Chapter 5 Loops

In general, statements are executed sequentially: The first statement in a
function is executed firstly, followed by the second, and so on. However, there

may be a situation, when you need to execute a block of code many times.

A loop statement allows us to execute a statement or group of statements

multiple times until a particular condition is satisfied.

For example, let’s say we want to show a message 10 times. Instead of writing
the print statement 10 times, we can use a loop. That is just a simple example.
We can achieve much more efficiency and sophistication in our programs by

making effective use of loops.
There are 3 types of loops in C/C++:

o for loop;
e while loop;

e do...while loop.

5.1 for Loop

The syntax of for-loop is:

for (initialization; condition; update)
{

// body of-loop
}

Here,
initialization—initializes variables and will be executed only once;

condition—if true, the body of for loop is executed;

if false, the for loop is terminated;

WGP hAT

(e =Ea]

K e

for fHER
while fE#
do...while fF¥f

IR ; S EIAAL
RIRBIH

2

Chapter 5 Loops

update—updates the value of initialized variables. SRR R

Figure 5-1 is the flowchart of a for-loop in C/C++.

¢

Initialization Expression

Test Condition

for loop Body

$

Update Expression

—

Figure 5-1 Flowchart of a for-loop in C/C++

Example: Printing Numbers From 1 to 5, the code is as below.

// C++ program: printing numbers from 1 to 5
#include<iostream>

using namespace std;

int main()

{
int 1=1;
for(i=1; i<=5; i++)
cout << 1 << " '';
return O;
}

The following program is written in C.

// C program: printing numbers from 1 to 5
#include<stdio.h>
int mainQ)
{
int 1=1;
for(i=1; i<=5; i++)

67

CIC++i2FiR1T(C/C++ Programming)

printf("%d ", 1);

return O;

}

The output is:

12345

How does this program work?

Iteration Value of i <=5 Action
Ist i=1 true 1 printed, i is increased to 2
2nd i=2 true 2 printed, i is increased to 3
3rd i=3 true 3 printed, i is increased to 4
4th =4 true 4 printed, i is increased to 5
5th =5 true 5 printed, i is increased to 6
6th i=6 false Loop is terminated

Example: Find the sum of: 1+2+3+-+-+100.

int mainQ)

{
int 1, sum=0;
for(i=1; i<=100; i++)
{

sum = sum + 1;

}

cout << "'Sum =

<< sum;

return O;

}

In the above example, we have two variables i and sum. The sum variable is
initialized to 0, and used to hold the sum of the formula. WIUEA R

Let us look at the for loop in more detail:
for (i = 1; i <= 100; i++)

Here,

68

Chapter 5 Loops

i = 1: initializes the count variable;
1 <= 100: runs the loop as long as i is less than or equal to 100;

i++: increase the i variable by 1 in each iteration.

When i becomes 101, the condition is false and sum will be equal to 1+2+3+---

+100.

5.2 while Loop

The syntax of the while loop is:

while (condition)
{

// body of the loop
}

Here is how a while loop works:

If the condition evaluates to true, the code inside the while loop is executed.
Then the condition is evaluated again.

This process continues until the condition is false.

When the condition evaluates to false, the loop terminates.

Figure 5-2 is the flowchart of a while-Loop in C/C++.

¢

. false
Test Condition

while Loop Body

——

Figure 5-2 Flowchart of a while-Loop in C/C++

Example: Display numbers from 1 to 5.

69

C/IC++2FFR 1T (C/C++ Programming)

// C++ Program to print numbers from 1 to 5

#include<iostream>
using namespace std;
int mainQ)
{
int i =1;
while (i <= 5)
{
cout << 1 << " '';
++1;
b
return O;

}

Display numbers from 1 to 5 in C:

// C Program to print numbers from 1 to 5
#include<stdio.h>

int mainQ)

{
int i =1;
while (i <= 5)
{

}

}

printf("%d ",i);
++1i ;

return 0O;

The output of the programs is as below.

Iteration Value of i i<=5 Action
Ist i=1 true 1 printed, i is increased to 2
2nd i=2 true 2 printed, i is increased to 3
3rd i=3 true 3 printed, i is increased to 4
4th i=4 true 4 printed, i is increased to 5
Sth i=5 true 5 printed, i is increased to 6
6th i=6 false Loop is terminated

70

Chapter 5 Loops

5.3 do...while Loop

The do...while loop is a variant of the while loop with one important difference: “&#

the body of do...while loop is executed once before the condition is checked.

Its syntax is:

do
{

// body of loop;
}

while (condition) ;
Here, The body of the loop is executed at first. Then the condition is evaluated.

If the condition evaluates to true, the body of the loop inside the do statement is
executed again.

The condition is evaluated once again.

If the condition evaluates to true, the body of the loop inside the do statement is
executed again.

This process continues until the condition evaluates to false. Then the loop
stops.

Figure 5-3 is the flowchart of a do...while loop.

&

do...while Loop Body

true »
Test Condition

false
Figure 5-3 Flowchart of a do...while loop

Example: Display numbers from 1 to 5 using do...while loop.

#include<iostream>
using namespace std;

71

CIC++i2FiR1T(C/C++ Programming)

int mainQ)
{
int 1 = 1;
do
{
cout << 1 << " "';
++1i ;
b

while (i <= 5);

return 0O;

}

The output is as below:

Iteration Value of i i<=5 Action
i=1 true 1 printed, i is increased to 2
Ist i= true 2 printed, i is increased to 3
2nd i=3 true 3 printed, i is increased to 4
3rd i=4 true 4 printed, i is increased to 5
4th i=5 true 5 printed, i is increased to 6
Sth i=6 false Loop is terminated

5.4 for Loops vs while Loops

A for loop is usually used when the number of iterations is known. For example,

// This loop is iterated 5 times
for (int i = 1; i <= 5; ++i)
{

// body of the loop

3
Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the number of

iterations is unknown. For example,

72

Chapter 5 Loops

whille (condition)

{
// body of the loop

}
5.5 Loop Control Statement “break” and “continue”

“break” and “continue” are two loop control statements in C and C++. They are i HliE
only consisted of one keywork: break and continue.

55.1 “Break” Statement

The break statement is a loop control statement which is used to -

terminate the loop. @ KN

As soon as the break statement is encountered from within a loop, the loop

iterations stop there and control jumps to the first statement after the loop
immediately.

The syntax of the break statement is simple:

break;

Example : break with for loop

// program to print the value of i

#include<iostream>
using namespace std;
int mainQ)
{
for (int i = 1; i <= 5; i++)
{
// break condition
if (i == 3)
{
break;
3

cout << i << endl;

73

C/IC++2FFR 1T (C/C++ Programming)

return 0O;

}

In the above program, the for loop is used to print the value of i in each iteration.

Please notice the code:

if(i == 3)
{

break;
bs

This means, when i is equal to 3, the break statement executes and the loop is

terminated. Hence, the output doesn't include values greater than or equal to 3.

The code below demonstrates the use of break statement in a while loop.

// Example: break with while loop

// program to find the sum of positive numbers

// if the user enters a negative number, break ends the loop
// the negative number entered is not added to sum

#include<iostream>
using namespace std;
int mainQ)
{
int number, sum = 0O;
while(true)

{

cout << "Enter a number: *; //take input from the user

cin >> number;

if (number < 0) //break condition

break;

sum += number; //add all positive numbers
}
cout << ""The sum is " << sum << endl; //display the sum
return O;

}

The code below shows the use of break in a nested for loop.

// C++ program to illustrate using break statement in nested loops

74

Chapter 5 Loops

#in
usi
int

{

}

In the code above, we can clearly see that the inner loop is programmed to
execute for 5 iterations. But when the value of j becomes greater than 3, the
inner loop stops executing which restricts the number of iteration of the inner

loop to 4 iterations only (j from 0 to 3). However, the iteration of outer loop is

clude<iostream>
ng namespace std;
main()

// nested for loops with break statement at inner loop

for (int 1 = 0; 1 < 5; i++) //outter loop
{
for (int j = 0; jJ < 5; j++) //inner loop
{
if g > 3)
break;
else
cout << "*';
¥

cout << endl;

}

return 0O;

unaffected.

When the program runs, we can see on the screen:

E

Ee e o

Ee e

*x*kx

=

5.5.2

“continue” Statement

Continue is also a loop control statement which is opposite to that of

next

break statement, it terminates the current iteration, but executes the _\O’_

iteration of the loop.

SN AEIA

R TEH

B

2
<
R
)

continue &)

75

