前言 离散数学是研究离散量的结构及其相互关系的数学学科,它所研究的对象是离散数量关系和离散结构数学模型。 高等数学以函数为主要研究对象,所讨论的函数是连续变量之间的关系,变量可在一个确定的范围内连续地变化(取值)。而离散数学则是主要讨论离散变量及其关系的数学,一般而言,离散变量取值于一个有限集合或可列元素的集合。 离散数学是现代数学的一个重要分支,是计算机专业的一门重要基础课。离散数学在许多学科领域,特别是在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。 由于数字电子计算机是离散结构,它只能处理离散的或离散化的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着以下问题: 如何对离散结构建立相应的数学模型,以及如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。也就是说,计算机系统从本质上说是一种离散结构,必须借助于离散数学这个工具来描述,离散数学在计算机系统的逻辑设计中有着重要的应用。 “离散数学”课程主要介绍离散数学各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于培养学生严谨、规范的科学态度。多年来,该课程名称不变,但内容不断更新,教学方法不断改进,一直是教学体系中的核心基础课程,并在计算机专业课程体系中扮演着重要角色。 计算机专业的学生通过对该课程的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和逻辑推理能力,为将来参与创新性研究和开发工作打下坚实的基础。 本书的主要内容包括5部分: 数理逻辑、集合论、代数系统、图论和组合分析。●数理逻辑。为第1、2章,主要介绍命题逻辑和谓词逻辑。 ●集合论。为第3、4章,主要介绍集合的基本概念和基本运算、笛卡儿积、二元关系、关系的运算、关系的性质、等价关系和偏序关系、函数的定义与性质、函数的复合。 ●代数系统。为第5、6章,主要介绍二元运算及其性质、代数系统的概念、子代数和积代数、代数系统的同态与同构、半群和群。 ●图论。为第7、8章,主要介绍图的基本概念、握手定理、图的矩阵表示、最短路径、关键路径、二部图、欧拉图、哈密顿图、树的基本概念、最小生成树、最优二叉树和树的遍历。 ●组合分析。为第9章,主要介绍组合分析的基础知识。 编者2021年6月