

Chapter 5 Loops

In general, statements are executed sequentially: The first statement in a
function is executed firstly, followed by the second, and so on. However, there
may be a situation, when you need to execute a block of code many times.

A loop statement allows us to execute a statement or group of statements
multiple times until a particular condition is satisfied.

For example, let’s say we want to show a message 10 times. Instead of writing
the print statement 10 times, we can use a loop. That is just a simple example.
We can achieve much more efficiency and sophistication in our programs by
making effective use of loops.

There are 3 types of loops in C/C++:

• for loop;
• while loop;
• do...while loop.

5.1 for Loop

The syntax of for-loop is:

Here,

initialization—initializes variables and will be executed only once;

condition—if true, the body of for loop is executed;

if false, the for loop is terminated;

 顺序执行

循环语句

精妙的作用

for 循环

while 循环

do…while 循环

初始化；给循环变

量赋初值

终止

 Chapter 5 Loops

 67

update—updates the value of initialized variables.

Figure 5-1 is the flowchart of a for-loop in C/C++.

Figure 5-1 Flowchart of a for-loop in C/C++

Example: Printing Numbers From 1 to 5, the code is as below.

// C++ program: printing numbers from 1 to 5

#include<iostream>
using namespace std;

int main()

{
 int i=1;

 for(i=1; i<=5; i++)

 cout << i << " ";

 return 0;

}

The following program is written in C.

// C program: printing numbers from 1 to 5

#include<stdio.h>
int main()

{

 int i=1;
 for(i=1; i<=5; i++)

更新循环变量的值

C/C++程序设计(C/C++ Programming)

 68

 printf("%d ", i);

 return 0;

}

The output is:

1 2 3 4 5

How does this program work?

Iteration Value of i i <= 5 Action

1st i=1 true 1 printed, i is increased to 2

2nd i=2 true 2 printed, i is increased to 3

3rd i=3 true 3 printed, i is increased to 4

4th i=4 true 4 printed, i is increased to 5

5th i=5 true 5 printed, i is increased to 6

6th i=6 false Loop is terminated

Example: Find the sum of: 1+2+3+…+100.

int main()

{

 int i, sum=0;
 for(i=1; i<=100; i++)

 {

 sum = sum + i;
 }

 cout << "Sum = " << sum;

 return 0;

}

In the above example, we have two variables i and sum. The sum variable is
initialized to 0, and used to hold the sum of the formula.

Let us look at the for loop in more detail:

for (i = 1; i <= 100; i++)

Here,

初始化为

 Chapter 5 Loops

 69

i = 1: initializes the count variable;

i <= 100: runs the loop as long as i is less than or equal to 100;

i++: increase the i variable by 1 in each iteration.

When i becomes 101, the condition is false and sum will be equal to 1+2+3+…
+100.

5.2 while Loop

The syntax of the while loop is:

Here is how a while loop works:

If the condition evaluates to true, the code inside the while loop is executed.

Then the condition is evaluated again.

This process continues until the condition is false.

When the condition evaluates to false, the loop terminates.

Figure 5-2 is the flowchart of a while-Loop in C/C++.

Figure 5-2 Flowchart of a while-Loop in C/C++

Example: Display numbers from 1 to 5.

C/C++程序设计(C/C++ Programming)

 70

// C++ Program to print numbers from 1 to 5

#include<iostream>
using namespace std;

int main()

{
 int i = 1;

 while (i <= 5)

 {
 cout << i << " ";

 ++i;

 }

 return 0;

}

Display numbers from 1 to 5 in C:

// C Program to print numbers from 1 to 5
#include<stdio.h>
int main()
{
 int i = 1;
 while (i <= 5)
 {
 printf("%d ",i);
 ++i;
 }

 return 0;
}

The output of the programs is as below.

Iteration Value of i i <= 5 Action

1st i=1 true 1 printed, i is increased to 2

2nd i=2 true 2 printed, i is increased to 3

3rd i=3 true 3 printed, i is increased to 4

4th i=4 true 4 printed, i is increased to 5

5th i=5 true 5 printed, i is increased to 6

6th i=6 false Loop is terminated

 Chapter 5 Loops

 71

5.3 do...while Loop

The do...while loop is a variant of the while loop with one important difference:
the body of do...while loop is executed once before the condition is checked.

Its syntax is:

Here, The body of the loop is executed at first. Then the condition is evaluated.

If the condition evaluates to true, the body of the loop inside the do statement is
executed again.

The condition is evaluated once again.

If the condition evaluates to true, the body of the loop inside the do statement is
executed again.

This process continues until the condition evaluates to false. Then the loop
stops.

Figure 5-3 is the flowchart of a do…while loop.

Figure 5-3 Flowchart of a do…while loop

Example: Display numbers from 1 to 5 using do…while loop.

#include<iostream>

using namespace std;

变形

C/C++程序设计(C/C++ Programming)

 72

int main()

{
 int i = 1;

 do

 {
 cout << i << " ";

 ++i;

 }
 while (i <= 5);

 return 0;
}

The output is as below:

5.4 for Loops vs while Loops

A for loop is usually used when the number of iterations is known. For example,

// This loop is iterated 5 times

for (int i = 1; i <= 5; ++i)
{

 // body of the loop

}

Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the number of
iterations is unknown. For example,

Iteration Value of i i <= 5 Action

 i=1 true 1 printed, i is increased to 2

1st i=2 true 2 printed, i is increased to 3

2nd i=3 true 3 printed, i is increased to 4

3rd i=4 true 4 printed, i is increased to 5

4th i=5 true 5 printed, i is increased to 6

5th

i=6 false Loop is terminated

 Chapter 5 Loops

 73

while (condition)

{
 // body of the loop

}

5.5 Loop Control Statement “break” and “continue”

“break” and “continue” are two loop control statements in C and C++. They are
only consisted of one keywork: break and continue.

5.5.1 “Break” Statement

The break statement is a loop control statement which is used to
terminate the loop.

As soon as the break statement is encountered from within a loop, the loop
iterations stop there and control jumps to the first statement after the loop
immediately.

The syntax of the break statement is simple:

break;

Example : break with for loop

// program to print the value of i

#include<iostream>

using namespace std;
int main()

{

 for (int i = 1; i <= 5; i++)
 {

 // break condition

 if (i == 3)
 {

 break;

 }
 cout << i << endl;

 }

循环控制语句

终止循环

C/C++程序设计(C/C++ Programming)

 74

 return 0;

}

In the above program, the for loop is used to print the value of i in each iteration.
Please notice the code:

if(i == 3)
{

 break;

}

This means, when i is equal to 3, the break statement executes and the loop is
terminated. Hence, the output doesn't include values greater than or equal to 3.

The code below demonstrates the use of break statement in a while loop.

// Example: break with while loop

// program to find the sum of positive numbers
// if the user enters a negative number, break ends the loop

// the negative number entered is not added to sum

#include<iostream>

using namespace std;

int main()
{

 int number, sum = 0;

 while(true)
 {

 cout << "Enter a number: "; //take input from the user

 cin >> number;
 if (number < 0) //break condition

 break;

 sum += number; //add all positive numbers
 }

 cout << "The sum is " << sum << endl; //display the sum

 return 0;
}

The code below shows the use of break in a nested for loop.

// C++ program to illustrate using break statement in nested loops

 Chapter 5 Loops

 75

#include<iostream>

using namespace std;
int main()

{

 // nested for loops with break statement at inner loop
 for (int i = 0; i < 5; i++) //outter loop
 {

 for (int j = 0; j < 5; j++) //inner loop
 {

 if (j > 3)

 break;
 else

 cout << "*";

 }
 cout << endl;

 }

 return 0;
}

In the code above, we can clearly see that the inner loop is programmed to
execute for 5 iterations. But when the value of j becomes greater than 3, the
inner loop stops executing which restricts the number of iteration of the inner
loop to 4 iterations only (j from 0 to 3). However, the iteration of outer loop is
unaffected.

When the program runs, we can see on the screen:

5.5.2 “continue” Statement

Continue is also a loop control statement which is opposite to that of
break statement, it terminates the current iteration, but executes the
next iteration of the loop.

外层循环

内层循环

限制

未受影响

continue 语句

