´Å³¡ºÍµç´Å²¨£» ÓÒ²àµÄ·½³ÌÓëʱ¼äÎ޹أ¬µç³¡ºÍ´Å³¡Ò²ÊÇÈ¥ñîºÏµÄ£¬Ëü¶ÔÓ¦µÄ¾ÍÊǾ²Ì¬µç³¡ºÍ´Å³¡µÄÇéÐΡ£ÓÉÓÚ¾²Ì¬µç´Å³¡ÒѾ­ÔÚÇ°ÃæÕ½ڴ¦Àí¹ýÁË£¬Òò´Ëµ¥´¿´Ó¼ÆËãʱ±äµç´Å³¡µÄ½Ç¶È¿¼ÂÇ£¬ÍêÈ«¿ÉÒÔÁî»ý·Ö³£ÊýΪÁ㣬´Ó¶øÖ»¼ÆËãʱ±ä³¡µÄÎÊÌâ¡£ÕâÑù²¢Ã»ÓÐʧµôÒ»°ãÐÔ¡£ 5.5µäÐÍÀýÌâ·ÖÎö Àý5.1Èçͼ5ª²4Ëùʾ£¬°ë¾¶ÎªRµÄÔ²ÖùÐÎ¿Õ¼ä´æÔÚ×ÅÖáÏò¾ùÔȴų¡£¬ÓÐÒ»³¤¶ÈΪ2RµÄµ¼Ìå°ôMNÈçͼ5ª²4Ëùʾ·ÅÖã¬Èô´Å¸ÐӦǿ¶ÈµÄ´óСÒÔªµBªµt=C±ä»¯£¬ÆäÖÐCÊÇÒ»¸ö´óÓÚÁãµÄ³£Êý£¬ÊÔÇóµ¼Ìå°ôÉϵĸÐÓ¦µç¶¯ÊÆ¡£ ½â·½·¨1£º ²ÉÓøÐÉúµç¶¯ÊƽøÐмÆË㣬ÔòÐèÒª¹¹ÔìÒ»¸ö°üÀ¨MNµÄ±ÕºÏ»ØÂ·£¬¶øÇÒ³ýMNÖ®Í⣬»ØÂ·ÉÏµÄÆäËû²¿·Ö¶ÔÓ¦µç¶¯ÊÆÒªÃ´ÎªÁ㣬ҪôºÜÈÝÒ×¼ÆËã¡£ÕâÑù£¬¾Í¿ÉÒԵõ½MNÉÏËù²úÉúµÄµç¶¯ÊÆ¡£Èçͼ5ª²4Ëùʾ£¬¹¹ÔìÈý½ÇÐÎOMN£¬¿¼ÂǶԳÆÐÔ£¬Ôò±ä»¯´Å³¡Ëù²úÉúµÄÎÐÐýµç³¡£¬Æä·½ÏòÓëOMºÍON´¹Ö±£¬¶ÔÓ¦µÄµç¶¯ÊÆÎªÁã¡£Òò´Ë£¬Î§ÈÆONMÒÔ˳ʱÕë·½Ïò×ö»·Â·»ý·Ö£¬Ôò ¡ÓlE¡¤dl=-¡ÒSªµBªµt¡¤dS=¡ÒMNE¡¤dl=-CSÒõÓ° Òò´Ë£¬¼ÆËã³öÒõÓ°²¿·ÖµÄÃæ»ý£¬¼´¿ÉµÃµ½µ¼Ìå°ôÉÏµÄµç¶¯ÊÆ¡£¹Û²ìͼ5ª²4Öеļ¸ºÎ¹ØÏµ£¬Ôò SÒõÓ°=R243+¦Ð3 ËùÒÔ£¬µç¶¯ÊÆ¿ÉÒÔ±íʾΪ E=-CR243+¦Ð3 ·½·¨2£º Ö±½ÓÀûÓñ仯µÄ´Å³¡£¬µÃµ½ÎÐÐýµç³¡µÄ±í´ïʽ£¬È»ºó¼ÆËãÆäÑØMNµÄ»ý·Ö¡£Èçͼ5ª²5Ëùʾ¡£±ä»¯µÄ´Å³¡ÔÚÖÜΧ¼¤·¢ÎÐÐýµç³¡£¬ÓÉÓÚ¶Ô³ÆÐÔ£¬´Ëµç³¡µÄ·½ÏòΪԲÖù×ø±êϵϵÄe¦Õ·½Ïò£¬ÇÒ¡ÓlE¡¤dl=-¡ÒSªµBªµt¡¤dS£¬Òò´Ë£¬¹¹Ôìͼ5ª²5ÖÐÐéÏß²¿·ÖËùʾµÄ»·Â·£¬ÔòÓÐ ¡ÓlE¡¤dl=2¦ÐrEi=-C¦Ðr2£¬rR£¬ÓÚÊÇEe=-C2rR2e¦Õ ͼ5ª²4Àý5.1ʾÒâͼ ͼ5ª²5Àý5.1µÄ½â·¨2ʾÒâͼ ¸ù¾Ý¸ÐÉúµç¶¯ÊƵ͍Ò壬ÔòÓÐ Ei=¡ÒlE¡¤dl=¡ÒPNEe¡¤dl+¡ÒMPEi¡¤dl ´úÈëÉÏÊö±í´ïʽ£¬ÔòÓÐ Ei=¡ÒlE¡¤dl=¡ÒPNEe¡¤dl+¡ÒMPEi¡¤dl =-¡ÒPNC2rR2e¦Õ¡¤exdx-¡ÒMPC2re¦Õ¡¤exdx =-¡ÒPNC2rR2sin¦Õdx-¡ÒMPC2rsin¦Õdx ÀûÓÃͼ5ª²5Öеļ¸ºÎ¹ØÏµ£¬Ôò x=-hcot¦Õ£¬r=hsin¦Õ,dx=hcsc2¦Õd¦Õ, h=R32,¡ÏONM=¦Ð6,¡ÏOPM=¦Ð3 ÓÚÊÇÓÐ Ei=-C2R2¡Ò¦Ð/3¦Ð/6d¦Õ-C2h2¡Ò2¦Ð/3¦Ð/3csc2¦Õd¦Õ =-CR2¦Ð12+C2h2cot¦Õ2¦Ð/3¦Ð/3 =-CR2¦Ð12-CR234 =-CR243+¦Ð3 Àý5.2½éÖÊ1ºÍ½éÖÊ2Ö®¼äµÄ·Ö½çÃæÎªÒ»¸öÆ½Ãæ£¬ÑØzÖáÎÞÏÞÑÓÉ죻 ÆäÔÚz=0µÄƽ ͼ5ª²6Àý5.2ʾÒâͼ ÃæÉϵķֲ¼Èçͼ5ª²6Ëùʾ¡£ÒÑÖª¦År1=2.5,¦År2=5£¬Ôڱ߽總½ü£¬½éÖÊ1Öеĵ糡ǿ¶È·Ö²¼ÎªE=25ex+50ey+25ez£¬Çó±ß½ç¸½½ü½éÖÊ2Öеĵ糡ÊǶàÉÙ¡£ ½â±¾ÌâÄ¿¿¼²éµÄÊǵç´Å³¡µÄ±ß½çÌõ¼þ¼°ÆäÓ¦Óá£ÆäºËÐÄÔÚÓÚÕÒ³öÒ»°ãÇé¿öÏ·ֽçÃæµÄ·¨Ïß·½Ïò£¬´Ó¶ø¿ÉÒԵõ½µç´Å³¡µÄ·¨ÏߺÍÇÐÏß·½ÏòµÄ·ÖÁ¿£¬½ø¶ø¸ù¾Ý±ß½çÌõ¼þ¼ÓÒÔ¾ßÌåÇó½â¡£ÓÉͼ5ª²6¿ÉÒÔÇó³ö·Ö½çÃæ¶ÔÓ¦µÄÇÐÏß(Ãæ)tµÄ·½³ÌΪ3x+4y-12=0£¬½«Æä¿´×÷Ò»¸ö¿Õ¼äÆ½Ãæ£¬ÔòÈÝÒ׵õ½¸ÃÆ½ÃæµÄ·¨Ïß·½ÏòΪ3ex+4ey(ÎÒÃÇÑ¡ÔñͼÖеķ¨Ïß·½Ïò£¬ÁíÍâÒ»¸öÓëÆä·½ÏòÏà·´)£¬½«·ù¶È¹éÒ»»¯µÃ n=35ex+45ey ÓÉÓÚ½éÖÊ1Öеĵ糡ǿ¶ÈΪE1=25ex+50ey+25ez¡£ ÔòE1n=E1¡¤n=25,50,25¡¤35,45,0=15+40=55 ¼´E1n=E1n¡¤n=33ex+44ey ¶øE1t=E1-E1n=-8ex+6ey+25ez ÓÉÓڱ߽çÌõ¼þE1t=E2t,D1n=D2n£¬ÇÒD=¦ÅE ËùÒÔE2t=E1t=-8ex+6ey+25ez E2n=¦Å1¦Å2E1n=12¡Á55=27.5 E2n=E2n¡¤n=16.5ex+22ey ËùÒÔE2=E2t+E2n=8.5ex+28ey+25ez Àý5.3¸ù¾ÝÒªÇó×ö¼ÆËã¡£ (1) E=exE0e-j¦Âz+eyjE0e-j¦Âz£¬¼ÆËãµç³¡Ç¿¶È˲ʱֵ¡¢´Å³¡Ç¿¶ÈµÄÏàÁ¿ÐÎʽºÍ˲ʱֵÐÎʽ£¬ÒÔ¼°Ë²Ê±ºÍƽ¾ùÆÂӡͤʸÁ¿¡£ (2) H=exH0cos(¦Øt-¦Âz)-eyH0sin(¦Øt-¦Âz)£¬¼ÆËã´Å³¡µÄÏàÁ¿ÐÎʽ¡¢µç³¡Ç¿¶È£¬ÒÔ¼°µç³¡ÄÜÁ¿ÃÜ¶ÈµÄÆ½¾ùÖµ(¿¼ÂÇÎÞÔ´µÄÇé¿ö)¡£ ½â±¾ÌâÄ¿ÖØµã¿¼²éµÄÊǵç´Å³¡Ë²Ê±ÖµÐÎʽÓëÏàÁ¿ÐÎʽµÄ»¥»»£¬ÀûÓÃÂó¿Ë˹Τ·½³Ì×é½øÐе糡ºÍ´Å³¡µÄÇó½â¡¢ÆÂӡͤʸÁ¿¼°Æ½¾ùÖµ£¬ÒÔ¼°ÄÜÁ¿Ãܶȼ°Æ½¾ùÖµµÄ¼ÆËãµÈ¡£¼ÆËã¹ý³Ì¿ÉÒÔ²ÉÓÃ˲ʱֵÐÎʽ¼ÆË㣬Ҳ¿ÉÒÔ²ÉÈ¡ÏàÁ¿ÐÎʽ½øÐмÆËã¡£´ó¼Ò×¢ÒâÌå»áÆäÖеÄÑ¡Ôñ¡£ (1) ±¾ÌâΪ¸´ÊýÐÎʽ£¬Æä˲ʱֵÐÎʽΪ E=ReexE0ej¦Øte-j¦Âz+ReeyE0ej¦Øte-j¦Âzej¦Ð2 =E0cos¦Øt-¦Âzex+E0cos¦Øt-¦Âz+¦Ð2ey =E0cos¦Øt-¦Âzex-E0sin¦Øt-¦Âzey(5ª²45) ¸ù¾ÝÂó¿Ë˹Τ·½³Ì×é«ý¡ÁE=-¦Ì0ªµHªµt£¬ÔòÓÐ «ý¡ÁE=eyªµExªµz-exªµEyªµz=eyE0¦Âsin(¦Øt-¦Âz)-exE0¦Âcos(¦Øt-¦Âz)=-¦Ì0ªµHªµt ªµHªµt=-eyE0¦Â¦Ì0sin(¦Øt-¦Âz)+exE0¦Â¦Ì0cos(¦Øt-¦Âz) »ý·Ö¿ÉÒԵõ½£¬ H=exE0¦Â¦Ø¦Ì0sin(¦Øt-¦Âz)+eyE0¦Â¦Ø¦Ì0cos(¦Øt-¦Âz)(5ª²46) ×¢Ò⣬ÕâÀï»ý·Ö³£ÊýÉèÖÃΪÁ㣬¿ÉÒԲμûÖØµãºÍÄѵã·ÖÎö²¿·Ö¡£ Èç¹ûʹÓÃÂó¿Ë˹Τ·½³Ì×éµÄÏàÁ¿ÐÎʽ£¬ÔòÓÐ «ý¡ÁE=-j¦Ø¦Ì0H ½«E=exE0e-j¦Âz+eyjE0e-j¦Âz´úÈëÉÏʽ£¬ÕûÀí£¬µÃ «ý¡ÁE=eyªµExªµz-exªµEyªµz=-eyj¦ÂE0e-j¦Âz-exE0¦Âe-j¦Âz=-j¦Ø¦Ì0H ËùÒÔ H=ey¦ÂE0¦Ø¦Ì0e-j¦Âz-exjE0¦Â¦Ø¦Ì0e-j¦Âz=-exjE0¦Â¦Ø¦Ì0e-j¦Âz+ey¦ÂE0¦Ø¦Ì0e-j¦Âz(5ª²47) ½«Ê½(5ª²47)Óëʽ(5ª²46)¶Ô±È£¬¿ÉÒÔ·¢ÏÖ£¬¶þÕß¶ÔÓ¦ÊÇÒ»Öµġ£Òò´Ë£¬ÎÞÂÛʹÓÃÄÄÖÖ·½·¨½øÐдų¡Ç¿¶ÈµÄ¼ÆË㣬½á¹û¶¼Ó¦¸ÃÒ»Ö¡£´ó¼Ò¿ÉÒÔ¸ù¾Ý×Ô¼ºµÄϲºÃ£¬ÔÚ×öÌâʱ×ö³öÑ¡Ôñ¡£ =ReSc=Re12exE0e-j¦Âz+eyjE0e-j¦Âz¡Á-exjE0¦Â¦Ø¦Ì0e-j¦Âz+ey¦ÂE0¦Ø¦Ì0e-j¦Âz* =ez2¦ÂE20¦Ø¦Ì0+E20¦Â¦Ø¦Ì0=¦ÂE20¦Ø¦Ì0ez(5ª²48) µ±È»£¬Ò²¿ÉÒÔÖ±½Ó¸ù¾Ý˲ʱֵµÄ¹«Ê½½øÐмÆËã¡£»ùÓÚʽ(5ª²45)ºÍʽ(5ª²46)£¬ÔòÓÐ S=E¡ÁH=E0cos£¨¦Øt-¦Âzex-E0sin¦Øt-¦Âzey£Ý¡Á exE0¦Â¦Ø¦Ì0sin(¦Øt-¦Âz)+eyE0¦Â¦Ø¦Ì0cos(¦Øt-¦Âz) =ezE20¦Â¦Ø¦Ì0cos2(¦Øt-¦Âz)+E20¦Â¦Ø¦Ì0sin2(¦Øt-¦Âz) =E20¦Â¦Ø¦Ì0ez(5ª²49) ¿ÉÒÔ·¢ÏÖ£¬Ë²Ê±Öµ²»ËæÊ±¼ä±ä»¯(ÕâÏÔÈ»ÊÇÒ»¸öÌØÀý)¡£Æäƽ¾ùÖµÈÔÊÇ×ÔÉí£¬Óëʽ(5ª²48)½á¹ûÒ»Ö¡£ (2) ÌâΪ˲ʱֵÐÎʽ£¬Ò²¿ÉÒÔдΪ H=exH0cos¦Øt-¦Âz+eyH0cos¦Øt-¦Âz+¦Ð2 Æä¸´ÊýÐÎʽΪ H=exH0e-j¦Âz+eyH0e-j¦Âzej¦Ð2 =ex+jeyH0e-j¦Âz ¸ù¾ÝÂó¿Ë˹Τ·½³Ì×飬«ý¡ÁH=¦Å0ªµEªµt£¬Ôò «ý¡ÁH=eyªµHxªµz-exªµHyªµz=H0¦Â£Ûeysin(¦Øt-¦Âz)-excos(¦Øt-¦Âz)£Ý=¦Å0ªµEªµt ªµEªµt=H0¦Â¦Å0£Ûeysin(¦Øt-¦Âz)-excos(¦Øt-¦Âz)£Ý ËùÒÔ£¬µç³¡Ç¿¶ÈΪ E=-H0¦Â¦Ø¦Å0eycos(¦Øt-¦Âz)+exsin(¦Øt-¦Âz) ºÜÏÔÈ»£¬Æä¶ÔÓ¦µÄÏàÁ¿ÐÎʽΪ E=-H0¦Â¦Ø¦Å0eye-j¦Âz-exje-j¦Âz µç³¡ÄÜÁ¿ÃܶÈΪ we=12D¡¤E=12¦Å0E2=H20¦Â22¦Ø2¦Å0cos2(¦Øt-¦Âz)+sin2(¦Øt-¦Âz) µç³¡ÄÜÁ¿ÃÜ¶ÈµÄÆ½¾ùֵΪ w-e=1T¡ÒT0wedt=H20¦Â22¦Ø2¦Å0 ÊÂʵÉÏ£¬Ò²¿ÉÒÔÀûÓÃÏàÁ¿µÄ°ì·¨£¬Ö±½ÓµÃµ½ÄÜÁ¿ÃÜ¶ÈµÄÆ½¾ùÖµ£¬¼´ w-e=14ReD¡¤E*=14Re¦Å0E¡¤E*=H20¦Â22¦Ø2¦Å0 ÉÏÃæÀýÌâµÄÇó½â¹ý³Ì¿´ËÆ·³Ëö£¬Êµ¼ÊÉÏÊÇͨ¹ý¶àÖÖ·½·¨½øÐмÆËãÇó½â¡£´ó¼ÒÔÚ×öÌâµÄ¹ý³ÌÖУ¬¸ù¾ÝÌâÄ¿Ìõ¼þºÍ¸öÈ˰®ºÃ£¬¶Ô¸÷ÖÖ·½·¨¼ÓÒÔÈ¡Éá¡£ Àý5.4ÈËÔìÎÀÐÇÔÚ¿Õ¼äÖнÓÊÕµ½µÄÌ«Ñô·øÉäµÄÄÜÁ÷ÃܶȴóÖÂΪ1366.1W/m2£¬¼ÆËãËüËù¶ÔÓ¦µÄ×î´óµç³¡Ç¿¶ÈÊǶàÉÙ£¿Èç¹ûÌ«Ñô¹âÒÔ37¡ã(Ïà¶ÔÓÚµç³Ø±íÃæ·¨Ïß·½Ïò)ÈëÉäµ½1m2µÄÌ«ÑôÄÜµç³ØÉÏ£¬Ôò¸Ãµç³Ø½ÓÊÕµ½µÄ¹¦ÂÊÊǶàÉÙ£¿ ½â±¾ÌâÖØµã¿¼²éµÄÊÇÆ½¾ùÆÂӡͤʸÁ¿¼°Æä¼ÆË㣻 ÈçºÎͨ¹ýÆÂӡͤʸÁ¿µÃµ½Í¨¹ýijһ±íÃæµÄµç´Å²¨¹¦ÂÊ¡£Í¬Ê±£¬¶ÔÌ«Ñô·øÉäµÄÊýÁ¿¼¶ÓÐÒ»¸ö¶¨Á¿µÄÈÏʶ¡£ (1) ÔÚ×ÔÓɿռäÖУ¬²¨×迹Ϊ Z0=¦Ì0¦Å0=120¦Ð¦¸¡Ö377¦¸ ÓÉÓÚÄÜÁ÷ÃܶȵÄʱ¼äƽ¾ùֵΪ =E2m2Z0 ËùÒÔËüËù¶ÔÓ¦µÄ×î´óµç³¡Ç¿¶ÈÊÇ Em=2Z0=2¡Á377¡Á1366.1¡Ö1014.91V/m (2) ·ÖÎö¿ÉÒԵõ½µç³Ø±íÃæ·¨Ïß·½ÏòµÄÄÜÁ÷ÃܶÈΪ n=cos37¡ã=1366.1¡Ácos37¡ã¡Ö1091.0W/m2 P=¡ÒS¡¤dA=n¡Á1m2=1091.0W Àý5.5ÎÞÔ´¿Õ¼äÖе糡ǿ¶ÈΪE=eyE0sin(¦Áx-¦Øt)+E0sin(¦Áx+¦Øt)£¬ÔËÓÃÂó¿Ë˹Τ·½³Ì×飬¼ÆËã´Å³¡Ç¿¶ÈµÄ´óС¡¢Î»ÒƵçÁ÷µÄ´óС¡£Õâ¸ö³¡´æÔڵıØÒªÌõ¼þÊÇʲô£¿ ½â±¾ÌâĿҪÇó´ó¼ÒÕÆÎÕÔËÓÃÂó¿Ë˹Τ·½³Ì×é½øÐг¡µÄÏ໥¼ÆË㣻 ÕÆÎÕÎ»ÒÆµçÁ÷µÄ¶¨Òå¼°Æä¼ÆË㣻 ͬʱ£¬ÕÆÎÕµç´Å³¡ºÍµç´Å²¨´æÔÚµÄÌõ¼þ¡£ ·½·¨1£º Ö±½Ó»ùÓÚÂó¿Ë˹Τ·½³Ì×éÇó½â¡£¸ù¾Ý«ý¡ÁE=-¦Ì0ªµHªµt£¬¿ÉÒԵõ½ «ý¡ÁE=ezªµEªµx=ez£ÛE0¦Ácos(¦Áx-¦Øt)+E0¦Ácos(¦Áx+¦Øt)£Ý=-¦Ì0ªµHªµt ËùÒÔ ªµHªµt=-E0¦Á¦Ì0ez£Ûcos(¦Áx-¦Øt)+cos(¦Áx+¦Øt)£Ý ÓÚÊÇ£¬»ý·Ö¿ÉÒԵõ½ H=ezE0¦Á¦Ø¦Ì0£Ûsin(¦Áx-¦Øt)-sin(¦Áx+¦Øt)£Ý ×¢Ò⣬ÕâÀï»ý·Ö³£ÊýÉèÖÃΪÁ㣬¿ÉÒԲμûÖØµãºÍÄѵã·ÖÎö²¿·Ö¡£ ·½·¨2£º ÔËÓõÚ6Õ¾ùÔÈÆ½Ã沨µÄ½áÂÛ¡£¸Ãµç³¡ÎªÑØyÖἫ»¯¡¢ÑØÕý¡¢¸ºxÖá´«²¥µÄÁ½Áв¨¡£Ö»¼ÆËãÆäÖÐÒ»ÁжÔÓ¦µÄ´Å³¡Ç¿¶È£¬¸ù¾Ý¶Ô³ÆÐԿɵÃÍêÕû½â¡£ ¸ù¾Ýʱг³¡ÐÎʽµÄÂó¿Ë˹Τ·½³Ì×é H=ek¡ÁEZ0 È¡ÑØxÖáÕýÏò´«²¥Ïîek=ex£¬Ôò H+=E0Z0sin(¦Áx-¦Øt)ez È¡ÑØxÖḺÏò´«²¥Ïîek=-ex£¬Ôò H-=-E0Z0sin(¦Áx+wt)ez ÔòÓÐ H=H++H-=E0Z0£Ûsin(¦Áx-¦Øt)-sin(¦Áx+¦Øt)£Ýez Î»ÒÆµçÁ÷Ϊ JD=¦Å0ªµEªµt=¦Ø¦Å0E0£Ûcos(¦Áx+¦Øt)-cos(¦Áx-wt)£Ýey ³¡´æÔڵıØÒªÌõ¼þ£º Èç¹û³¡´æÔÚ£¬ÔòÒ»¶¨ÐèÒªÂú×ãÂó¿Ë˹Τ·½³Ì¡£¸ù¾ÝÇ°ÃæµÄ¼ÆË㣬µÃµ½Á˴ų¡Ç¿¶ÈÖ®ºó£¬Ó¦¸ÃÓÐ «ý¡ÁH=¦Å0ªµEªµt ½«H=ezE0¦Á¦Ø¦Ì0£Ûsin(¦Áx-¦Øt)-sin(¦Áx+¦Øt)£Ý´úÈëÉÏʽ£¬»¯¼ò²¢ÕûÀíµÃ «ý¡ÁH=-eyªµHªµx=-eyE0¦Á2¦Ø¦Ì0£Ûcos(¦Áx-¦Øt)-cos(¦Áx+¦Øt)£Ý =¦Å0ªµEªµt=-ey¦Ø¦Å0E0£Ûcos(¦Áx-¦Øt)-cos(¦Áx+¦Øt)£Ý ËùÒÔ£¬ E0¦Á2¦Ø¦Ì0=¦Ø¦Å0E0 ¼´ ¦Á2=¦Ø2¦Å0¦Ì0 ×¢Ò⣺ ´Ë´¦²¢Ã»Óп¼ÂÇ´ÅͨÁ¬ÐøÔ­ÀíºÍ¸ß˹¶¨Àí¡£ÔÚÎÞÔ´µÄÇé¿öÏ£¬ÒòΪµç³¡ºÍ´Å³¡»¥Îª¶Ô·½µÄÐý¶È(ϵÊý³ýÍâ)£¬ËùÒÔÕâÁ½¸ö·½³Ì×ÔÈ»Âú×ã(Ðý¶È³¡µÄÉ¢¶È±Ø¶¨ÎªÁã)¡£ Àý5.6Ò»¸öÎÞÏÞ³¤µÄÔØÁ÷µ¼ÌåÖù£¬°ë¾¶ÎªR£¬µçµ¼ÂÊΪ¦Ò£¬µçÁ÷ΪIÇÒÔÚ½ØÃæÉϾùÔÈ·Ö²¼¡£¼ÆËãÁ÷È볤¶ÈΪLµÄµ¼ÌåÖùµÄ¹¦ÂÊ£¬²¢Ö¤Ã÷ÆäÓëÕâ¶Îµ¼ÌåÖùµÄÈȹ¦ÂÊÏàͬ¡£ ½â´ËÌâÖØµã¿¼²éµÄÊÇÆÂӡͤʸÁ¿¼°Æä¼ÆËãÎÊÌâ¡£Ê×ÏÈͨ¹ý·ÖÎöµÃµ½µ¼ÌåÄÚ²¿µç³¡ºÍ´Å³¡µÄ±í´ïʽ£¬ÔÙÀûÓù«Ê½¼ÆËãµÃµ½ÆÂӡͤʸÁ¿£» ͨ¹ýÔÚÌØ¶¨ÇúÃæÉÏ×öÆÂӡͤʸÁ¿µÄͨÁ¿»ý·Ö£¬¾Í¿ÉÒԵõ½´©¹ý¸ÃÇúÃæµÄµç´Å²¨µÄ¹¦ÂÊ¡£ ÖùÌåÄÚ²¿µç³¡·Ö²¼Îª E=J¦Ò=I¦Ò¦ÐR2ez ÀûÓð²Å໷·¶¨Àí£¬ÖùÌåÄÚ²¿µÄ´Å³¡·Ö²¼Îª H=Ir2¦ÐR2e¦Õ ÔÚµ¼ÌåÍâ±íÃæ´¦£¬ H=I2¦ÐRe¦Õ Òò´Ë£¬ÄÜÁ÷ÃܶÈΪ S=E¡ÁH=-I22¦Ð2R3¦Òer È¡Á÷Èëµ¼Ìå±íÃæµÄ·½ÏòΪ·¨ÏßÕý·½Ïò£¬ÔòÁ÷Èëµ¼ÌåÖùÄÚ²¿µÄ¹¦ÂÊΪ P=¡ÒS¡¤dA=¡Ò|S|r=RdA=I22¦Ð2R3¦Ò¡¤2¦ÐRL =I2¦ÐR2¦ÒL=I2LS½ØÃæ¦Ò=I2RÖù ͼ5ª²7¸ÐÉúºÍ¶¯Éúµç¶¯ÊÆµÄ ¼ÆËãʾÒâͼ ÓÚÊÇ£¬ÎÊÌâµÃÖ¤¡£ Àý5.7Èçͼ5ª²7Ëùʾ£¬Ò»¸ö³¤¶ÈΪlµÄµ¼Ìå¸ËÒÔËÙ¶Èu=eyucos(¦Øt)Ô˶¯£¬ÆäÁ½¶Ëͨ¹ýÈáÈíµÄµ¼ÏßÁ¬½ÓÔÚ·üÌØ¼ÆÉÏ£» ¿Õ¼äÓÐÒ»¸ö±ä»¯µÄ´Å³¡B=exBcos(¦Øt)£¬ÊÔÓÃÁ½ÖÖ·½·¨¼ÆËã¸ÐÓ¦µç¶¯ÊÆ£º (1)ÀûÓøÐÉúµç¶¯ÊƺͶ¯Éúµç¶¯ÊƵĸÅÄ (2)ÀûÓ÷¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ¡£ ½â¶ÔÓÚµç¶¯ÊÆµÄ¼ÆËãÎÊÌ⣬¿ÉÒÔ²ÉÓÃÁ½ÖÖ·½·¨£º Ò»ÖÖ·½·¨ÊÇÊ×ÏȼÆËãµÃµ½ÈÎÒâʱ¿Ì´©¹ýÏßÈ¦Æ½ÃæµÄ´ÅͨÁ¿£¬ÔÙÀûÓ÷¨À­µÚµç´Å¸ÐÓ¦¶¨ÂɽøÐÐÇó½â£» ÁíÍâÒ»ÖÖ·½·¨Êǽ«µç¶¯ÊÆ·Ö³ÉÁ½²¿·Ö·Ö±ð¼ÆË㣬¼´¸ÐÉúµç¶¯ÊƺͶ¯Éúµç¶¯ÊÆ£¬ÔÙÇóºÍµÃµ½×ÜµÄµç¶¯ÊÆ¡£ (1) ¸ù¾ÝBµÄ·½Ïò£¬È¡ÄæÊ±Õë·½ÏòΪ»ØÂ·Õý·½Ïò¡£ ÔÚÈÎһʱ¿Ìt£¬µ¼Ìå¸ËµÄλÖÃΪ y¡ä=¡Òt0ucos¦Øtdt=u¦Øsin¦Øt ¸ÐÉúµç¶¯ÊÆÎª E1=-¡Òy¡ä-aªµªµt(Bcos¦Øt)ldy=Bl¦Øsin¦Øt¡¤a+u¦Øsin¦Øt=Bla¦Øsin¦Øt+Blusin2¦Øt ¶¯Éúµç¶¯ÊÆÎª E2=¡Òlÿðþ½›¡ÁB¡¤dl=-uBlcos2¦Øt ¶ÔÓÚÉÏÃæµÄ¼ÆËã£¬ÒªÌØ±ð×¢Òâ·½Ïò¡£ËùÒÔ£¬ÓÐ E=B¦Øalsin¦Øt+Blusin2¦Øt-Blucos2¦Øt=B¦Øalsin¦Øt-Blucos2¦Øt (2) ·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ yt=¡ÒSB¡¤dS=¡Òy¡ä-aBcos¦Øt¡¤ldy=Blcos¦Øta+u¦Øsin¦Øt µÃ E=-d¦·tdt=-ddtBlu2¦Øsin2¦Øt+Balcos¦Øt=-Blucos2¦Øt+Bal¦Øsin¦Øt ¿É¼ûÁ½ÖÖ·½·¨½á¹ûÒ»Ö¡£ 5.6¿ÎºóϰÌâÏê½â ͼ5ª²8ϰÌâ5.1ʾÒâͼ ϰÌâ5.1Éè¾ùÔÈÆ½Ãæµç´Å²¨µÄµç³¡ÎªE=Emsin(¦Øt-¦Âz)ex£¬Ò»³¤Îªa¡¢¿íΪbµÄ¾ØÐÎÏßȦµÄÖáÏßÔÚxÖáÉÏ£¬ÇÒÓëxOzÆ½Ãæ¼Ð½ÇΪ¦Á¡£Çó¸ÃÏßȦÖеĸÐÓ¦µç¶¯ÊÆ¡£ ½â·½·¨1£º ¿¼ÂÇÔËÓù«Ê½E=¡ÒE¡¤dl¼ÆËã¸ÐÓ¦µç¶¯ÊÆ£¬ÔòÔÚz=¡Àa2cos¦Á´¦£¬µç³¡Ç¿¶ÈΪE=Emsin¦Øt«º¦Âacos¦Á2ex¡£Èçͼ5ª²8Ëùʾ£¬²ÉÓÃÄæÊ±ÕëµÄ»·Â··½ÏòΪ»ý·Ö·½Ïò£¬Ôò¸ÐÓ¦µç¶¯ÊƵÄÕý¸º·´Ó³ÁËÏà¶ÔÓڴ˲ο¼·½ÏòµÄÏà¶Ô´óС¡£½ö¿¼ÂÇÁ½¸öÊúÖ±·½Ïò±ß¿òµÄ»ý·Ö£¬¸ÐÓ¦µç¶¯ÊÆ´óСΪ E=¡ÒE¡¤dl=-¡Òb2-b2Emsin¦Øt+¦Âacos¦Á2dx+¡Òb2-b2Emsin¦Øt-¦Âacos¦Á2dx =-bEmsin¦Øt+¦Âacos¦Á2-sin¦Øt-¦Âacos¦Á2 =-2bEmsin¦Âacos¦Á2cos¦Øt ´ËֵΪÕý£¬±íÃ÷µç¶¯ÊÆÊÇÄæÊ±Õë·½Ïò£» ´ËֵΪ¸º£¬±íÃ÷µç¶¯ÊÆÊÇ˳ʱÕë·½Ïò¡£ ·½·¨2£º ÓÉÂó¿Ë˹Τ·½³Ì×é¿ÉÒԵõ½ «ý¡ÁE=-ªµBªµt=-¦ÂEmcos(¦Øt-¦Âz)ey ¸ù¾Ý·¨À­µÚµç´Å¸ÐÓ¦¶¨ÂÉ E=-ddt¡ÒSB¡¤dS=-¡ÒSªµBªµt¡¤dS (×¢Ò⣺ Ïß¿ò²»¶¯£¬ËùÒÔ¿ÉÒÔ½«Çóµ¼·ûºÅ·Å½ø»ý·Ö·ûºÅÄÚ) ´úÈëÉÏʽ£¬²¢¿¼ÂÇ´ÅͨÁ¿Á÷³ö·½ÏòΪy·½Ïò(´ÅͨΪÕýµÄ·½Ïò)£¬ÔòÄæÊ±Õë·½Ïò×ÔȻΪ¸ÐÓ¦µç¶¯ÊƵIJο¼Õý·½Ïò(ÓÒÊÖÂÝÐý·¨Ôò)¡£ÓÚÊÇ E=-ddt¡ÒSB¡¤dS=-¡ÒSªµBªµt¡¤dS=-¦ÂEm¡Ò(acos¦Á)/2-(acos¦Á)/2cos(¦Øt-¦Âz)bdz =Emsin(¦Øt-¦Âz)b(acos¦Á)/2-(acos¦Á)/2=-2bEmsin¦Âacos¦Á2cos¦Øt ÊÂʵÉÏ£¬¸ù¾Ý˹ÍпË˹¶¨Àí£¬ÕâÁ½¸ö·½·¨µÄ½á¹û±Ø¶¨Ò»Ö¡£ ϰÌâ5.2Èçͼ5ª²9Ëùʾ£¬³ß´çΪa¡ÁbµÄ¾ØÐÎÏßȦÓ볤ֱÏßµçÁ÷ i¹²Ã棬ÇÒ¿¿½üÖ±ÏßµçÁ÷µÄ±ßÓëÏßµçÁ÷ƽÐУ¬¶þÕßÏà¾àΪd£¬ÏßȦÒÔ½ÇËٶȦØÈÆÆäÖÐÐÄÖáÐýת¡£ÊÔÇóÏÂÁÐÁ½ÖÖÇé¿öÏÂÏßȦÖеĸÐÓ¦µç¶¯ÊÆ¡£ ͼ5ª²9ϰÌâ5.2ʾÒâͼ (1) i=I0(³£Êý)£» (2) i=Imcos¦¸t¡£ ½â(1) ÏßȦת¹ý½Ç¶ÈΪ¦Øtʱ£¬Æä´ÅͨÁ¿Îª ym=¡ÒSB¡¤dS=¦Ì0I0b2¦Ð¡Òr2r11rdr=¦Ì0I0b2¦Ðlnr2r1 ÆäÖÐ r1= d+a22+a22-d+a2acos¦Øt12, r2= d+a22+a22+d+a2acos¦Øt12 ´Ëʱ²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆÎª E1=-dymdt=¦Ì0I0ab¦Ød+a2sin¦Øt4¦Ð1r22-1r21 (2) ͬÀíÇóµÃ ym=¦Ì0Imbcos¦¸t2¦Ðlnr2r1 E2=-dymdt=¦Ì0Imab¦Ød+a2cos¦¸tsin¦Øt4¦Ð1r22-1r21+¦Ì0Imb¦¸sin¦¸t2¦Ðlnr2r1 ͼ5ª²10ϰÌâ5.3ʾÒâͼ ϰÌâ5.3Èçͼ5ª²10Ëùʾ£¬Æ½ÐÐË«ÏßÓëÒ»¾ØÐλØÂ·¹²Ã棬Éèa=0.2m£¬b=c=d=0.1m£¬i=0.1cos(2¦Ð¡Á107t)A£¬Çó»ØÂ·ÖеĸÐÓ¦µç¶¯ÊÆ¡£ ½âÒÔ×ó²àµçÁ÷ÏßΪzÖᣬµçÁ÷iÔÚ¾àÔØÁ÷Ö±Ïßr´¦µÄ´Å¸ÐӦǿ¶ÈΪ B=¦Ì0i2¦Ðr Ôòͨ¹ý¾ØÐÎÏß¿òµÄ´ÅͨÁ¿(´¹Ö±Ö½ÃæÏòÀïµÄ·½ÏòΪ²Î¿¼Õý·½Ïò)Ϊ ym=¡ÒB¡¤dS=¡Òb+cb¦Ì0i2¦Ðr+¦Ì0i2¦Ð(b+c+d-r)adr =¦Ì0ia2¦Ðlnb+cb+¦Ì0ia2¦Ðlnc+dd =¦Ì0ln4100¦Ðcos(2¦Ð¡Á107t)Wb »ØÂ·ÖвúÉúµÄ¸ÐÓ¦µç¶¯ÊÆÎª E=-dymdt=0.348sin(2¦Ð¡Á107t)V ϰÌâ5.4µç×Ó»ØÐý¼ÓËÙÆ÷ÀûÓÿռäµÄ½»±ä´Å³¡²úÉú½»±äµç³¡£¬´Ó¶øÊ¹´øµçÁ£×Ó¼ÓËÙ¡£Éè¼ÓËÙÆ÷ÖеĴų¡ÔÚÔ²Öù×ø±êϵÄÚÖ»ÓÐÖáÏò·ÖÁ¿£¬ÇÒÖ»ÊÇr¡¢tµÄº¯Êý£¬¼´H=f(r,t)ez¡£ÊÔÇóÔڰ뾶Ϊr´¦¸ÐÓ¦µç³¡µÄ´óСÓë·½Ïò¡£ÈôÔÚijһʱ¼ä¼ä¸ôÄÚf(r,t)=Crt£¬ÆäÖÐCÊdz£Êý¡£ÊÔÇó¸ÐÓ¦µç³¡Ç¿¶ÈµÄ¾ßÌåÐÎʽ¡£ ½â¸ù¾Ý´Å³¡·Ö²¼µÄÖá¶Ô³ÆÐÔ¿ÉÖª£¬¸ÐÓ¦µç³¡ÏßΪÓëÖáÏß´¹Ö±µÄÒ»×åͬÐÄÔ²¡£Óɵç´Å¸ÐÓ¦¶¨ÂÉ ¡ÓlE¡¤dl=-¡ÒªµBªµt¡¤dS µÃE¡¤2¦Ðr=-¦Ì0¡Òr02¦Ðr¡äªµf(r¡ä,t)ªµtdr¡ä ËùÒÔ E¡¤2¦Ðr=-¡Òr0ªµBªµt¡¤2¦Ðrdr=-¦Ì0¡Òr0ªµªµtCrt¡¤2¦Ðrdr= -2¦Ì0¦ÐC3r3r0 ¿¼Âǵ½µç³¡Ç¿¶ÈµÄ·½Ïò£¬ÔòÓÐ E=-¦Ì0C3r2e¦Õ ϰÌâ5.5³¤Îª lµÄÔ²ÖùÐεçÈÝÆ÷£¬ÄÚÍâµç¼«µÄ°ë¾¶·Ö±ðΪr1Óër2£¬ÆäÖнéÖʵĽéµç³£ÊýΪ¦Å¡£ÈôÁ½¼«°å¼äËù¼ÓµÄµçѹu=Umsin¦Øt£¬ÇÒÆä½ÇƵÂʦز»¸ß£¬¹Êµç³¡·Ö²¼Ó뾲̬³¡ÇéÐÎÏàͬ¡£ÊÔ¼ÆËã½éÖÊÖеÄÎ»ÒÆµçÁ÷Ãܶȼ°´©¹ý½éÖÊÖа뾶Ϊr(r1