前言 近年来,随着物联网和移动互联网技术的快速发展,大量具有丰富感知能力的智能设备(如智能手机、可穿戴设备)得以普及。在此背景下,“群智感知计算”作为一种新的感知模式应运而生。它利用大众的广泛分布性、灵活移动性和即时连接性进行大规模时空感知,并融合显式或隐式的群体智能实现对感知数据的优选萃取和增强理解,进而为现代城市及社会管理提供智能辅助支持。群智感知计算由于其泛在性、灵活性和低成本等优势,甫一问世便得到学术界、产业界以及政府的广泛关注,并迅速成为物联网领域的国际前沿研究热点。与传统的传感网络不同,群智感知计算“以人为中心”的感知模式带来了很多新的特性,包括参与者行为的复杂性和动态性、感知能力的差异性和互补性、感知数据的丰富性和低质性等。与此同时,这些新特性也带来一系列新的研究挑战: 群智感知的理论模型、参与者优选与任务分配、群智数据质量评估与高效汇聚、参与者隐私保护与激励机制、可重用的群智感知系统架构等。 针对以上问题,本书作者所在的智能感知与计算工业和信息化部重点实验室团队近10年来开展持续性、系统性的研究,在群智感知计算领域取得了较为丰富的研究成果。本书可视为对前期研究进展的梳理总结与提炼升华。全书共分为10章,按照移动群智感知概念体系架构、感知任务分配、感知数据质量评估与汇聚、群智隐私保护与激励机制、群智感知典型应用,以及群智感知系统平台等方面组织安排。第1章对移动群智感知的背景、意义、发展历程、研究挑战以及国内外研究现状进行简要介绍。第2章主要讨论移动群智感知的基本概念与体系结构,包括任务模型、用户模型、数据模型以及通用的移动群智感知网络系统架构。第3章和第4章分别介绍基于单目标优化与多目标优化的移动群智感知任务分配问题、模型以及相应的代表性工作。第5章主要讨论感知数据的质量评估与优选汇聚,并具体介绍视觉群智感知系统中的质量评估模型与优选策略。第6章介绍移动群智感知高效数据移交问题,涉及基于机会网络的数据移交和基于融合的传染式数据移交。第7章讨论移动群智感知位置隐私保护问题,包括隐匿位置保护、位置抑制发布技术等。第8章介绍移动群智感知激励机制设计问题,探讨物质与非物质激励机制,同时面向城市众包配送问题详细介绍动态定价策略。第9章介绍移动群智感知在不同领域的典型应用,包括城市环境监测、商业规划、智慧交通以及公共安全等众多领域。第10章介绍本书作者所在科研团队率先开发的移动群智感知操作系统CrowdOS,包括系统的体系框架、核心机制、关键组件以及平台实现与测试。 本书涉及的研究工作获得了国家973计划(2015CB352400)、国家杰出青年科学基金项目(61725205,62025205)、国家自然科学基金重点项目(61332005)、国家重点研发计划(2019YFB2102200)等项目的持续支持,在此向国家科技部、国家自然科学基金委员会的支持表示感谢! 中国科学院王怀民院士和清华大学刘云浩教授特为本书作序,在此向两位专家的支持和帮助表示诚挚的感谢!还要感谢西北工业大学周兴社教授多年来对“群智感知计算”研究方向的指导和支持。西北工业大学智能感知与计算工业和信息化部重点实验室的陈荟慧博士后、刘一萌博士、刘琰博士、李青洋博士、景瑶博士、王倩茹博士等参与了本书部分章节的撰写工作,在此对他们的辛勤付出表示感谢! 我们还要感谢清华大学刘云浩教授、北京邮电大学马华东教授、北京大学张大庆教授、中国科学技术大学李向阳教授、上海交通大学王新兵教授、东南大学罗军舟教授等物联网领域的同行学者,本书的形成也融入了部分前期大家一起研讨或项目合作的成果。在本书成稿过程中,还有很多同事和朋友以不同形式提供了帮助,在此不一一列举,敬请各位谅解。 群智感知计算作为一个快速发展的新兴研究领域,新概念、新问题、新方法不断涌现,限于作者的学识水平和研究局限,书中难免存在缺点和不足,敬请读者批评指正。 作者2021年7月于西安